First-Order Logic and Inference in FOL

HER

USTC
jianmin@ustc.edu.cn

2021 £ 4 22 H

Used Materials

Disclaimer: ZKIR4FZ AT S. Russell and P. Norvig's Artificial
Intelligence —A modern approach slides, f&#k#]3 MR {4F0E 4tk &
EKIRTBIRMY, WRAT GitHub RFHFERE, MRS NEEE
RS

Last chapter

> Logical agents apply inference to a knowledge base to derive
new information and make decisions

» Basic concepts of logic:

>

>

>

syntax (i&i%): formal structure of sentences

semantics (3 X): truth of sentences wrt. models
entailment (?‘Ef@): necessary truth of one sentence given
another

» inference (HEIE): deriving sentences from other sentences
» soundness (RTEEME): derivations produce only entailed

sentences

completeness 5t . derivations can produce all entaile
let B d t d Il entailed

sentences

» Forward, backward chaining are linear-time, complete for Horn
clauses

» Resolution is complete for propositional logic

» Propositional logic lacks expressive power

Table of Contents

First-Order Logic
Why FOL?

Pros ({ft =) of propositional logic

v

Propositional logic is declarative (FRi&HER));
> FHRAIHEIE ST FE, T ELHEIE ST ARETOuE
> Xtk BRIRIHEE —dREMHIES
> BT MEAESTIR A H SRR AL
> MEHRAN EIEE — s E AT R ST
Propositional logic allows partial (A"584) / disjunctive (535
#J) / negated information
» (unlike most data structures and databases)

v

v

Propositional logic is compositional (& R{EH]):
» meaning of By ; A Py 2 is derived from meaning of By ; and of
P12
(IEANEXRENEBS & XK —1EEH)
Meaning in propositional logic is context-independent
» (unlike natural language, where meaning depends on context)

v

Cons (HR&

AN

) of propositional logic

» Propositional logic has very limited expressive power

> (unlike natural language)
» E.g., cannot say “pits cause breezes in adjacent squares”
except by writing one sentence for each square

Bii < (Pi2VPa)

Cons (k) of propositional logic

» All students know arithmetic.

» AlicelsStudent — AliceKnowsArithmetic
» BoblsStudent — BobKnowsArithmetic

» Propositional logic is very clunky. What's missing?
» Objects and relations: propositions (e.g.,
AliceKnowsArithmetic) have more internal structure (alice,
Knows, arithmetic)
» Quantifiers and variables: all is a quantifier which applies to
each person, don't want to enumerate them all...

First-order logic

FAGEZENEM—PRARX. L TFXEXMERIENL, HEH
BAEEEE.

Whereas propositional logic assumes the world contains facts,
first-order logic (like natural language) assumes the world contains

» Objects (X3F5): people, houses, numbers, colors, baseball
games, wars, ..

» Relations (X %): red, round, prime, ..
brother of, bigger than, part of, comes between, ..

» Functions (eg%): father of, best friend, one more than, plus,

BRI ARERNME (TR FENEY) ZENXRYEN

Logics in general
wE (R o) (é}%l:_‘;"/i‘?%
e FIEERNRNE)
Propzr;ffflﬂlogic S /B /AR
Firszgﬁd%iigic X MR XFR H/MB/RE
EEE wmodig. £7 ME | /RS
o i e & <01

—BriZsEAJHERY: Example

erson
ing

left leg

N

Table of Contents

First-Order Logic

Syntax and semantics of FOL

Syntax of FOL: Basic elements

» Constants/&E& KingJohn, 2, USTC, ..
» Predicates/ig1i] Brother, >, ..

» Functions/ %] Sqrt, LeftLegOf, ...

» Variables/ T & X, Y, a, b, ..

» Connectives/#&E#Ei#R -, = AV, &

v

Equality /1] =
Quantifiers/ &1 v, 3

v

Atomic sentences (JEFiEfA])

Term = function (termq, .., term,) or constant or variable
Atomic sentence = predicate (termy, .., term,) or term; = termg

» E.g., Brother(KingJohn,RichardTheLionheart)
> (Length(LeftLegOf(Richard)),
Length(LeftLegOf(KingJohn)))

Complex sentences (EHIEFR])

Complex sentences are made from atomic sentences using
connectives

=S5, S1NS, S51VS, 51 =5, 51 & 5,
Eg.

Sibling(KingJohn, Richard) = Sibling(Richard, KingJohn)
> (1L,2)V < (1,2)
> (1,2) A~ > (1,2)

Truth in first-order logic

> IBAMEEH—MERNAF A SHERRHE.
Sentences are true with respect to a model and an
interpretation

» Model contains objects (domain elements 13T %) and
relations among them

» RINBE—ANFFEER. BIANRHFSHERNE.
X F R BT 1 AR BA R R AR
Interpretation specifies referents ($§4%) for
constant symbols ~— objects
predicate symbols — relations
function symbols — functional relations

» An atomic sentence predicate(termy, .., term,) is true
iff the objects referred to by termy, ..., term,
are in the relation referred to by predicate

Truth example

Consider the interpretation in which
Richard — Richard the Lionheart
John — the evil King John

Brother — the brotherhood relation

Under this interpretation, Brother(Richard, John) is true just in
case and are in the
brotherhood relation in the model

Models for FOL: Lots!

>
)

Entailment (Z&j&) in propositional logic (#FERiZ4E) can be
computed by enumerating (#7%&) models

We can enumerate the FOL models for a given KB vocabulary:
For each number of domain elements n from 1 to oo
For each k-ary predicate (k JCiB1a]) Pk in the vocabulary
For each possible k-ary relation on n objects
For each constant symbol Cin the vocabulary
For each choice of referent for C from n objects ..

Computing entailment by enumerating FOL models is not easy!

BRI TAERGES EYER E—HBE AT

Universal quantification (£FR&17)

V<variables> <sentence>

"X FETAER.

Everyone at USTC is smart:

VxAt(x, USTC) = Smart(x)

VxP is true in a model m iff P is true with x being each possible
object in the model

Roughly speaking, equivalent to the of
of P
At(KingJohn,USTC) =-Smart(KingJohn)
A At(Richard,USTC) =Smart(Richard)
A At(USTC,USTC) =Smart(USTC)
A

A common mistake to avoid

Typically, = is the main connective with V
EFZRALMRERBE—RANMAE, = HEERTIE—T
BRI RE

Common mistake: using A as the main connective with V:
VxAt(x, USTC) A Smart(x)

means “Everyone is at USTC and everyone is smart”

Existential quantification (7F7&EE1R))

d<variables> <sentence>

TEE— A EHEMEC TR
Someone at USTC is smart:

IxAt(x, USTC) A Smart(x)

IxP is true in a model m iff P is true with x being some possible
object in the model

Roughly speaking, equivalent to the of
of P
At(KingJohn,USTC) A Smart(KingJohn)
Y At(Richard,USTC) A Smart(Richard)
V At(USTC,USTC) A Smart(USTC)
V

Another common mistake to avoid

Typically, A is the main connective with 3

Common mistake: using = as the main connective with 3:
IxAt(x, USTC) = Smart(x)

is true if there is anyone who is not at USTC!

Properties of quantifiers

v

Vx Vy is the same as Vy Vx

v

dx dy is the same as Jy Jx

v

Ix Vy is not the same as Vy Jx
» Ix Vy Loves(x,y)
> “There is a person who loves everyone in the world”
» Vy Ix Loves(x,y)
> “Everyone in the world is loved by at least one person”

v

Quantifier duality (Z1ifAH) =X %): each can be expressed
using the other

Wx Likes(x,IceCream) —3x —Likes(x,lceCream)

3x Likes(x,Broccoli) —Vx —Likes(x,Broccoli)

Equality (%3X)

term; = terms is true under a given interpretation if and only if
term; and terms refer to the same object (3 FRHIXIHEHEERY)

E.g., definition of Sibling in terms of Parent:

Vx, y Sibling(x, y) <
[-(x=y) Adm, f—(m = f) A Parent(m, x)
A Parent(f, x) A\ Parent(m,y) A Parent(f, y)|

Table of Contents

First-Order Logic

Using FOL

Using FOL

The kinship (FFB%XZ) domain:

Brothers are siblings
V x, y Brother(x,y) = Sibling(x, y).

“Sibling” is symmetric
Y x, y Sibling(x, y) = Sibling(y, x).

One's mother is one's female parent
V x, y Mother(x, y) < (Female(x) A Parent(x, y)).

A cousin is a child of a parent’s sibling
Vx, y Cousin(x,y) < 3 p, ps Parent(p, x) A Sibling(ps, p) A
Parent(ps, y)

Using FOL

The set (&4) domain:

KEHETERBEIH LT RRME— M ERETMAR
Vs Set(s) < (s = {}) V(3x,s2 Set(s2) A's = {x|s2})

SEBEEMTE, WRER, TEXEEABATMIEST
T
~3xs {xIs} = {}

BELGFETESTHRARFINEZES, TEMEY

Vxsxeses={x|s}

SEHMTENEBERFMBESPRITE
Vx,s x € s < [3ysz (s = {yls2} A (x =y V x €s2))]

Using FOL

The set (&4) domain:

— I EERF—IMEANTE, HANYE—NIEGNMATE
WMEE-_NEANTE

Vs1,59 s1 Csy & (V X XE S1 =X 652)

MTEERERN, SANEENEATE

V s1,59 (Sl = SQ) = (Sl C s9 /\52§sl)

— I HRRRITEEHIRENTE, HANEERRRXAIME
BHITE

Vx,51,82 X € (s1 Ns2) < (x € s1 A x €s3)

— I HRERNTEEHIHENTER, SARSERREPRE—KS
HITTE

VX,51,59 X € (51 USQ) <:>(X € 51 VX € s9)

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB and perceives
a smell and a breeze (but no glitter) at t=b:
Tell(KB,Percept([Smell,Breeze,None],5))

Ask(KB, a BestAction(a,5))

|.e., does the KB entail some best action at t=57

Answer: Yes, {a/Shoot} « (binding list 4fER)
Given a sentence S and a substitution o,

So denotes the result of plugging o into S; e.g.,

S = Smarter(x,y)

o = x/Hillary, y/Bill

So = Smarter(Hillary, Bill)

Ask(KB,S) returns some/all o such that KB |= So

Knowledge base for the wumpus world

>
> Vt,s,b Percept([s,b,Glitter],t) = Glitter(t)

| 2
» Vit Glitter(t) = BestAction(Grab,t)

> : do we have the gold already?

» Yt AtGold(t) A — Holding(Gold, t) = BestAction(Grab, t)

Holding(Gold, t) cannot be observed keeping track of change
is essential

Deducing hidden properties

Definition of adjacent squares
Vx,y,a,b Adjacent([x,y],[a,b]) < [a,b] € {[x+1.y],
[yl [xy+1].[xy-1]}

Properties of squares:
Vst At(Agent,s,t) A Breeze(t) = Breezy(s)
Squares are breezy near a pit:
rule (IZHFFRN)—infer cause from effect
Vs Breezy(s) =3r Adjacent(r,s) A Pit(r)
rule (BRI)—infer effect from cause
Vr,s Adjacent(r,s) A Pit(r) = Breezy(s)
Neither of these is complete —e.g., the causal rule doesn't say
whether
squares far away from pits can be breezy
(REMX) for the Breezy predicate:
Vs Breezy(s) < Jr Adjacent(r,s) A Pit(r)

Table of Contents

First-Order Logic

Knowledge engineering in FOL

Knowledge engineering (%132 T%E) in FOL

1. Identify the task
MEES

2. Assemble the relevant knowledge
REMRXEIR

3. Decide on a vocabulary of predicates, functions, and constants
WEIRIA. RYIEEMIRICE

4. Encode general knowledge about the domain
X338 A &R T 4R AT

5. Encode a description of the specific problem instance
XHERE 6] RRSE Bl iR i1 T 4w

6. Pose queries to the mference procedure and get answers
BE IR EHIETEHFIKNER

7. Debug the knowledge base
E R INAYES

The electronic circuits (FB) domain

One-bit full adder (—{ir£fn3e)

c1

2 P—1—P» ot

le 2
_—B ° —e?2

RYNAMAAREEZEMOAL, F=TRNE— L.
— i HHEM, FZMEHE TN INEIRAEAL.

The electronic circuits domain

1 Identify the task
» Does the circuit actually add properly? (circuit verification)

2 Assemble the relevant knowledge
» Composed of wires (F£%) and gates ([7]) ; Types of gates
(AND, OR, XOR, NOT)
> lrrelevant: size, shape, color, cost of gates

3 Decide on a vocabulary (3FiCF)
» Alternatives:
Type(X;) = XOR
Type(X1, XOR)
XOR(X,)

The electronic circuits domain

4 Encode (#gf5) general knowledge of the domain
0.1 MRANMEEKIHRIHEEN, BAENEFHENES
Vty, ta Connected(ty, t2) = Signal(t;) = Signal(ts)
02 SMEKZRNESAR 1 3R 0 (FHERELL)
Vt Signal(t) = 1 V Signal(t) = 0
1#0
0.3 Connected 22— A 3221817
Vty1, to Connected(ty, t2) = Connected(ta, t1)
0.4 EINAMIHD 1, HENRIHEHNFE—THEAAL 1L
Vg Type(g) = OR = Signal(Out(1l,g)) = 1 < 3n
Signal(In(n,g)) =1
0.5 5ait s 0, HEANHEMNE—TRANAO
Vg Type(g) = AND
=Signal(Out(1,g)) = 0 < In Signal(In(n,g)) =0
0.6 RHTHEMEA 1, HENHEHNMARRERRN
Vg Type(g) = XOR
=Signal(Out(1,g)) = 1 < Signal(In(1,g)) # Signal(In(2,g))
0.7 HEITHYHI H S EMMAER
Vg Type(g) = NOT = Signal(Out(1,g)) # Signal(In(1,g))

The electronic circuits domain

5 Encode the specific problem instance
B XL 53
Type(X1) = XOR Type(X2) = XOR
Type(A;) = AND Type(A2) = AND
Type(O;) = OR

HxigI51z B R ERE

Connected(Out(1,X;),In(1,X2))
Connected(Out(1,X;),In(2,A2)) Connected
Connected(Out(1,A2),In(1,04))
Connected(Out(1,A;),In(2,01))
Connected(Out(1,X2),0ut(1,C;)) Connected
Connected(Out(1,01),0ut(2,Cy))

Connected

Connected
Connected

e R R R R R

Connected

The electronic circuits domain

6 Pose queries to the inference procedure—3BE IR AT 24 HEIE
UK
What are the possible sets of values of all the terminals for
the adder circuit?
MF 1 IR ERL TR MANSRHAS 7
Jiy,ia,i3,01,02 Signal(In(1, C;1)) = i1 A Signal(In(2,Cy)) =iz A
Signal(In(3,Cy)) = i3 A Signal(Out(1,C;)) = 01 A
Signal(Out(2,Cy)) = o2

7 Debug the knowledge base
May have omitted assertions like 1 # 0
X771 (XOR) AHEE:
Signal(Out(1,X1))=1 < Signal(In(1, X1)) # Signal(In(2,X;))

Summary

AIZE R RMNBYMEFEEHITRE, M—rEEXFxRix
RNBERITIRG, EMIHE BRI Rk
First-order logic:

» objects and relations are semantic primitives (EZ)

» syntax: constants, functions, predicates, equality, quantifiers

> IBAIMEER—METI AT RS REEEAE.

Increased expressive power: sufficient to define wumpus world
E—ZEPHALMRER— MR, SFENEHTS
M. EFRICER . N2 HEEGAR DR AIRHITHRE.

Table of Contents

Inference in FOL
Reducing first-order inference to propositional inference

Universal instantiation (Ul) 2&FR3E45{L

Every instantiation of a universally quantified sentence is entailed

by it:
EMEULEANESTEHRELS

Vv «
Subst({v/g}, a)

for any variable(ZE&) v and ground term (EIR) g
E.g., Vx King(x)Agreedy(x)=-Evil(x) yields
King(John) A Greedy(John) = Evil(John)
King(Richard) A Greedy(Richard) = Evil(Richard)
King(Father(John)) A Greedy(Father(John)) =
Evil(Father(John))

Existential instantiation (El) TEFESEHI{L

For any sentence , variable v, and new constant symbol k that does
not appear elsewhere in the knowledge base:

EMEBLIEAESERNRTEXEHA]

dv «

Subst({v/k}, a)
E.g., IxCrown(x)AOnHead(x,John) yields

Crown(C;)AOnHead(C;,John)

provided C; is a new constant symbol, called a Skolem constant

(HrRHEE %)

Another example: from 3x d(x)/dy = x’ we obtain

d(&/dy) = &

provided e is a new constant symbol

Existential instantiation contd.

Ul can be applied several times to add new sentences; the new KB
is logically equivalent to the old

EMEFIU TS X ANTRFTIFZAERRIGR

El can be applied once to replace the existential sentence; the new
KB is not equivalent to the old,

but is satisfiable iff the old KB was satisfiable
FESGIUTTARZA—R, ARBKFEEENLIEA.
AIREIZE EHAENFIRENRE, BREERS IR ER R
BR, FRIAIREA Z R ER

Reduction to propositional inference f&j{¥ 2l 4pE0iS 45 HEIE

Suppose the KB contains just the following:
Vx King(x) A Greedy(x) = Evil(x)
King(John)

Greedy(John)

Brother(Richard,John)

Instantiating the universal sentence in all possibleways, we have
King(John) A Greedy(John) = Evil(John)

King(Richard) A Greedy(Richard) = Evil(Richard)

King(John)

Greedy(John)

Brother(Richard,John)

The new KB is propositionalized (#pEi{t,) : proposition symbols
are
King(John), Greedy(John), Evil(John), King(Richard) etc

Reduction contd.

Claim: Every FOL KB can be propositionalized so as to preserve
entailment

B —MEEARESAT LGB ESES R RBURE

Claim: A ground sentence is entailed by new KB iff entailed by
original KB

Idea: propositionalize KB and query, apply resolution, return result
Problem: with function symbols, there are infinitely many (FfR%

1) ground terms (EIR) ,
—e.g., Father(Father(Father(John)))

Reduction contd.

Theorem: Herbrand (1930). If a sentence « is entailed by an FOL

KB, it is entailed by a finite subset of the propositionalized KB

EE: MREMEAHERH—MIMREES, WEE—TRY
An R L &R EE R R F &R AYEBA

Idea: For n = 0 to oo do
create a propositional KB by instantiating with depth-n terms see
if o is entailed by this KB

Problem: works if « is entailed, loops if « is not entailed

Theorem: Turing (1936), Church (1936) Entailment for FOL is

(algorithms exist that say yes to
every entailed sentence, but no algorithm exists that also says no
to every nonentailed sentence.)

Problems with propositionalization

Propositionalization seems to generate lots of irrelevant/ ARFEXHY
sentences.

E.g., from: Vx King(x) AGreedy(x) = Evil(x)
King(John)
Vy Greedy(y)
Brother(Richard,John)
it seems obvious that Evil(John), but propositionalization produces
lots of facts such as Greedy(Richard) that are irrelevant

With p k-ary predicates/igia] and n constants, there are p - nk
instantiations.

With function symbols, it gets much much worse!

Table of Contents

Inference in FOL

Unification (§—)

Unification (&§—)

WRFERNER 0 FHEEIATR KB e ANIEATEME
B, BAMA O T AT SEENSIE
We can get the inference immediately if we can find a substitution
(B#) 0 such that King(x) and Greedy(x) match King(John) and
Greedy(y)
6 = x/John,y/John works
Unify(a, 8)=0 if ad=£6
p K K
Knows(John,x) | Knows(John,Jane)
Knows(John,x) | Knows(y,0J)
Knows(John,x) | Knows(y,Mother(y))
Knows(John,x) | Knows(x,0J)

Unification (&§—)

WRFERNER 0 FHEEIATR KB e ANIEATEME
B, BAMA O T AT SEENSIE
We can get the inference immediately if we can find a substitution
(B#) 0 such that King(x) and Greedy(x) match King(John) and
Greedy(y)
6 = x/John,y/John works
Unify(a, 8)=0 if ad=£6
p K K
Knows(John,x) | Knows(John,Jane)
Knows(John,x) | Knows(y,0J)
Knows(John,x) | Knows(y,Mother(y))
Knows(John,x) | Knows(x,0J)

Unification (&§—)

WRFERNER 0 FHEEIATR KB e ANIEATEME
B, BAMA O T AT SEENSIE
We can get the inference immediately if we can find a substitution
(B#) 0 such that King(x) and Greedy(x) match King(John) and
Greedy(y)
6 = x/John,y/John works
Unify(a, 8)=0 if ad=£6
p K K
Knows(John,x) | Knows(John,Jane)
Knows(John,x) | Knows(y,0J)
Knows(John,x) | Knows(y,Mother(y))
Knows(John,x) | Knows(x,0J)

Unification (&§—)

WRFERNER 0 FHEEIATR KB e ANIEATEME
B, BAMA O T AT SEENSIE
We can get the inference immediately if we can find a substitution
(B#) 0 such that King(x) and Greedy(x) match King(John) and
Greedy(y)
6 = x/John,y/John works
Unify(a, 8)=0 if ad=£6

p K K

Knows(John,x) | Knows(John,Jane)
Knows(John,x) | Knows(y,0J)
Knows(John,x) | Knows(y,Mother(y))
Knows(John,x) | Knows(x,0J)

Unification (&§—)

MREFERENER 0 FRRRIEIR KB FEHRIIEATEE
B, MALNAOF SMAUHSEENSER
We can get the inference immediately if we can find a substitution
(E#) 0 such that King(x) and Greedy(x) match King(John) and
Greedy(y)
0 = x/John,y/John works
Unify(v, 8)=0 if a8=30

p K K

Knows(John,x) | Knows(John,Jane)

Knows(John,x) | Knows(y,0J)

Knows(John,x) | Knows(y,Mother(y))

Knows(John,x) | Knows(x,0J)
Standardizing apart (FR/E 49 E) eliminates overlap of variables,
e.g., Knows(z;7,0J)

Unification (&§—)

To unify Knows(John,x) and Knows(y,z),
0 = {y/John, x/z } or 8 = {y/John, x/John, z/John}

The first unifier is than the second.

x5 B A BLERR # L B>

There is a single (MGU) that is unique up to
renaming of variables.
MNENREXWE—X, FE—IHE—H . ANEEEE

MEHGBEZME—R.
MGU = { y/John, x/z }

Table of Contents

Inference in FOL

Generalized Modus Ponens (—f&{£ 4 Z#M)

Generalized Modus Ponens (GMP)

Modus Ponens (GEZH#EIE, 9E#N|) (for Horn Form): complete
for Horn KBs

GMP (—f{L o E#m)

where plf = p;f for all i
p} is King(John) p1 is King(x)
ph is Greedy(y) p2 is Greedy(x)
6 is {x/John,y/John} q is Evil(x)
qf is Evil(John)
GMP used with KB of definite clauses FTEF] (exactly one
positive literal)
All variables assumed universally quantified

Semi-decidability (Z:A[HIE)

First-order logic (even restricted to only Horn clauses) is

semi-decidable.
—If KB entails f, algorithms exist to prove f in finite time.
—If KB does not entail f, no algorithm can show this in finite time.

Soundness of GMP

Need to show that
Pio s P (PLA - A pn=q) = qb
provided that pl0= p;0 for all i
Lemma: For any sentence p, we have p = pf
1.
(P A Apn=q) E(PL A App=q)0 = (P10 A---Apsf = qb)
2. P P E PN AP E PO A pLY
3. From 1 and 2, gf follows by ordinary Modus Ponens

Completeness of GMP

» GMP: incomplete for FOL
—Not every sentence can be converted to Horn form

» GMP: complete for FOL KB of definite clauses

Example knowledge base

The law says that it is a crime for an American to sell weapons to
hostile nations.

The country Nono, an enemy of America, has some missiles (&
8) , and all of its missiles were sold to it by Colonel (_E#%)
West, who is American.

Prove that Col. West is a criminal

Example knowledge base

..it is a crime for an American to sell weapons to hostile nations:

Example knowledge base

..it is a crime for an American to sell weapons to hostile nations:

American(x) N\ Weapon(y) N Sells(x,y,z) N\ Hostile(z) =
Criminal(x)

Nono ..has some missiles

Example knowledge base

..it is a crime for an American to sell weapons to hostile nations:

American(x) N Weapon(y) N Sells(x,y,z) N\ Hostile(z) =
Criminal(x)

Nono ..has some missiles, i.e., 3x Owns(Nono,x) AMissile(x):
Owns(Nono,M;) and Missile(M)

..all of its missiles were sold to it by Colonel West

Example knowledge base

..it is a crime for an American to sell weapons to hostile nations:

American(x) N Weapon(y) N\ Sells(x,y,z) N\ Hostile(z) =
Criminal(x)

Nono ..has some missiles, i.e., 3x Owns(Nono,x) AMissile(x):
Owns(Nono,M;) and Missile(M,)
..all of its missiles were sold to it by Colonel West
Missile(x) A Owns(Nono,x) = Sells(West,x,Nono)

Missiles are weapons:

Example knowledge base

..it is a crime for an American to sell weapons to hostile nations:

American(x) N Weapon(y) N Sells(x,y,z) N\ Hostile(z) =
Criminal(x)

Nono ..has some missiles, i.e., 3x Owns(Nono,x) AMissile(x):
Owns(Nono,M;) and Missile(M)
..all of its missiles were sold to it by Colonel West
Missile(x) A Owns(Nono,x) = Sells(West,x,Nono)
Missiles are weapons:
Missile(x) = Weapon(x)

An enemy of America counts as “hostile”:

Example knowledge base

..it is a crime for an American to sell weapons to hostile nations:

American(x) N Weapon(y) N\ Sells(x,y,z) \ Hostile(z) =
Criminal(x)

Nono ..has some missiles, i.e., 3x Owns(Nono,x) AMissile(x):
Owns(Nono,M,) and Missile(M)
..all of its missiles were sold to it by Colonel West
Missile(x) A Owns(Nono,x) = Sells(West,x,Nono)
Missiles are weapons:
Missile(x) = Weapon(x)
An enemy of America counts as “hostile”:
Enemy(x,America) = Hostile(x)
West, who is American ...
American(West)
The country Nono, an enemy of America ...

Enemy(Nono,America)

Table of Contents

Inference in FOL

Forward and backward chaining

Forward chaining algorithm

function FOL-FC-ASK(KB,) returns a substitution or false

repeat until new is empty
new— { }
for each sentence r in KB do
(ptA...A py = ¢)— STANDARDIZE-APART(r)
for each 6 such that (py A ... A p,)0 = (py A ... A pl)0d
for some pf,...,p; in KB
¢ — SuBsT(4, q)
if ¢’ is not a renaming of a sentence already in KB or new then do
add ¢’ to new
¢ — UNIFY(¢', @)
if ¢ is not fail then return ¢
add new to KB
return false

Example knowledge base

..it is a crime for an American to sell weapons to hostile nations:

American(x) N Weapon(y) N\ Sells(x,y,z) \ Hostile(z) =
Criminal(x)

Nono ..has some missiles, i.e., 3x Owns(Nono,x) AMissile(x):
Owns(Nono,M,) and Missile(M)
..all of its missiles were sold to it by Colonel West
Missile(x) A Owns(Nono,x) = Sells(West,x,Nono)
Missiles are weapons:
Missile(x) = Weapon(x)
An enemy of America counts as “hostile”:
Enemy(x,America) = Hostile(x)
West, who is American ...
American(West)
The country Nono, an enemy of America ...

Enemy(Nono,America)

Forward chaining proof

american(West) | | missile(M) | | owns(Nono, M) | | enemy(Nono, America) |

missile(x) A owns(Nono,x)

L = sells(West,x,Nono) enemy(x,4dmerica) = hostile(x)
1pissile(x) = \x‘[e:ﬁpon(.\') 0= (/M) 0 = {x/Nono)

= {x/M}

/

| weapon(M) | | sells(West, M, Nono) | | hostile(Nono) |

american(x) A weapon(y) A sells (x,3,2) A hostile(z) = criminal(x)
0 = {x/West, y/M, z/Nono}

criminal(West)

Properties of forward chaining

Sound and complete for first-order definite clauses
(proof similar to propositional proof)

Datalog (##BHE) = first-order definite clauses + no functions
(e.g., crime KB)
FC terminates for Datalog in poly iterations: at most literals

May not terminate in general if o is not entailed

This is unavoidable: entailment with definite clauses is

semidecidable (FATH|ER])

Efficiency of forward chaining

Simple observation: no need to match (FL#Z) a rule on iteration

if a premise wasn't added on iteration

=> match each rule whose premise contains a newly added literal

Matching itself can be expensive

Database indexing (Z&3&) allows retrieval of known facts
e.g., query retrieves

Matching conjunctive premises against known facts is NP-hard

EHETFASELEETEI— NP ¥R

Backward chaining algorithm

function FOL-BC-ASK(KB, goals, f) returns a set of substitutions
inputs: KB, a knowledge base
goals, a list of conjuncts forming a query (6 already applied)
0, the current substitution, initially the empty substitution { }
local variables: answers, a set of substitutions, initially empty

if goals is empty then return {6}
q'— SuBST(#, FIRST(goals))
for each sentence r in KB
where STANDARDIZE-APART(7) = (p; A ... A p, = q)
and ' — UNIFY(q, ¢') succeeds
new_goals— [py, ..., po|REST(goals)|
answers — FOL-BC-ASK(KB, new_goals, COMPOSE(#',0)) U answers
return answers

Backward chaining example

Criminal(West)

Backward chaining example

Criminal(West)

3/ West)

American(x) | I Weapon(v) | |Sel/s(.\;_r,:l

Hostile(z)

Backward chaining example

Criminal(West)

{x/West}

IAmericnn(West)I | Weapon(y) I

U

| Sells(x,y,z)

Backward chaining example

Criminal(West)

{x/West}

IAmerimnlW'est)l 1 Weapon(v) I

{3

| Sells(x,v,z)

Missile(v)

Backward chaining example

Criminal(West)

{3/ West, v/M1}

‘Americ’ml/Wesn| | Weapon(v) |

U

| Sells(x,y,2)

Missile(v)

{ w1}

Backward chaining example

Criminal(West)

{x/West, v/MI, z/Nono}

|AmerimnlWest)| | Weapon(y) | |Sells(Wesr,M],:) |

{} { =/Nono }

Hostile(z)

| Missile(v) ”MissilelM]) |]01.'?1.5'/"\/'0110,1»11)
{v/M1}

Backward chaining example

{x/West, y/M1, z/Nono}

Criminal(West)

|American(ﬂ'est}| l Weapon(y) | |SeIIsm’est,M1,:)
{} { z/Nono}

Hostile(Nono)

[Missile(y) ||Missile(M]) | |Owns(Nono,M]} | |Enem,\'(Nano,America}

{yM1} {} {3 {}

Properties of backward chaining

Depth-first recursive proof search: space is linear in size of proof

Incomplete due to infinite loops
=-fix by checking current goal against every goal on stack

Inefficient due to repeated subgoals (both success and failure)
=fix using caching of previous results (extra space)

Widely used for logic programming (iBiBFEFi&iT)

Completeness of FC/BC for General FOL

» FC and BC are complete for Horn KBs but are incomplete for
general FOL KBs:
PhD (x) — HighlyQualified(x)
—PhD(x) = EarlyEarnings (x)
HighlyQualified(x) = Rich(x)
EarlyEarnings (x) — Rich(x)
Query: Rich (Me)

» Can't prove query with FC or BC. Why?

» Does a complete algorithm for FOL exist?

Table of Contents

Inference in FOL

Resolution

Resolution algorithm

» Recall: KB operation boil down to satisfiability

if and only if () is unsatisfiable

» Algorithm: resolution-based inference
- Convert all formulas to
- Repeatedly apply rule
- Return unsatisfaible iff derive false -——empty clause

Resolution: brief summary
Full first-order version:

hV- Vi, mV---Vm,
hV-- N AVl Ve VIV m V-V migVmig V-V my,

where Unify(/;, ~m;) = 6.

The two clauses are assumed to be standardized apart so that they
share no variables. BRIEENTFRACSEIRELS S, ZEHEE

'Z-m% o
For example,
—Rich(x)V Unhappy(x)
Rich(Ken)
Unhappy(Ken)

with = {x/Ken}

Apply resolution steps to CNF(KB A—«); complete for FOL

Conversion to CNF

Everyone who loves all animals is loved by someone:
Vx [y Animal(y) =Loves(x,y)] =[3y Loves(y,x)]
1 Eliminate biconditionals and implications—E& 254
Vx [=Vy —Animal(y)VLoves(x,y)] V[dy Loves(y,x)]

2 Move —inwards —4& - #&: —Vx p =3x —p, =x p = Vx —p
Vx [Jy =(—Animal(y)V —Loves(x,y))] V[Jy Loves(y,x)]
Vx [y =—Animal(y)A-Loves(x,y)] V[3y Loves(y,x)]
Vx [Ty Animal(y) A—Loves(x,y)] V[Jy Loves(y,x)]

Conversion to CNF contd.

Everyone who loves all animals is loved by someone:
Vx [Vy Animal(y) =Loves(x,y)] =[3y Loves(y,x)]

TEFRAE: each quantifier should

3 Standardize variables
use a different one

Vx [Jy Animal(y) A —Loves(x,y)]V[3z Loves(z,x)]

4 Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function (Hf
FIEFEL) of the enclosing universally quantified variables:
Vx [Animal(F(x)) A—-Loves(x,F(x))] VLoves(G(x),x)

5 Drop universal quantifiers—(X £FRE1[)

[Animal(F(x)) A—Loves(x,F(x))] VLoves(G(x),x)

6 Distribute V over A—4§& V 9B | A &

[Animal(F(x)) VLoves(G(x),x)] A[-Loves(x,F(x))
VLoves(G(x),x)]

Resolution proof: definite clauses

= American(x) v — Weapon(y) v - Sells(x,y,z) v - Hostile(z) v Criminal(x) I

| American(West) |

= Criminal(West)
[- American(West) v — Weapon(y) v - Sells(West,y,z) v - Hostile(z)
|—|Missile(x) v Wnapon(x)|

[issitenay) |

[~ Weaponty) v ~ Sells(Westy.z) v = Hostile(: |

| = Missile(y) v - Sells(West,y,z) v - Hostile(z)
= Missile(x) v = Owns(Nono,x) v Sells(West,x,Nono) |

|~ Sells(West. 1) v Hostile(:) |

[Missitery) |

Owns(Nono,M1)

[ﬂMissile(Ml) v = Owns(Nono,M1) v - Hostile(Nono) |

‘ = Owns(Nono,M1) v = Hostile(Nono)
| =1 Enemy(x,America) v Hostile(x) |

‘ = Hostile(Nono) ‘
|Enmy(Nana,Americn} |

—+ Enemy(Nono,America) ‘

A brief history of reasoning

450B.C.
322B:¢:
1565
1847
1879
1922
1930
1930
1931
1960
1965

Stoics
Aristotle
Cardano
Boole

Frege
Wittgenstein
Godel
Herbrand
Godel
Davis/Putnam
Robinson

propositional logic, inference (maybe)

“syllogisms” (inference rules), quantifiers

probability theory (propositional logic + uncertainty)
propositional logic (again)

first-order logic

proof by truth tables

3 complete algorithm for FOL

complete algorithm for FOL (reduce to propositional)
—3 complete algorithm for arithmetic

“practical” algorithm for propositional logic
“practical” algorithm for FOL—resolution

Summary

—MriZE P HIB R
DR 1Y HETE 9] 8 /Reducing first-order inference to
propositional inference
MERIR
& —/ Unification
ATFHEEHNTEER
—RE L5 BN/ Generalized Modus Ponens
f7E F 4/ definite clauses
ATER, SE&EH
Bz B Fan e R m ik E ik
IR, REEE
JAZEHETE /Resolution

Summary

Propositional logic First-order logic

eModel checking en/a
<—propositionalization

eModus ponens eModus ponens++

(Horn clauses) (Horn clauses)

eResolution (general) eResolution++ (general)
++: unification and substitution
Key idea: variables in first-order logic
Variables yield compact knowledge representations.

homework

> 8.24 (a-k), 8.17 (ZE=HR)
»03,94,96,913 (a,bc) (=)

	First-Order Logic
	Why FOL?
	Syntax and semantics of FOL
	Using FOL
	Knowledge engineering in FOL

	Inference in FOL
	Reducing first-order inference to propositional inference
	Unification (合一)
	Generalized Modus Ponens（一般化分离规则）
	Forward and backward chaining
	Resolution

