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Uncertainty

Let action A; = “leave for airport t minutes before flight”
Will A; get me there on time?

Problems:

» partial observability (B4 AIMMZ M, e.g., road state, other
drivers’ plans, etc.)

» noisy sensors (e.g., traffic reports)
> uncertainty in action outcomes (e.g., flat tire, etc.)

» immense complexity of modeling and predicting traffic



Uncertainty

Hence a purely logical approach either:

» risk falsehood ($&iRMP&): “Ags will get me there on time”,
or

» leads to conclusions that are too weak for decision making:
“Ags will get me there on time if there's no accident on the
bridge and it doesn't rain and my tires remain intact etc etc.”

(A1440 might reasonably be said to get me there on time but I'd
have to stay overnight in the airport ...)



Method for handling uncertainty

Probability
» Model agent's degree of belief ({5)

» Given the available evidence,
Aos will get me there in time with probability 0.04
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Probability

BERIBIRR A T — M E ABHE R B R AN BT M A HE
. Probabilistic assertions summarize effects of
» Laziness (&%) : failure to enumerate exceptions (fFJ5p) |
qualifications (&) , etc.
» lgnorance (FEiSHITCEN) : lack of relevant facts, initial
conditions, etc.
Subjective probability (FI#EZER) :
» Probabilities relate propositions (#p&l) to agent’'s own state
of knowledge.
e.g., P(Ass| no reported accidents) = 0.06

These are not assertions (Hf=) about the world
Probabilities of propositions change with new evidence:
e.g., P(A2s | no reported accidents, 5 a.m.) = 0.15



Making decisions under uncertainty

Suppose | believe the following:

> P(Ags gets me there on time | ..) = 0.04

» P(Agp gets me there on time | ..) = 0.70

» P(Aj20 gets me there on time | ..) = 0.95

» P(Aj440 gets me there on time | ..) = 0.9999
Which action to choose?

—Depends on my preferences ({@#F) for missing flight vs. time
spent waiting, etc.

Utility theory (ZFAIEE) is used to represent and infer
preferences.

Decision theory = probability theory + utility theory

RERIBIL = BERIER + AER
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Syntax

)

Gl

Basic element: random variable (#1725

Similar to propositional logic: possible worlds defined by
assignment of values to random variables.
» Boolean random variables (#F/RBEHIEEE)
e.g., Cavity (ZFif) (do | have a cavity?)
» Discrete random variables (E#BEHIEE)
e.g., Weather is one of ( sunny, rainy, cloudy, snow )
Domain values must be exhaustive (35/RHJ) and mutually

exclusive (EFFHY)

» Continuous random variables (FEZREHIIEE)
e.g., Temp=21.6; also allow, e.g., Temp < 22.0



Syntax

Elementary proposition (#§&f) constructed by assignment of a
value to a random variable:
e.g., Weather = sunny, Cavity = false (abbreviated as — cavity)

Complex propositions formed from elementary propositions and
standard logical connectives.
e.g., Weather = sunny Vv Cavity = false



Syntax

Atomic event: A complete specification of the state of the world
about which the agent is uncertain

FEFEG: NERATERERN RSN — TR0
7,48
e.g., if the world consists of only two Boolean variables Cavity and
Toothache, then there are 4 distinct atomic events:

» Cavity = false A Toothache = false

» Cavity = false A Toothache = true

» Cavity = true A Toothache = false

» Cavity = true A Toothache = true

7]

Atomic events are mutually exclusive (Ef) and exhaustive (FR

HY)



Axioms (/ME) of probability

For any propositions A, B
» 0<PA) <1
» P(true) =1 and P(false) =0
» P(AV B) = P(A) + P(B) — P(AA B)

True




Prior probability (4LIGH#EZR)

Prior or unconditional probabilities (Fo&&{4#E%) of propositions

ERFREMAEEERFENEATX THENGEE
e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72
correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
s e H— L 2 FTH T sEBVERIHE R

e.g., P(Weather) = <0.72, 0.1, 0.08, 0.1> (normalized (J3—
{kHYy) | ie, sumsto 1)



Prior probability (4LIGH#EZR)

Joint probability distribution for a set of random variables gives the
probability of every atomic event on those random variables (i.e.,
every sample point)
BREMES R H - N TEEMNENSBESIHER
e.g., P(Weather, Cavity) = a 4 x 2 matrix of values:
Weather = sunny rainy doudy snow
Cavity = true | 0.144 0.02 0.016 0,02
Cavity = false | 0.576 0.08 0.064 0.08

Every question about a domain can be answered by the joint
distribution because every event is a sum of sample points



Probability for continuous variables

Express distribution as a parameterized (Z#{{LHJ) function of
value:

P(X = x) = U[18,26](x) = uniform (}¥J414y%5) density between
18 and 26

0.125

18 dx 26

Here P is a density; integrates to 1.

P(X = 20.5) = 0.125 means
dlimOP(20.5 < X <20.5+4+ dx)/dx=10.125
X—>



Probability for continuous variables

Normal distribution:
202

P(z) = —e~#)
A% (2}




Conditional probability (£&{4-HE=Z )

Conditional or posterior probabilities (JFIH#EZ) P(alb)
e.g., P(cavity|toothache) = 0.8
i.e., given that toothache is all | know

Notation for conditional distributions (4R N %) :
P(Cavity| Toothache) = a 2 x 2 matrix of values

If we know more, e.g., cavity is also given, then we have
P(cavity|toothache, cavity) = 1

New evidence may be irrelevant, allowing simplification, e.g.,
P(cavity|toothache, sunny) = P(cavity|toothache) = 0.8
This kind of inference, sanctioned by domain knowledge, is crucial



Conditional probability

Definition of conditional probability:
P(alb) = P(a A b)/P(b) if P(b) >0
Product rule (3€;%£#1M) gives an alternative formulation:
P(a A b) = P(alb)P(b) = P(b|a)P(a)
A general version holds for whole distributions, e.g.,
P(Weather, Cavity) = P(Weather| Cavity) P( Cavity)
(View as a set of 4 x 2 equations, not matrix multification)
Chain rule (§£zi%M]) is derived by successive application of
product rule: P(X1,...,X,) = P(X1,..., Xa—1)P(Xa| X1, ..., Xn=1)
= P(X1, s Xo2) P(Xno1| X1, -+ o Xn2) P(Xanl X1, -+ o Xt

=TI, P(Xil X1, ..., Xic1)
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Inference by enumeration

Start with the joint probability distribution (£BEESEENT) :

toothache =1 toothache

catch| — catch| catch| — catch
cavity | .108| .012 .072| .008
—1cavity | .016| .064 144 | .576

For any proposition ¢, sum the atomic events where it is true:
— R REE T A ST AEREFE 4R EF
P(¢) = Zw:w':(b P(w)



Inference by enumeration

Start with the joint probability distribution (£BEE&SHEZES%) :

toothache

= toothache

cavity

catch| — catch
.108| .012

catch| — catch

.072] .008

=1 cavity

.016| .064

144 .576

For any proposition ¢, sum the atomic events where it is true:
— BB S T H A 4 T R B R T R

P(toothache) = 0.108 + 0.012 4 0.016 + 0.064 = 0.2



Inference by enumeration

Start with the joint probability distribution (£BEESHEENT) :

For any proposition ¢, sum the atomic events where it is true:

— M REERETIE S E RN R FE4RIBEM

P(¢) = > (g PW)
P(cavity \V toothache) =
0.108 + 0.012 + 0.072 + 0.008 + 0.016 4 0.064 = 0.28

toothache = toothache
catch| — catch| catch| — catch

cavity| 108 .012 | .072] .008
—1cavity | .016| .064 144 | .576




Inference by enumeration

Start with the joint probability distribution (£BESHEEST) :

toothache =1 toothache
catch| — catch| catch| — catch

cavity | 108 | .012 .072| .008
— cavity || .016 | .064 || .144| .576

Can also compute conditional probabilities:

P(—cavity|toothache) =

~ 0.108 + 0.012 + 0.016 + 0.064

P(—cavity A\ toothache)

P(toothache)
0.016 4+ 0.064

0.4



Normalization (J3—4%)

toothache = toothache
catch| = catch| catch| — catch
cavity |{.108][1.012 .072| .008
-1 cavity ||.016]| 1 .064 144 .576

Denominator (43E) can be viewed as a normalization constant o

P(Cavity|toothache) = aP(Cavity, toothache)

= «[P(Cavity, toothache, catch) + P(Cavity, toothache, —catch)]
= «af[< 0.108,0.016 > + < 0.012,0.064 >]
=a<0.12,0.08 >=<0.6,0.4 >

General idea: compute distribution on query variable by fixing

evidence variables (JF#EZF&) and summing over hidden

variables (FRIiNZEE)




Inference by enumeration, contd.

Typically, we are interested in

» the posterior joint distribution of the query variables (ZFifZ%

g)Y
» given specific values e for the evidence variables (JFEZE&)
E

Let the hidden variables (FIWMZEE) beH=X-Y-E

Then the required summation of joint entries is done by summing
out the hidden variables:
P(YE=e) =aP(Y,E=¢e) =a) ,P(Y,E=¢eH=h)

The terms in the summation are joint entries because Y, E and H
together exhaust the set of random variables (Y, E, H #4587 i34
FELTENTEES)



Inference by enumeration, contd.

Obvious problems:
» Worst-case time complexity O(d") where d is the largest arity
» Space complexity O(d") to store the joint distribution

» How to find the numbers for O(d") entries?
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Independence (Ji3z )

A and B are independent iff
P(A|B) = P(A) or P(B|A) = P(B) or P(A, B) = P(A)P(B)

e.g. roll of 2 die: P(1,3) =1/6*1/6 = 1/36 a4

Cavity
Ca\n[y s:s ina ' Toothache Catch
Toothache  Catch
Weather
\ 7/ Weather

P(Toothache, Catch, Cavity, Weather) =

P(Toothache, Catch, Cavity) P(Weather)

32 entries reduced to 12; for n independent biased coins,

0(2") — O(n)

Absolute independence powerful but rare

Dentistry (ZFF}45i,) is a large field with hundreds of variables,
none of which are independent. What to do?



Conditional independence (&% {43t 4)

P(Toothache, Cavity, Catch) has 23-1 = 7 independent entries

If | have a cavity, the probability that the probe catches in it
doesn’t depend on whether | have a toothache:
— P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if | haven't got a cavity:
— P(catch|toothache, —cavity) = P(catch|—cavity)

Catch is conditionally independent of Toothache given Cavity:
— P(Catch| Toothache, Cavity) = P(Catch|Cavity)

Equivalent statements:
P(Toothache| Catch, Cavity) = P(Toothache| Cavity)
P( Toothache, Catch|Cavity) =

P( Toothache| Cavity) P(Catch| Cavity)



Conditional independence contd.

Write out full joint distribution using chain rule:
P(Toothache, Catch, Cavity)
= P(Toothache| Catch, Cavity) P(Catch, Cavity)
= P(Toothache| Catch, Cavity) P(Catch|Cavity) P( Cavity)
= P( Toothache| Cavity) P(Catch|Cavity) P( Cavity)
i.e. 24+ 2 4+ 1 =5 independent numbers

In most cases, the use of conditional independence reduces the size
of the representation of the joint distribution from exponential in n
to linear in n.

EAZHBERAT, ERAZGHIMEELBKEMENRTH B
TR RBA n FZEMHXRE.

Conditional independence is our most basic and robust form of
knowledge about uncertain environments.



Bayes' Rule ( DUM-HfiEN])

Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of
London, 53:370-418

u}

)
I
il
it




Bayes' Rule ( DUM-HfiEN])

Product rule P(a A b) = P(a|b)P(b) = P(b|a)P(a)
= Bayes'rule: P(a|b) = %
or in distribution form

P(YX) = 2XBY = aP(XIV)P(Y)

Useful for assessing diagnostic probability (iZHf#EZ) from
causal probability (ESRHEEE) :
P(Effect| Cause) P( Cause)
P Effect) =
(Cause| Effect) P(Effect)
e.g., let M be meningitis (JXBE#) , S be stiff neck (BEFEfE) :
P(s|m)P(m) 0.8 % 0.0001

P prm— p— prm— .

(mls) PLs) 01 0.0008
Note: posterior probability of meningitis still very small!




Probabilistic Inference Using Bayes' Rule

H = "having a headache”
F = “coming down with Flu"

> P(H)=1/10
> P(F)=1/40
P(H|F)=1/2

v

One day you wake up with a headache. You come with the
following reasoning: “since 50% of flues are associated with
headaches, so | must have a 50% chance of coming down with flu

Is this reasoning correct?



Probabilistic Inference Using Bayes' Rule

H = “having a headache”
» P(H)=1/10
» P(F)=1/40

» P(H|F)=1/2

F = “coming down with Flu"”

The Problem:
P(FIH) =7

DA



Probabilistic Inference Using Bayes' Rule

> P(F)=1/40

H = "having a headache” F = “coming down with Flu"”
» P(H)=1/10
» P(H|F)=1/2

The Problem:
P(FIH)

= P(H|F)P(F)/P(H)
—1/8
# P(H|F)




Bayes' Rule and conditional independence

P(Cavity|toothache A catch)
= aP(toothache A catch|Cavity) P(Cavity)
= aP(toothache|Cavity) P(catch|Cavity) P( Cavity)

This is an example of a naive Bayes model (#M2= DIATHHTFEEY) -
P(Cause, Effecty, . .., Effect,) = P(Cause) | [; P(Effect;|Cause)

j t /!T!\

Total number of parameters (Z#§) is linear in n



Where do probability distributions come from?

» Idea One: Human, Domain Experts

> Idea Two: Simpler probability facts and some algebra
eg., P(F)

-F |-B |-H |04

P(B) £ [ |[H o1

-F |8 -H 047

P(H|~F,B) -F |B H 02
(

e

F
F B -H 0.015
F B H 0.015

» Use chain rule and independence assumptions to compute
joint distribution



Where do probability distributions come from?

» |ldea Three: Learn them from data!

» A good chunk of machine learning research is essentially about
various ways of learning various forms of them!



Summary of Uncertainty

» Probability is a rigorous formalism for uncertain knowledge
MR AHEMR—MEBIREL T E

» Joint probability distribution specifies probability of every
atomic event
EREMESHEETHHNEENENTLRE, IS
FFEHRIBER

» Queries can be answered by summing over atomic events
AT RUEE B RS B F & i an i R F R a5 B A mey 77 =05k
EEEA

» For nontrivial domains, we must find a way to reduce the joint
size

» Independence and conditional independence provide the tools



Bk

» B=hR: 13.15, 13.18, 13.21, 13.22

A B, FSMRNAEEABTAE, AdEREERRIMEEL
HIllZER, XAFRX
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Frequentist vs. Bayesian

W vs. MW
Frequentist (#5123 W3 ) : probability is the long-run expected
frequency of occurrence. P(A) = n/N, where n is the number of
times event A occurs in N opportunities.
‘RELZEMBER 01" BIKkE 0.1 RELH SHERIIMPRF 4
T REMS 1 X 22 E I bt B
But ZIFZERTAFTEHITES XK

eg, REF=ZRHFRREBIMERE 7

Bayesian: degree of belief. It is a measure of the plausibility ({Bl9&
) of an event given incomplete knowledge.



Probability

» Probability is a rigorous formalism for uncertain knowledge
MR AHEMR—MEBIREL T E

» Joint probability distribution specifies probability of every
atomic event
EREMESHEETHHNEENENTLRE, IS
FFEHRIBER

» Queries can be answered by summing over atomic events
AT RUEE B RS B F & i an i R F R a5 B A mey 77 =05k
EEEA

» For nontrivial domains, we must find a way to reduce the joint
size

» Independence and conditional independence provide the tools



Independence/Conditional Independence

A and B are independent iff
P(A|B) = P(A) or P(BJA) = P(B) or P(A, B) = P(A)P(B)

A is conditionally independent of B given C:
P(A|B, C) = P(A|C)

EAZHBERT, ERAKGHIMEELBEEHMENRTH B
TR RBA n FEMHXRE.

Conditional independence is our most basic and robust form of
knowledge about uncertain environment.



Probability Theory

Probability theory can be expressed in terms of two simple
equations
» Sum Rule (hRiE#RN)

» probability of a variable is obtained by marginalizing (1%L )
or summing out other variables

p(a) = >, p(a, b)
» Product Rule (3iEzN])

> joint probability expressed in terms of conditionals
p(a, b) = p(bla)p(a)
All probabilistic inference and learning amounts to repeated
application of sum and product rule



Outline

» Graphical models (HIZREHRR)

» Bayesian networks

» Syntax (iE3%)
» Semantics (iEX)

» Inference (¥#5:) in Bayesian networks



What are Graphical Models?

They are diagrammatic (El3RHYJ) representations of probability
distributions
—marriage between probability theory and graph theory

» Also called probabilistic graphical models

» They augment analysis instead of using pure algebra ({£#{)



What is a Graph?

» Consists of nodes (also called vertices) and links (also called
edges or arcs)

c

» In a probabilistic graphical model
» each node represents a random variable (or group of random
variables)
» Links express probabilistic relationships between variables



Graphical Models in CS

» Natural tool for handling uncertainty (A#EM) and

complexity (& Zf4%)
—which occur throughout applied mathematics and
engineering

» Fundamental to the idea of a graphical model is the notion of

modularity (#EHRiE)

—a complex system is built by combining simpler parts.



Why are Graphical Models useful

» Probability theory provides the glue whereby
> the parts are combined, ensuring that the system as a whole is

consistent
» providing ways to interface models to data.

» Graph theoretic side provides:
» Intuitively appealing interface
—by which humans can model highly-interacting sets of
variables
» Data structure
—that lends itself naturally to designing efficient

general-purpose  (ABFARY) algorithms



Graphical models: Unifying Framework

» View classical multivariate (£ 2582H) probabilistic systems
as instances of a common underlying formalism (F23)
» mixture models (R&#&8Y) , factor analysis (EF494h) .
hidden Markov models, Kalman filters (R/RE2JEEEE) | etc
» Encountered in systems engineering, information theory,
pattern recognition and statistical mechanics

» Advantages of View:

» Specialized techniques in one field can be transferred between
communities and exploited
» Provides natural framework for designing new systems



Role of Graphical Models in Machine Learning

» Simple way to visualize (F2&4k)
structure of probabilistic model

> Insights into properties of model
Conditional independence properties by inspecting graph
» Complex computations

required to perform inference and learning expressed as
graphical manipulations



Graph Directionality

» Undirected graphical
> Directed graphical models

—Directionality associated
with arrows

Bayesian networks
—Express causal
relationships (EIRXZ)
between random variables
More popular in Al and
statistics

a

models
—Ilinks without arrows

Markov random fields (5
RELKEEHLIA)
—Better suited to express
soft constraints between
variables
More popular in Vision and
physics

@
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Bayesian networks

—HERR, ERANEBIREYE BTRTIZEZENKRBXE
(FMHMartE), ARMEKEHESMIRE—MERNATE.
Syntax:

> a set of nodes, one per variable

» adirected (FG) , acyclic (FL¥R) graph (link &~ "direct

influences”)
» a conditional distribution for each node given its parents:
P(Xi Parents(X;))—& L E T m3HZ T R AT

In the simplest case, conditional distribution represented as a

conditional probability table £{#tZE %k (CPT) giving the
distribution over Xi for each combination of parent values



Example

Topology (¥A$M45#Y) of network encodes conditional
independence assertions:

G @)

Weather is independent of the other variables
Toothache and Catch are conditionally independent given Cavity



Example

I'm at work, neighbor John calls to say my alarm is ringing, but
neighbor Mary doesn’t call. Sometimes it’s set off by minor
earthquakes. Is there a burglar (W) ?

Variables: Burglary (NE{T% ) , Earthquake, Alarm, JohnCalls,
MaryCalls

Network topology reflects “causal (EER) " knowledge:
» A burglar can set the alarm off
» An earthquake can set the alarm off
» The alarm can cause Mary to call

» The alarm can cause John to call



Example contd.

P(B) NE)
Burglary J Earthquake 002
B E |PKAIB,E)
T T 95
T F .94
F T .29
F F 001
PJIA) A |P(MIA)
F| 05 F| 0L




Compactness ( Z&14)

A CPT for Boolean X; with k Boolean parents has 2k rows for the
combinations of parent values

—MEF k MRV ANHREENFERERTE 28 M
S HITT R EHE R o

Each row requires one number p for X; = true
(the number for X; = false is just 1-p)

If each variable has no more than k parents, the complete network
requires O(n - 2X) numbers

i.e. grows linearly with n, vs. O(2") for the full joint distribution
For burglary net, 1 +1+4+2+2 = 10 numbers (vs. 2° — 1 = 31)



Global semantics (£ /FiENX)

The full joint distribution is defined as the product of the local
conditional distributions:

EEREHERS AT LUK 0 DU HT M 48 R Y SF R 2 R T AR

“Global” semantics defines the full joint distri- o
bution as the product of the local conditional (B) (E)
distributions: (A)

P(x1,...,xn) = [11, P(xi|parents(X;)) g W
e.g, PGAmAaA—-bA—e)



Global semantics (£ /FiENX)

The full joint distribution is defined as the product of the local
conditional distributions:

EBEHR D WA LIRT A R T M4 s p ST R 2 HRIRR

“Global” semantics defines the full joint distri-
bution as the product of the local conditional
distributions: o

(B)
P(x1,...,xn) = |11 P(xi|parents(X;))
eg, PUAmAan—bA—e) g W
= P(jla)P(m|a) P(a|—b, —e) P(—b) P(—e)
=0.9%0.7 % 0.001 * 0.999 * 0.998
~ 0.00063



Local semantics

Local semantics: each node is conditionally independent of its
nondescendants (JEJ54X) given its parents
BEXTR, TP RS5ERNIEERT S F 4L

Theorem: Local semantics < global semantics



Constructing Bayesian networks

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics
BE-MAEESBHNFMHMILXREBRIEEFIEGFSUAR
va
1. Choose an ordering of variables Xi,..., X,
2. Fori=1ton

add X; to the network

select parents from Xi,..., X;_1 such that

P(X,-]Parents(X,-)) = P(X,“Xl, e ,X,'_l)

This choice of parents guarantees the global semantics:

n
P(X1,..., Xa) = [ PCXi X4, ..., Xi—1)(chainrule)
i=1

(1)
n
= H P(Xi| Parents(X;))(byconstruction)

i=1



Constructing Bayesian networks

ERMEHAIMNERHERR T SERN LT R &S EERFP
EHERM.

AT SHEBRIFRERRM "RARE" Te, AEMAZ
ENEHESIREE, UHk3EH.



Example

Suppose we choose the ordering M, J, A, B, E

MaryCalls

> P(J|M) = P(J)?



Example

Suppose we choose the ordering M, J, A, B, E

> P(J|M) = P(J)? No
» P(A|J, M) = P(A|J)?P(A|J, M) =
P(A)?



Example

Suppose we choose the ordering M, J, A, B, E

v

P(JM) = P(J)? No

P(A|J, M) = P(A|J)?P(A]J, M) =
(A)? No
(
(

v

‘U

v

P(B|A, J, M) = P(B|A)?
P(B|A, J, M) = P(B)?

v



Example

Suppose we choose the ordering M, J, A, B, E

P(JJM) = P(J)? No
mAuA@ P(A|))?P(A|J, M) =
(A)? N

maAJm P(B|A)? Yes
(

(

(

‘U

P(B|A, J, M) = P(B)? No
P(E|B, A, J, M) = P(E|A)?
P(E|B, A, J, M) = P(E|A, B)?



Example
Suppose we choose the ordering M, J, A, B, E

> P(JM) = P(J)? No
> P(A|J, M) = P(A|J)?P(A|J, M) =
(A)? No
» P(B|A, J, M) = P(B|A)? Yes
(
(
(

‘U

> P(BA,J, M) = P(B)? No
> P(E|B, A, J,M) = P(E|A)? N
> P(E|B, A, J,M) = P(E|A, B)’? Yes



Example contd.

)

(o

Deciding conditional independence is hard in noncausal (FEER)
directions

(Causal models and conditional independence seem hardwired for
humans!)

Network is less compact: 1 + 2 + 4 + 2 4+ 4 = 13 numbers needed



Inference tasks

Simple queries: compute posterior probability P(X|E = e)
e.g., P(NoGas|Gauge = empty, Lights = on, Starts = false)

Conjunctive queries (BX&Zif]) :
P(X1, X;|E = e) = P(X{|E = e)P(Xj|X;, E=¢)

Optimal decisions: decision networks include utility information;
probabilistic inference required for
P(outcomelaction, evidence)



Inference by enumeration

Slightly intelligent way to sum out variables from the joint without
actually constructing its explicit representation
P(Xle) = aP(X,e) =}, P(X,ey)

i ENHETMERA] VG LRSS 1 E RS HFBEE FRRIT
I
P(X1,...,Xn) = [, P(Xi|Parents(X;))

7 DU T M 28 AT U T E R R A SRR FF R Ak E &
.



Inference by enumeration

Slightly intelligent way to sum out variables from the joint without
actually constructing its explicit representation.

Simple query on the burglary network: *
= ’D(B’.j’ m)/P(jv m)
= aP(B,j,m) = a3, Y, P(B.e,aj,m) g ©

Rewrite full joint entries using product of CPT entries:
P(Blj; m)

=a) >, P(B)P(e)P(aB, e)P(jla)P(m|a)

= aP(B) )., P(e) >_, P(a| B, e)P(jla) P(ml|a)

Recursive depth-first enumeration: O(n) space, O(d") time



Evaluation tree

PAalbme)
.06

Plajb.e)

PRAalbe) Plajb—e)
95 .05

94

P(jfa) P(j/=a) P(jla) P(j/=a)
90 .05 .90 .05
P(mj/a) P(m[=a) P(m/a) P(m[=a)
.70 .01 70 .01

Enumeration is inefficient: repeated computations
e.g., computes P(jla)P(m|a) for each value of e



Inference by variable elimination

Variable elimination (ZL&HIT) : carry out summations
right-to-left, storing intermediate results (factors: &) to avoid
recomputation

P(B|j,m)
= o P'B 2., Pfr ] 2. P(a|B,e) P(jla) P(m|a)
M

7
— nPtB],_.er( )_Jr,P[u B-Jif VP(jla) fa(a)
= aP(B)X.Ple)X r,Pm B,e)fila)fula)
= aP(B)X.P(e)X.fala,b,e)fi(a)frla)
= oP(B)L.P(e )i”Urb ¢) (sum out A)
= aP(B)fgi)(b) (sum out E)

= afp(b) X fpasn(b)



Complexity of exact inference
Singly connected networks EREXIEMILE (or polytrees B#, IthzAY
Fla) E 2 R):
» any two nodes are connected by at most one (undirected) path
» time and space cost of variable elimination are O(d*n)

S LT EETHE BT BERER S MEMIEE LY
Multiply connected networks 23 Bk i 4
» can reduce 3SAT to exact inference = NP-hard
> equivalent to counting 3SAT models = #P-complete

1. AvBvC
2CvDvA
3. BvCvD




Example: Naive Bayes model

There is a single parent variable and a collection of child variables
whose values are conditionally independent from one another given

the parent.

i /
o

P(X1 = x1,...,Xn = Xn)
= P(Xl = X1>P(X2 - XQ‘Xl - Xl) P(Xn = Xn‘Xl = Xl)



Naive Bayes model

P(Cause, Effect, . .., Effect,) = P(Cause) | |; P(Effect;| Cause)
P(Cause|Effecty, . . ., Effect,) = P(Effects, Cause)/ P( Effects)
= aP(Cause, Effects) = aP(Cause) [ [, P(Effect;| Cause)

Total number of parameters (Z#%§) is linear in n



Example: Spam detection

Imagine the problem of trying to automatically detect spam e-mail
messages (LIIFMB{E) . A simple approach to get started is to
look only at the “Subject:" headers in the e-mail messages and
attempt to recognize spam by checking some simple computable
features (43F4E) . The two simple features we will consider are:

» Caps: Whether the subject header is entirely capitalized

» Free: Whether the subject header contains the word ‘free’,
either in upper case or lower case

e.g., a message with the subject header “NEW MORTGAGE
RATE" is likely to be spam. Similarly, for “Money for Free",
“FREE lunch”, etc.



Example: Spam detection

The model is based on the following three random variables, Caps,
Free and Spam, each of which take on the values Y (for Yes) or N
(for No)

» Caps = Y if and only if the subject of the message does not
contain lowercase letters

» Free = Y if and only if the word ‘free’ appears in the subject
(letter case is ignored)

» Spam =Y if and only if the message is spam
P(Free , Caps, Spam)= P(Spam ) P(Caps|Spam) P(Free|Spam)



Example: Spam detection

i

P(Free, Caps, Spam) = P(Spam)P(Caps|Spam)P(Free|Spam)



Example: Spam detection

Free | Caps | Spam | # messages
Y Y Y 20
Y Y N 1
Y N Y 5
Y N N 0
N Y Y 20
N Y N 3
N N Y 2
N N N 49
Total: 100
Spamn | P(Spam)
\Ir £0+51+2l]+2 =047
N —”0;5%)*49 = 0.53
Caps  Spam P(Caps|Spam) Free  Spam P( Free| Spam)
Y Y % ~ 0.8511 Y Y % = 0.5319
Y N ﬁd{m 22 .0755 Y N H%jw = 0.0189
§ ;I magagpr S 01480 N Y iy & 0.4681
\ Tioisia 0.9245 N N Trotsian = 0.9811
=] 5



Example: Spam detection

P(Free = Y, Caps = N, Spam = N)

= P(Spam = N)P(Caps = N|Spam = N)P(Free = Y|Spam = N)
~ 0.53 % 0.9245 x 0.0189

~ 0.0093



Example: Learning to classify text documents

NAGERAXEMESHIXAEME, IBRERIESEEIE

EBRANEEHE—NLAINNES. IMESHEE REIFZ

HRE . FEXEERG, SERTEI LR, "FR" TEN

REEFEMAREHI. RAMRIECEFRY R HIERR ML

Ay, HHIUSRER B AL R E -

> ETMBRLAE AL EMEREEN "IIZE
& B, XERER R IMAER .

R SR INCIPOE B Vi s

> XEM R EEN 7 ETE.



Example: Learning to classify text documents

Category

The model consists of the prior probability P(Category) and the
conditional probabilities P(word i|Category)
» P(Category=c) is estimated as the fraction of all documents
that are of category c
» P(word i = true|Category=c) is estimated as the fraction of
documents of category c that contain word i



Twenty Newsgroups

Given 1000 training documents from each group. Learn to classify
new documents according to which newsgroup it came from

comp. graphics

comp. os. ms—windows. mise
comp. sys. ibm. pe. hardware
comp. sys. mac. hardware
comp. windows. x

rec. autos sci. erypt

rec. motoreyeles sci.electronics
rec. sport. baseball sci. med

rec. sport. hockey sci. space

talk. politics. misc talk. religion. misc
misc. forsale talk. politics. guns alt.atheism
talk. politics. mideast||soc. religion. christian

Naive Bayes: 89% classification accuracy



Learning Curve for 20 Newsgroups

100 T T T

Bayes —o—
TFIDF -+
PRTFIDF - .

oL il HE R S |
100 1000 10000

Accuracy vs. Training set size (1/3 withheld for test)



TFIDF

» TFIDF (tf-idf)
ERE—EPiRE w HIRRE

» Term Frequency: TF, = —— : -
queney ZERHENASEE

> Inverse Document Frequency:
IDF, — log( . ERERISCREH
" BERF w BT +1
» TFIDF, = TF, x IDF,,, E—%EXHNISIAERZE, U
&zm%&%¢&#%ﬁ¢%ﬁi#ﬁ$,ﬂuFiﬁﬁﬂ
&R TFIDF

» PRTFIDF (A Probabilistic Classifier Derived from TFIDF)




Example: A Digit Recognizer

> Input: pixel grids

» output: a digit 0-9




Naive Bayes for Digits

Simple version:
» One feature Fj; for each grid position < i, j >

» Possible feature values are on / off, based on whether
intensity is more or less than 0.5 in underlying image

» Each input maps to a feature vector e.g.,

1 — (Foo=0,Fp1 =0,Fpo=1,...,Fi515 =0)
» Here: lots of features, each is binary

Naive Bayes model:

P(Y1Fo,0,-- -+, Fi5,15) o< P(Y) I1;; P(Fi|Y)

What do we need to learn?



Examples: CPTs

P(Y) P(F33 =on|Y) P(F55=on|Y)
1 ]01 / 1 [0.01 / 1005
2 o4 2 [0.05 2 |oo01
3 |01 3 (005 3 (090
4 |01 4 030 4 080
5 |01 o 5 [0.80 5 [0.90
6 |01 — 6 [0.90 6 [0.90
7 |01 7 [0.05 7 (025
8 |01 8 | 0.60 8 [0.85
9 o1 9 [0.50 9 |0.60
0 |01 0 |0.80 0 |os80




Comments on Naive Bayes

» Makes probabilistic inference tractable by making a strong
assumption of conditional independence.

> Tends to work fairly well despite this strong assumption.

» Experiments show it to be quite competitive with other
classification methods on standard datasets.

» Particularly popular for text categorization, e.g., spam
filtering.



Summary

v

Bayesian networks provide a natural representation for
(causally induced) conditional independence

v

Topology + CPTs = compact representation of joint
distribution

v

Generally easy for domain experts to construct

v

Exact inference by variable elimination:

» polytime on polytrees, NP-hard on general graphs
> space = time, very sensitive to topology

v

Naive Bayes model



Bk

> ESHR: 14.12, 14.13
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