First-Order Logic and Inference in FOL

吉建民

USTC jianmin@ustc.edu.cn

2021年4月22日

Used Materials

Disclaimer: 本课件采用了 S. Russell and P. Norvig's Artificial Intelligence –A modern approach slides, 徐林莉老师课件和其他网络课程课件,也采用了 GitHub 中开源代码,以及部分网络博客内容

Last chapter

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- ► Basic concepts of logic:
 - ▶ syntax (语法): formal structure of sentences
 - ▶ semantics (语义): truth of sentences wrt. models
 - entailment (蕴涵): necessary truth of one sentence given another
 - ▶ inference (推理): deriving sentences from other sentences
 - ► soundness (可靠性): derivations produce only entailed sentences
 - ▶ completeness (完备性): derivations can produce all entailed sentences
- ► Forward, backward chaining are linear-time, complete for Horn clauses
- Resolution is complete for propositional logic
- Propositional logic lacks expressive power

Table of Contents

First-Order Logic Why FOL?

Syntax and semantics of FOL Using FOL Knowledge engineering in FOL

Inference in FOL

Reducing first-order inference to propositional inference Unification (合一)
Generalized Modus Ponens (一般化分离规则)
Forward and backward chaining

Pros (优点) of propositional logic

- ▶ Propositional logic is declarative (陈述性的);
 - ▶ 知识和推理分开,而且推理完全不依赖于领域
 - ▶ 对比:程序设计语言——过程性语言
 - ▶ 缺乏从其他事实派生出事实的通用机制
 - 对数据结构的更新通过一个领域特定的过程来完成
- ▶ Propositional logic allows partial (不完全) / disjunctive (分离的) / negated information
 - (unlike most data structures and databases)
- ▶ Propositional logic is compositional (合成性的):
 - ▶ meaning of B_{1,1} ∧ P_{1,2} is derived from meaning of B_{1,1} and of P_{1,2}
 (语句的含义是它的各部分含义的一个函数)
- ► Meaning in propositional logic is context-independent
 - (unlike natural language, where meaning depends on context)

Cons (缺点) of propositional logic

- Propositional logic has very limited expressive power
 - (unlike natural language)
 - E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

Cons (缺点) of propositional logic

- All students know arithmetic.
 - ► AliceIsStudent → AliceKnowsArithmetic
 - $\blacktriangleright \; \mathsf{BoblsStudent} \to \mathsf{BobKnowsArithmetic}$

...

- Propositional logic is very clunky. What's missing?
 - Objects and relations: propositions (e.g., AliceKnowsArithmetic) have more internal structure (alice, Knows, arithmetic)
 - Quantifiers and variables: all is a quantifier which applies to each person, don't want to enumerate them all...

First-order logic

采用命题逻辑的基础一陈述式、上下文无关和合成语义,并借用 自然语言的思想。

Whereas propositional logic assumes the world contains facts, first-order logic (like natural language) assumes the world contains

- ▶ Objects (对象): people, houses, numbers, colors, baseball games, wars, ...
- ▶ Relations (关系): red, round, prime, ... brother of, bigger than, part of, comes between, ...
- ▶ Functions (函数): father of, best friend, one more than, plus,

..

谓词用来描述个体(可以独立存在的事物)之间的关系或属性

Logics in general

语言	本体论约定 (世界中存在的)	认识论约定 (智能体对事实 所相信的内容)
命题逻辑 Propositional logic	事实	真/假/未知
一阶逻辑 First-order logic	事实、对象、关系	真/假/未知
时序逻辑 Temporal logic	事实、对象、关系、时间	真/假/未知
概率逻辑 Probability logic	事实	信度 ∈[0,1]

一阶逻辑的模型: Example

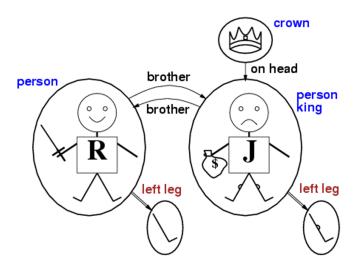


Table of Contents

First-Order Logic

Why FOL?

Syntax and semantics of FOL

Using FOL

Knowledge engineering in FOL

Inference in FOL

Reducing first-order inference to propositional inference

Unification (合一)

Generalized Modus Ponens (一般化分离规则)

Forward and backward chaining

Resolution

Syntax of FOL: Basic elements

```
Constants/常量 KingJohn, 2, USTC, ...
Predicates/谓词 Brother, >, ...
Functions/函数 Sqrt, LeftLegOf, ...
Variables/变量 x, y, a, b, ...
Connectives/连接词 ¬, ⇒,∧,∨,⇔
Equality/等词 =
Quantifiers/量词 ∀, ∃
```

Atomic sentences (原子语句)

```
Term = function (term<sub>1</sub>, ..., term<sub>n</sub>) or constant or variable
Atomic sentence = predicate (term<sub>1</sub>, ..., term<sub>n</sub>) or term<sub>1</sub> = term<sub>2</sub>
```

```
E.g., Brother(KingJohn,RichardTheLionheart)(Length(LeftLegOf(Richard)),Length(LeftLegOf(KingJohn)))
```

Complex sentences (复合语句)

Complex sentences are made from atomic sentences using connectives

$$\neg S$$
, $S_1 \wedge S_2$, $S_1 \vee S_2$, $S_1 \Rightarrow S_2$, $S_1 \Leftrightarrow S_2$,

E.g.

 $\mathsf{Sibling}(\mathsf{KingJohn},\,\mathsf{Richard}) \Rightarrow \mathsf{Sibling}(\mathsf{Richard},\,\mathsf{KingJohn})$

$$> (1,2) \lor \le (1,2)$$

$$> (1,2) \land \neg > (1,2)$$

Truth in first-order logic

- ► 语句的真值由一个模型和对句子符号的解释来判定。 Sentences are true with respect to a model and an interpretation
- ▶ Model contains objects (domain elements 域元素) and relations among them
- National Nation
- ► An atomic sentence predicate(term₁, ..., term_n) is true iff the objects referred to by term₁, ..., term_n are in the relation referred to by predicate

Truth example

Consider the interpretation in which Richard \rightarrow Richard the Lionheart John \rightarrow the evil King John Brother \rightarrow the brotherhood relation

Under this interpretation, Brother(Richard, John) is true just in case Richard the Lionheart and the evil King John are in the brotherhood relation in the model

Models for FOL: Lots!

Entailment (蕴涵) in propositional logic (命题逻辑) can be computed by enumerating (枚举) models

We can enumerate the FOL models for a given KB vocabulary: For each number of domain elements n from 1 to ∞ For each k-ary predicate (k 元谓词) P_k in the vocabulary For each possible k-ary relation on n objects
For each constant symbol C in the vocabulary
For each choice of referent for C from n objects ...

Computing entailment by enumerating FOL models is not easy! 通过枚举所有可能模型以检验 "语义后承" 在一阶逻辑中不可行

Universal quantification (全称量词)

```
∀<variables> <sentence> "对于所有的..."
```

Everyone at USTC is smart:

$$\forall x At(x, USTC) \Rightarrow Smart(x)$$

 $\forall xP$ is true in a model m iff P is true with x being each possible object in the model

Roughly speaking, equivalent to the <u>conjunction</u> of <u>instantiations</u> (实例的合取式) of *P*

```
\begin{array}{l} \mathsf{At}(\mathsf{KingJohn},\mathsf{USTC}) \Rightarrow \mathsf{Smart}(\mathsf{KingJohn}) \\ \mathsf{At}(\mathsf{Richard},\mathsf{USTC}) \Rightarrow \mathsf{Smart}(\mathsf{Richard}) \\ \mathsf{At}(\mathsf{USTC},\mathsf{USTC}) \Rightarrow \mathsf{Smart}(\mathsf{USTC}) \end{array}
```

A common mistake to avoid

Typically, ⇒ is the main connective with ∀ 在需要用全称量词书写一般规则的时候, ⇒ 的真值表项是一个理想的选择

Common mistake: using \land as the main connective with \forall :

$$\forall x At(x, USTC) \land Smart(x)$$

means "Everyone is at USTC and everyone is smart"

Existential quantification (存在量词)

```
∃<variables> <sentence>
"存在一个…… 这样以致"或"对干某个……"
```

Someone at USTC is smart:

$$\exists x At(x, USTC) \land Smart(x)$$

 $\exists xP$ is true in a model m iff P is true with x being some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations (实例的析取式) of P

```
At(KingJohn,USTC) \land Smart(KingJohn)
At(Richard, USTC) ∧ Smart(Richard)
```

- At(USTC,USTC) ∧ Smart(USTC) \vee

Another common mistake to avoid

Typically, \wedge is the main connective with \exists

Common mistake: using \Rightarrow as the main connective with \exists :

$$\exists x At(x, \mathit{USTC}) \Rightarrow \mathit{Smart}(x)$$

is true if there is anyone who is not at USTC!

Properties of quantifiers

- \blacktriangleright $\forall x \ \forall y \ \text{is the same as} \ \forall y \ \forall x$
- ▶ $\exists x \exists y \text{ is the same as } \exists y \exists x$
- ▶ $\exists x \ \forall y \ \text{is not} \ \text{the same as} \ \forall y \ \exists x$
 - ∃x ∀y Loves(x,y)
 - "There is a person who loves everyone in the world"
 - ∀y ∃x Loves(x,y)
 - "Everyone in the world is loved by at least one person"
- ▶ Quantifier duality (量词的二义性): each can be expressed using the other

```
 \forall x \; \mathsf{Likes}(\mathsf{x},\mathsf{IceCream}) \quad \neg \exists \mathsf{x} \; \neg \mathsf{Likes}(\mathsf{x},\mathsf{IceCream}) \\ \exists \mathsf{x} \; \mathsf{Likes}(\mathsf{x},\mathsf{Broccoli}) \quad \neg \forall \mathsf{x} \; \neg \mathsf{Likes}(\mathsf{x},\mathsf{Broccoli})
```

Equality (等式)

 $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object (指代的对象是相同的)

E.g., definition of Sibling in terms of Parent:

$$\forall x, y \; Sibling(x, y) \Leftrightarrow \\ [\neg(x = y) \land \exists m, f \neg (m = f) \land Parent(m, x) \\ \land Parent(f, x) \land Parent(m, y) \land Parent(f, y)]$$

Table of Contents

First-Order Logic

Why FOL?

Syntax and semantics of FOL

Using FOL

Knowledge engineering in FOL

Inference in FOL

Reducing first-order inference to propositional inference

Unification (合一)

Generalized Modus Ponens (一般化分离规则)

Forward and backward chaining

Resolution

Using FOL

The kinship(亲属关系)domain:

```
Brothers are siblings
\forall x, y \; Brother(x,y) \Rightarrow Sibling(x, y).
"Sibling" is symmetric
\forall x, y \ Sibling(x, y) \Rightarrow Sibling(y, x).
One's mother is one's female parent
\forall x, y Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y)).
A cousin is a child of a parent's sibling
\forall x, y \ \mathsf{Cousin}(x,y) \Leftrightarrow \exists \ \mathsf{p}, \ \mathsf{ps} \ \mathsf{Parent}(\mathsf{p}, \ x) \land \mathsf{Sibling}(\mathsf{ps}, \ \mathsf{p}) \land \mathsf{ps}
Parent(ps, y)
```

Using FOL

The set (集合) domain:

集合就是空集或通过将一些元素添加到一个集合而构成 $\forall s \ \mathsf{Set}(s) \Leftrightarrow (s = \{\}) \lor (\exists x, s_2 \ \mathsf{Set}(s_2) \land s = \{x | s_2\})$

空集没有任何元素,也就是说,空集无法再分解为更小的集合和 元素

$$\neg \exists x, s \{x|s\} = \{\}$$

将已经存在于集合中的元素添加到该集合,无任何变化 $\forall x,s x \in s \Leftrightarrow s = \{x|s\}$

集合的元素仅是那些被添加到集合中的元素 $\forall x, s \times \in s \Leftrightarrow [\exists y, s_2 (s = \{y | s_2\} \land (x = y \lor x \in s_2))]$

Using FOL

The set (集合) domain:

一个集合是另一个集合的子集,当且仅当第一个集合的所有元素 都是第二个集合的元素

$$\forall s_1, s_2 \ s_1 \subseteq s_2 \Leftrightarrow (\forall \ x \ x \in s_1 \Rightarrow x \in s_2)$$

两个集合是相同的,当且仅当它们互为子集

$$\forall \mathsf{s}_1, \mathsf{s}_2 \ (\mathsf{s}_1 = \mathsf{s}_2) \Leftrightarrow (\mathsf{s}_1 \subseteq \mathsf{s}_2 \land \mathsf{s}_2 \subseteq \mathsf{s}_1)$$

一个对象是两个集合的交集的元素,当且仅当它同时是这两个集 合的元素

$$\forall \mathsf{x}, \mathsf{s}_1, \mathsf{s}_2 \; \mathsf{x} \in (\mathsf{s}_1 \; \cap \mathsf{s}_2) \Leftrightarrow (\mathsf{x} \in \mathsf{s}_1 \; \wedge \; \mathsf{x} \in \mathsf{s}_2)$$

一个对象是两个集合的并集的元素,当且仅当它是其中某一集合 的元素

$$\forall x, s_1, s_2 \ x \in (s_1 \cup s_2) \Leftrightarrow (x \in s_1 \ \forall x \in s_2)$$

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at t=5:

```
Tell(KB,Percept([Smell,Breeze,None],5))
Ask(KB, a BestAction(a,5))
```

I.e., does the KB entail some best action at t=5?

Answer: Yes, {a/Shoot} ← substitution (binding list 绑定表)

Given a sentence S and a substitution σ , $S\sigma$ denotes the result of plugging σ into S; e.g., S = Smarter(x,y) $\sigma = x/Hillary, y/Bill$

 $S\sigma = Smarter(Hillary, Bill)$

Ask(KB,S) returns some/all σ such that KB \models S σ

Knowledge base for the wumpus world

- ▶ Perception (感知)
 - $ightharpoonup \forall t,s,b \ \mathsf{Percept}([s,b,\mathsf{Glitter}],t) \Rightarrow \mathsf{Glitter}(t)$
- ► Reflex
 - ▶ $\forall t \ Glitter(t) \Rightarrow BestAction(Grab,t)$
- Reflex with internal state: do we have the gold already?
 - $\label{eq:tau} \begin{array}{l} \quad \forall t \ AtGold(t) \land \neg \ Holding(Gold, \ t) \Rightarrow BestAction(Grab, \ t) \\ Holding(Gold, \ t) \ cannot \ be \ observed \quad keeping \ track \ of \ change \\ is \ essential \end{array}$

Deducing hidden properties

```
Definition of adjacent squares
\forall x,y,a,b \text{ Adjacent}([x,y],[a,b]) \Leftrightarrow [a,b] \in \{[x+1,y],
[x-1,v],[x,v+1],[x,v-1]
Properties of squares:
\foralls,t At(Agent,s,t) \land Breeze(t) \Rightarrow Breezy(s)
Squares are breezy near a pit:
   Diagnostic rule (诊断规则)—infer cause from effect
            \forall s \text{ Breezy}(s) \Rightarrow \exists r \text{ Adjacent}(r,s) \land \text{Pit}(r)
   Causal rule (因果规则)—infer effect from cause
            \forall r,s \; Adjacent(r,s) \land Pit(r) \Rightarrow Breezy(s)
   Neither of these is complete —e.g., the causal rule doesn't say
whether
   squares far away from pits can be breezy
   Definition (定义) for the Breezy predicate:
            \forall s \; \mathsf{Breezy}(s) \Leftrightarrow \exists r \; \mathsf{Adjacent}(r,s) \land \mathsf{Pit}(r)
```

Table of Contents

First-Order Logic

Why FOL?
Syntax and semantics of FOL
Using FOL

Knowledge engineering in FOL

Inference in FOL

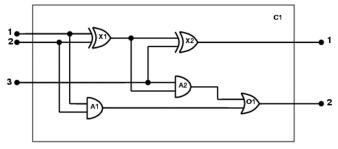
Reducing first-order inference to propositional inference Unification (合一)
Generalized Modus Ponens (一般化分离规则)
Forward and backward chaining

Knowledge engineering (知识工程) in FOL

- 1. Identify the task 确定任务
- Assemble the relevant knowledge 搜集相关知识
- 3. Decide on a vocabulary of predicates, functions, and constants 确定谓词、函数和常量的词汇表
- 4. Encode general knowledge about the domain 对域的通用知识进行编码
- 5. Encode a description of the specific problem instance 对特定问题实例的描述进行编码
- 6. Pose queries to the inference procedure and get answers 把查询提交给推理过程并获取答案
- 7. Debug the knowledge base 调试知识库

The electronic circuits (电路) domain

One-bit full adder (一位全加器)



最初的两个输入是需要相加的两位,第三个输入是一个进位。第 一个输出是和,第二个输出是下一个加法器的进位。

The electronic circuits domain

- 1 Identify the task
 - ▶ Does the circuit actually add properly? (circuit verification)
- 2 Assemble the relevant knowledge
 - ► Composed of wires (导线) and gates (门); Types of gates (AND, OR, XOR, NOT)
 - ► Irrelevant: size, shape, color, cost of gates
- 3 Decide on a vocabulary (词汇表)
 - Alternatives: Type(X₁) = XOR Type(X₁, XOR) XOR(X₁)

The electronic circuits domain

- 4 Encode (编码) general knowledge of the domain
 - 0.1 如果两个接线端是相连的,那么它们具有相同的信号 $\forall t_1, t_2 \ Connected(t_1, t_2) \Rightarrow Signal(t_1) = Signal(t_2)$
 - 0.2 每个接线端的信号不是 1 就是 0(不可能两者都是) $\forall t \; \mathsf{Signal}(t) = 1 \; \lor \; \mathsf{Signal}(t) = 0$ $1 \neq 0$
 - 0.3 Connected 是一个可交换谓词 $\forall t_1, t_2 \; Connected(t_1, t_2) \Rightarrow Connected(t_2, t_1)$
 - 0.4 或门的输出为 1,当且仅当它的某一个输入为 1 $\forall g \; \mathsf{Type}(g) = \mathsf{OR} \Rightarrow \mathsf{Signal}(\mathsf{Out}(1,g)) = 1 \Leftrightarrow \exists \mathsf{n} \; \mathsf{Signal}(\mathsf{In}(\mathsf{n},\mathsf{g})) = 1$
 - 0.5 与门的输出为 0, 当且仅当它的某一个输入为 0 ∀g Type(g) = AND ⇒Signal(Out(1,g)) = 0 ⇔ ∃n Signal(In(n,g)) = 0
 - 0.6 异或门的输出为 1,当且仅当它的输入是不相同的 $\forall g \; \mathsf{Type}(g) = \mathsf{XOR}$ $\Rightarrow \mathsf{Signal}(\mathsf{Out}(1,g)) = 1 \Leftrightarrow \mathsf{Signal}(\mathsf{In}(1,g)) \neq \mathsf{Signal}(\mathsf{In}(2,g))$
 - 0.7 非门的输出与它的输入相反 $\forall g \; \mathsf{Type}(g) = \mathsf{NOT} \Rightarrow \mathsf{Signal}(\mathsf{Out}(1,g)) \neq \mathsf{Signal}(\mathsf{In}(1,g))$

The electronic circuits domain

5 Encode the specific problem instance

```
首先对门加以分类
 \mathsf{Type}(\mathsf{X}_1) = \mathsf{XOR}
                       \mathsf{Type}(\mathsf{X}_2) = \mathsf{XOR}
 Type(A_1) = AND
                        Type(A_2) = AND
 Type(O_1) = OR
其次说明门与门之间的连接
 Connected(Out(1,X_1),In(1,X_2))
                                          Connected(In(1,C_1),In(1,X_1))
 Connected(Out(1,X_1),In(2,A_2))
                                          Connected(In(1,C_1),In(1,A_1))
                                          Connected(In(2,C_1),In(2,X_1))
 Connected(Out(1,A<sub>2</sub>),In(1,O<sub>1</sub>))
 Connected(Out(1,A<sub>1</sub>),In(2,O_1))
                                          Connected(In(2,C_1),In(2,A_1))
 Connected(Out(1,X_2),Out(1,C_1))
                                          Connected(In(3,C_1),In(2,X_2))
 Connected(Out(1,O<sub>1</sub>),Out(2,C<sub>1</sub>))
                                          Connected(In(3,C_1),In(1,A_2))
```

The electronic circuits domain

6 Pose queries to the inference procedure—把查询提交给推理 过程

What are the possible sets of values of all the terminals for the adder circuit?

```
对于 1 位全加器有哪些可能的输入与输出组合? \exists i_1, i_2, i_3, o_1, o_2 Signal(\ln(1, C_1)) = i_1 \land Signal(\ln(2, C_1)) = i_2 \land Signal(\ln(3, C_1)) = i_3 \land Signal(\operatorname{Out}(1, C_1)) = o_1 \land Signal(\operatorname{Out}(2, C_1)) = o_2
```

7 Debug the knowledge base
May have omitted assertions like 1 ≠ 0
对异或门 (XOR) 尤其重要:
Signal(Out(1,X₁))=1 ⇔ Signal(In(1, X₁)) ≠ Signal(In(2,X₁))

Summary

命题逻辑只是对事物的存在进行限定,而一阶逻辑对于对象和关系的存在进行限定,因而获得更强的表达能力。 First-order logic:

- ▶ objects and relations are semantic primitives (基本)
- syntax: constants, functions, predicates, equality, quantifiers
 - ▶ 语句的真值由一个模型和对句子符号的解释来判定。

Increased expressive power: sufficient to define wumpus world 在一阶逻辑中开发知识库是一个细致的过程,包括对域进行分析、选择词汇表、对支持所需推理必不可少的公理进行编码。

Table of Contents

First-Order Logic

Why FOL?

Syntax and semantics of FOL

Using FOL

Knowledge engineering in FOL

Inference in FOL

Reducing first-order inference to propositional inference

Unification (合一)

Generalized Modus Ponens (一般化分离规则)

Forward and backward chaining

Resolution

Universal instantiation (UI) 全称实例化

Every instantiation of a universally quantified sentence is entailed by it:

全称量化语句蕴含它的所有实例

$$\frac{\forall v \quad \alpha}{\mathsf{Subst}(\{v/g\}, \alpha)}$$

```
for any variable(变量) v and ground term (基项) g E.g., \forall x \text{ King}(x) \land \text{greedy}(x) \Rightarrow \text{Evil}(x) \text{ yields} King(John) \land Greedy(John) \Rightarrow Evil(John) King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard) King(Father(John)) \land Greedy(Father(John)) \Rightarrow Evil(Father(John))
```

Existential instantiation (EI) 存在实例化

For any sentence , variable ν , and $\frac{new}{new}$ constant symbol k that does not appear elsewhere in the knowledge base:

全称量化语句蕴含它的所有实例

$$\frac{\exists v \quad \alpha}{\mathsf{Subst}(\{v/k\},\alpha)}$$

E.g., $\exists x Crown(x) \land OnHead(x, John)$ yields

$$Crown(C_1) \land OnHead(C_1, John)$$

provided C_1 is a new constant symbol, called a Skolem constant (斯科伦常数)

Another example: from $\exists x \ d(x^y)/dy = x^y$ we obtain

$$d(e^y/dy)=e^y$$

provided e is a new constant symbol

Existential instantiation contd.

 \mbox{UI} can be applied several times to \mbox{add} new sentences; the new KB is logically equivalent to the old

全称实例化可以多次应用从而获得许多不同的结果

El can be applied once to replace the existential sentence; the new KB is not equivalent to the old,

but is satisfiable iff the old KB was satisfiable

存在实例化可以应用一次,然后取代存在量化语句;

新知识库逻辑上并不等价于旧知识库,但只有在原始知识库可满足时,新的知识库才是可满足的。

Reduction to propositional inference 简化到命题逻辑推理

Suppose the KB contains just the following: $\forall x \, \mathsf{King}(\mathsf{x}) \land \mathsf{Greedy}(\mathsf{x}) \Rightarrow \mathsf{Evil}(\mathsf{x})$ King(John) Greedy(John) Brother(Richard, John) Instantiating the universal sentence in all possibleways, we have $King(John) \wedge Greedy(John) \Rightarrow Evil(John)$ $King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard)$ King(John) Greedy(John)

The new KB is propositionalized (命题化): proposition symbols are

King(John), Greedy(John), Evil(John), King(Richard) etc

Brother(Richard, John)

Reduction contd.

Claim: Every FOL KB can be propositionalized so as to preserve entailment

每一个一阶逻辑知识库都可以命题化使得蕴含关系得以保持

Claim: A ground sentence is entailed by new KB iff entailed by original KB

Idea: propositionalize KB and query, apply resolution, return result

Problem: with function symbols, there are infinitely many (无限多个) ground terms (基项),

-e.g., Father(Father(Father(John)))

Reduction contd.

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it is entailed by a finite subset of the propositionalized KB 定理: 如果某个语句被原始的一阶知识库蕴含,则存在一个只涉及命题化知识库的有限子集的证明

Idea: For n = 0 to ∞ do create a propositional KB by instantiating with depth-n terms see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936) Entailment for FOL is semidecidable (半可判定的) (algorithms exist that say yes to every entailed sentence, but no algorithm exists that also says no to every nonentailed sentence.)

Problems with propositionalization

Propositionalization seems to generate lots of irrelevant/不相关的 sentences.

```
E.g., from: \forall x \text{ King}(x) \land \text{Greedy}(x) \Rightarrow \text{Evil}(x)

\text{King}(\text{John})

\forall y \text{ Greedy}(y)

\text{Brother}(\text{Richard},\text{John})
```

it seems obvious that Evil(John), but propositionalization produces lots of facts such as Greedy(Richard) that are irrelevant

With p k-ary predicates/谓词 and n constants, there are $p \cdot n^k$ instantiations.

With function symbols, it gets much much worse!

Table of Contents

First-Order Logic

Why FOL?

Syntax and semantics of FOL

Using FOL

Knowledge engineering in FOL

Inference in FOL

Reducing first-order inference to propositional inference

Unification (合一)

Generalized Modus Ponens (一般化分离规则)

Forward and backward chaining

Resolution

如果存在某个置换 θ 使蕴涵的前提和 KB 中己有的语句完全相同,那么应用 θ 后,就可以断言蕴涵的结论

We can get the inference immediately if we can find a substitution (置换) θ such that King(x) and Greedy(x) match King(John) and Greedy(y)

p	q	θ
Knows(John,x)	Knows(John,Jane)	
Knows(John,x)	Knows(y,OJ)	
Knows(John,x)	Knows(y,Mother(y))	
Knows(John,x)	Knows(x,OJ)	

如果存在某个置换 θ 使蕴涵的前提和 KB 中己有的语句完全相同,那么应用 θ 后,就可以断言蕴涵的结论

We can get the inference immediately if we can find a substitution (置换) θ such that King(x) and Greedy(x) match King(John) and Greedy(y)

p	q	θ
Knows(John,x)	Knows(John,Jane)	{x/Jane}
Knows(John,x)	Knows(y,OJ)	
Knows(John,x)	Knows(y,Mother(y))	
Knows(John,x)	Knows(x,OJ)	

如果存在某个置换 θ 使蕴涵的前提和 KB 中己有的语句完全相同,那么应用 θ 后,就可以断言蕴涵的结论

We can get the inference immediately if we can find a substitution (置换) θ such that King(x) and Greedy(x) match King(John) and Greedy(y)

p	q	$\mid \theta \mid$
Knows(John,x)	Knows(John,Jane)	{x/Jane}
Knows(John,x)	Knows(y,OJ)	$\{x/OJ,y/John\}$
Knows(John,x)	Knows(y,Mother(y))	
Knows(John,x)	Knows(x,OJ)	

如果存在某个置换 θ 使蕴涵的前提和 KB 中己有的语句完全相同,那么应用 θ 后,就可以断言蕴涵的结论

We can get the inference immediately if we can find a substitution (置换) θ such that King(x) and Greedy(x) match King(John) and Greedy(y)

p	q	θ
Knows(John,x)	Knows(John, Jane)	{x/Jane}
Knows(John,x)	Knows(y,OJ)	$\{x/OJ,y/John\}$
Knows(John,x)	Knows(y,Mother(y))	${y/John,x/Mother(John)}$
Knows(John,x)	Knows(x,OJ)	

如果存在某个置换 θ 使蕴涵的前提和 KB 中己有的语句完全相同,那么应用 θ 后,就可以断言蕴涵的结论

We can get the inference immediately if we can find a substitution (置换) θ such that King(x) and Greedy(x) match King(John) and Greedy(y)

 $\theta = x/John, y/John works$

Unify(α , β)= θ if $\alpha\theta$ = $\beta\theta$

q	$\mid heta$
Knows(John, Jane)	{x/Jane}
Knows(y,OJ)	$\{x/OJ,y/John\}$
Knows(y,Mother(y))	${y/John,x/Mother(John)}$
Knows(x,OJ)	{fail}
	Knows(y,OJ) Knows(y,Mother(y))

Standardizing apart (标准化分离) eliminates overlap of variables, e.g., $Knows(z_{17},OJ)$

```
To unify Knows(John,x) and Knows(y,z), \theta = \{y/John, x/z \} or \theta = \{y/John, x/John, z/John \}
```

The first unifier is more general (更加一般) than the second.

-对变量的取值限制比较少

There is a single most general unifier (MGU) that is unique up to renaming of variables.

对每个表达式的合一对,存在一个唯一的<mark>最一般合一者</mark>,不考虑变量 的重新命名它是唯一的。

 $\mathsf{MGU} = \{\ \mathsf{y}/\mathsf{John},\,\mathsf{x}/\mathsf{z}\ \}$

Table of Contents

```
First-Order Logic
Why FOL?
Syntax and semantics of FOL
Using FOL
Knowledge engineering in FOL
```

Inference in FOL

Reducing first-order inference to propositional inference Unification (合一)

Generalized Modus Ponens (一般化分离规则)

Forward and backward chaining

Generalized Modus Ponens (GMP)

Modus Ponens (演绎推理, 分离规则) (for Horn Form): complete for Horn KBs

$$\frac{\alpha_1, ..., \alpha_n, \quad \alpha_1 \wedge ... \wedge \alpha_n \Rightarrow \beta}{\beta}$$

GMP (一般化分离规则):

$$\frac{p'_1, p'_2, ..., p'_n, (p_1 \wedge p_2 \wedge ... \wedge p_n \Rightarrow q)}{q\theta}$$

```
where p'_i\theta = p_i\theta for all i

p'_1 is King(John) p_1 is King(x)

p'_2 is Greedy(y) p_2 is Greedy(x)

\theta is \{x/\text{John}, y/\text{John}\} q is Evil(x)

q\theta is Evil(John)
```

GMP used with KB of definite clauses 确定子句 (exactly one positive literal)

All variables assumed universally quantified

Semi-decidability (半可判定)

First-order logic (even restricted to only Horn clauses) is semi-decidable.

- -If KB entails f, algorithms exist to prove f in finite time.
- -If KB does not entail f, no algorithm can show this in finite time.

Soundness of GMP

Need to show that

$$p_1'$$
, ..., p_n' , $(p_1 \wedge \cdots \wedge p_n \Rightarrow q) \models q\theta$ provided that $p_i'\theta = p_i\theta$ for all i

Lemma: For any sentence p, we have $p \models p\theta$

1.

$$(p_1 \wedge \cdots \wedge p_n \Rightarrow q) \models (p_1 \wedge \cdots \wedge p_n \Rightarrow q)\theta = (p_1\theta \wedge \cdots \wedge p_n\theta \Rightarrow q\theta)$$

- 2. $p'_1, \ldots, p'_n \models p'_1 \wedge \cdots \wedge p'_n \models p'_1 \theta \wedge \cdots \wedge p'_n \theta$
- 3. From 1 and 2, $q\theta$ follows by ordinary Modus Ponens

Completeness of GMP

- GMP: incomplete for FOL
 - -Not every sentence can be converted to Horn form
- ► GMP: complete for FOL KB of definite clauses

The law says that it is a crime for an American to sell weapons to hostile nations.

The country Nono, an enemy of America, has some missiles (导弹), and all of its missiles were sold to it by Colonel (上校) West, who is American.

Prove that Col. West is a criminal

...it is a crime for an American to sell weapons to hostile nations:

...it is a crime for an American to sell weapons to hostile nations:

$$American(x) \land Weapon(y) \land Sells(x,y,z) \land Hostile(z) \Rightarrow Criminal(x)$$

Nono ...has some missiles

...it is a crime for an American to sell weapons to hostile nations:

$$American(x) \land Weapon(y) \land Sells(x,y,z) \land Hostile(z) \Rightarrow Criminal(x)$$

Nono ...has some missiles, i.e., $\exists x \text{ Owns}(\text{Nono},x) \land \text{Missile}(x)$:

$$Owns(Nono, M_1)$$
 and $Missile(M_1)$

...all of its missiles were sold to it by Colonel West

...it is a crime for an American to sell weapons to hostile nations:

$$American(x) \land Weapon(y) \land Sells(x,y,z) \land Hostile(z) \Rightarrow Criminal(x)$$

Nono ...has some missiles, i.e., $\exists x \text{ Owns}(\text{Nono},x) \land \text{Missile}(x)$:

$$Owns(Nono, M_1)$$
 and $Missile(M_1)$

...all of its missiles were sold to it by Colonel West

$$Missile(x) \land Owns(Nono,x) \Rightarrow Sells(West,x,Nono)$$

Missiles are weapons:

...it is a crime for an American to sell weapons to hostile nations:

$$American(x) \land Weapon(y) \land Sells(x,y,z) \land Hostile(z) \Rightarrow Criminal(x)$$

Nono ...has some missiles, i.e., $\exists x \text{ Owns}(\text{Nono},x) \land \text{Missile}(x)$:

$$Owns(Nono, M_1)$$
 and $Missile(M_1)$

...all of its missiles were sold to it by Colonel West

$$Missile(x) \land Owns(Nono,x) \Rightarrow Sells(West,x,Nono)$$

Missiles are weapons:

$$Missile(x) \Rightarrow Weapon(x)$$

An enemy of America counts as "hostile":

...it is a crime for an American to sell weapons to hostile nations:

$$American(x) \land Weapon(y) \land Sells(x,y,z) \land Hostile(z) \Rightarrow Criminal(x)$$

Nono ...has some missiles, i.e., $\exists x \text{ Owns}(\text{Nono},x) \land \text{Missile}(x)$:

$$Owns(Nono, M_1)$$
 and $Missile(M_1)$

...all of its missiles were sold to it by Colonel West

$$Missile(x) \land Owns(Nono,x) \Rightarrow Sells(West,x,Nono)$$

Missiles are weapons:

$$Missile(x) \Rightarrow Weapon(x)$$

An enemy of America counts as "hostile":

$$Enemy(x,America) \Rightarrow Hostile(x)$$

West, who is American ...

American(West)

The country Nono, an enemy of America ...

Enemy(Nono, America)

Table of Contents

First-Order Logic

Why FOL?

Syntax and semantics of FOL

Using FOL

Knowledge engineering in FOL

Inference in FOL

Reducing first-order inference to propositional inference

Unification (合一)

Generalized Modus Ponens (一般化分离规则)

Forward and backward chaining

Resolution

Forward chaining algorithm

```
function FOL-FC-ASK(KB, \alpha) returns a substitution or false
   repeat until new is empty
          new \leftarrow \{\}
          for each sentence r in KB do
               (p_1 \wedge \ldots \wedge p_n \Rightarrow q) \leftarrow \text{STANDARDIZE-APART}(r)
               for each \theta such that (p_1 \wedge \ldots \wedge p_n)\theta = (p'_1 \wedge \ldots \wedge p'_n)\theta
                                 for some p'_1, \ldots, p'_n in KB
                     q' \leftarrow \text{SUBST}(\theta, q)
                   if q' is not a renaming of a sentence already in KB or new then do
                           add q' to new
                           \phi \leftarrow \text{UNIFY}(q', \alpha)
                           if \phi is not fail then return \phi
         add new to KB
   return false
```

...it is a crime for an American to sell weapons to hostile nations:

$$American(x) \land Weapon(y) \land Sells(x,y,z) \land Hostile(z) \Rightarrow Criminal(x)$$

Nono ...has some missiles, i.e., $\exists x \text{ Owns}(\text{Nono},x) \land \text{Missile}(x)$:

$$Owns(Nono, M_1)$$
 and $Missile(M_1)$

...all of its missiles were sold to it by Colonel West

$$Missile(x) \land Owns(Nono,x) \Rightarrow Sells(West,x,Nono)$$

Missiles are weapons:

$$Missile(x) \Rightarrow Weapon(x)$$

An enemy of America counts as "hostile":

$$Enemy(x,America) \Rightarrow Hostile(x)$$

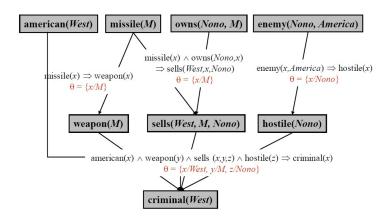
West, who is American ...

American(West)

The country Nono, an enemy of America ...

Enemy(Nono, America)

Forward chaining proof



Properties of forward chaining

Sound and complete for first-order definite clauses (proof similar to propositional proof)

Datalog (数据日志) = first-order definite clauses + no functions (e.g., crime KB)

FC terminates for Datalog in poly iterations: at most $p \cdot n^k$ literals

May not terminate in general if α is not entailed

This is unavoidable: entailment with definite clauses is semidecidable (半可判定的)

Efficiency of forward chaining

```
Simple observation: no need to match (匹配) a rule on iteration k if a premise wasn't added on iteration k-1
```

 \Rightarrow match each rule whose premise contains a newly added literal Matching itself can be expensive

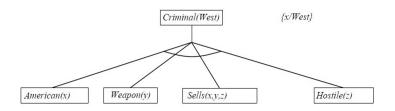
Database indexing (索寻) allows O(1) retrieval of known facts e.g., query Missile(x) retrieves $Missile(M_1)$

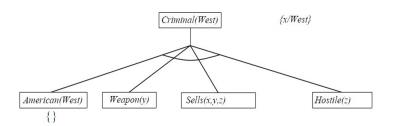
Matching conjunctive premises against known facts is NP-hard 把确定子句与事实集相匹配是一个 NP 难题

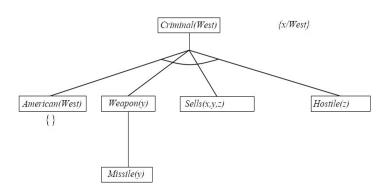
Backward chaining algorithm

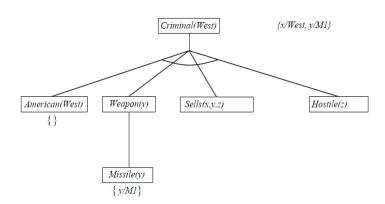
```
function FOL-BC-Ask(KB, goals, \theta) returns a set of substitutions
   inputs: KB, a knowledge base
              goals, a list of conjuncts forming a query (\theta already applied)
              \theta, the current substitution, initially the empty substitution \{\}
   local variables: answers, a set of substitutions, initially empty
   if goals is empty then return \{\theta\}
   q' \leftarrow \text{SUBST}(\theta, \text{FIRST}(qoals))
   for each sentence r in KB
              where STANDARDIZE-APART(r) = (p_1 \land \ldots \land p_n \Rightarrow q)
              and \theta' \leftarrow \text{UNIFY}(q, q') succeeds
         new\_goals \leftarrow [p_1, \dots, p_n | Rest(goals)]
         answers \leftarrow \text{FOL-BC-Ask}(KB, new\_qoals, \text{Compose}(\theta', \theta)) \cup answers
   return answers
```

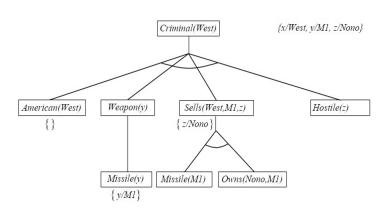
Criminal(West)

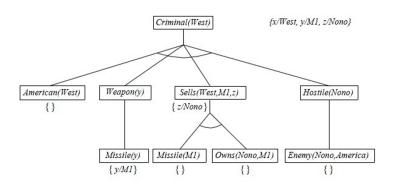












Properties of backward chaining

Depth-first recursive proof search: space is linear in size of proof

Incomplete due to infinite loops

⇒fix by checking current goal against every goal on stack

Inefficient due to repeated subgoals (both success and failure)
⇒fix using caching of previous results (extra space)

Widely used for logic programming(逻辑程序设计)

Completeness of FC/BC for General FOL

► FC and BC are complete for Horn KBs but are incomplete for general FOL KBs:

```
PhD(x) \Rightarrow HighlyQualified(x)

\negPhD(x) \Rightarrow EarlyEarnings(x)

HighlyQualified(x) \Rightarrow Rich(x)

EarlyEarnings(x) \Rightarrow Rich(x)

Query: Rich(Me)
```

- Can't prove query with FC or BC. Why?
- ▶ Does a complete algorithm for FOL exist?

Table of Contents

First-Order Logic

Why FOL?

Syntax and semantics of FOL

Using FOL

Knowledge engineering in FOL

Inference in FOL

Reducing first-order inference to propositional inference

Unification (合一)

Generalized Modus Ponens (一般化分离规则)

Forward and backward chaining

Resolution

Resolution algorithm

► Recall: KB operation boil down to satisfiability

 $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable

- ► Algorithm: resolution-based inference
 - Convert all formulas to CNF
 - Repeatedly apply resolution rule
 - Return unsatisfaible iff derive false -- empty clause

Resolution: brief summary

Full first-order version:

$$\frac{\mathit{l}_1 \vee \cdots \vee \mathit{l}_k, \quad \mathit{m}_1 \vee \cdots \vee \mathit{m}_n}{\mathit{l}_1 \vee \cdots \vee \mathit{l}_{i-1} \vee \mathit{l}_{i+1} \vee \cdots \vee \mathit{l}_k \vee \mathit{m}_1 \vee \cdots \vee \mathit{m}_{j-1} \vee \mathit{m}_{j+1} \vee \cdots \vee \mathit{m}_n}$$
 where $\mathsf{Unify}(\mathit{l}_i, \neg \mathit{m}_i) = \theta$.

The two clauses are assumed to be standardized apart so that they share no variables.——假设两个子句已经标准化分离,没有共享变量。

For example,

$$\neg Rich(x) \lor Unhappy(x)$$
 $Rich(Ken)$
 $Unhappy(Ken)$

with
$$\theta = \{x/Ken\}$$

Apply resolution steps to CNF(KB $\land \neg \alpha$); complete for FOL

Conversion to CNF

Everyone who loves all animals is loved by someone:

$$\forall x \ [\forall y \ Animal(y) \Rightarrow Loves(x,y)] \Rightarrow [\exists y \ Loves(y,x)]$$

- 1 Eliminate biconditionals and implications—消除蕴含 ∀x [¬∀y ¬Animal(y)∨Loves(x,y)] ∨[∃y Loves(y,x)]
- 2 Move ¬inwards 将 ¬ 内移: ¬ \forall x p $\equiv \exists$ x ¬p, ¬x p $\equiv \forall$ x ¬p \forall x [\exists y ¬(¬Animal(y) \lor ¬Loves(x,y))] \lor [\exists y Loves(y,x)] \lor x [\exists y ¬¬Animal(y) \land ¬Loves(x,y)] \lor [\exists y Loves(y,x)] \lor x [\exists y Animal(y) \land ¬Loves(x,y)] \lor [\exists y Loves(y,x)]

Conversion to CNF contd.

Everyone who loves all animals is loved by someone:

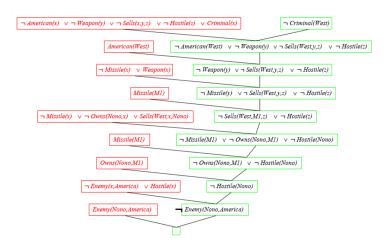
$$\forall x \ [\forall y \ Animal(y) \Rightarrow Loves(x,y)] \Rightarrow [\exists y \ Loves(y,x)]$$

3 Standardize variables—变量标准化: each quantifier should use a different one

```
\forall x [\exists y \ Animal(y) \land \neg Loves(x,y)] \lor [\exists z \ Loves(z,x)]
```

- 4 Skolemize: a more general form of existential instantiation. Each existential variable is replaced by a Skolem function (斯克伦函数) of the enclosing universally quantified variables: $\forall x \ [Animal(F(x)) \land \neg Loves(x,F(x))] \lor Loves(G(x),x)$
- 5 Drop universal quantifiers—(去除全称量词): [Animal(F(x)) ∧¬Loves(x,F(x))] ∨Loves(G(x),x)
- 6 Distribute ∨ over △——将 ∨ 分配到 △ 中 [Animal(F(x)) ∨Loves(G(x),x)] △[¬Loves(x,F(x)) ∨Loves(G(x),x)]

Resolution proof: definite clauses



A brief history of reasoning

4501	B.C.	Stoics	propositional logic, inference (maybe)
3221	B.C.	Aristotle	"syllogisms" (inference rules), quantifiers
1565	5	Cardano	probability theory (propositional logic + uncertainty)
1847	7	Boole	propositional logic (again)
1879	9	Frege	first-order logic
1922	2	Wittgenstein	proof by truth tables
1930	0	Gödel	∃ complete algorithm for FOL
1930)	Herbrand	complete algorithm for FOL (reduce to propositional)
1931	1	Gödel	$\neg \exists$ complete algorithm for arithmetic
1960)	Davis/Putnam	"practical" algorithm for propositional logic
1965	5	Robinson	"practical" algorithm for FOL—resolution

Summary

一阶逻辑中的逻辑推理

命题化推理问题/Reducing first-order inference to propositional inference

效率较低

合一/ Unification 用于确定适当的变量置换

一般化分离规则/ Generalized Modus Ponens 确定子句/definite clauses 可靠的,完备的 应用于前向链接和反向链接算法

前向链接,反向链接 归结推理/Resolution

Summary

```
Propositional logic

● Model checking

← propositionalization

● Modus ponens

● Modus ponens++

(Horn clauses)

● Resolution (general)

++: unification and substitution

Key idea: variables in first-order logic

Variables yield compact knowledge representations.
```

homework

- ▶ 8.24 (a-k), 8.17 (第三版)
- ▶ 9.3, 9.4, 9.6, 9.13 (a,b,c) (第三版)