Learning

吉建民

USTC jianmin@ustc.edu.cn

2024年5月7日

Used Materials

Disclaimer: 本课件采用了 S. Russell and P. Norvig's Artificial Intelligence –A modern approach slides, 徐林莉老师课件和其他网络课程课件,也采用了 GitHub 中开源代码,以及部分网络博客内容

Table of Contents

Learning agents

Probably Approximately Correct (PAC) Learning

Learning

- ▶ Learning is essential for unknown environments, —i.e., when designer lacks omniscience (全知)
- Learning is useful as a system construction method, -i.e., expose the agent to reality rather than trying to write it down
- ► Learning modifies the agent's decision mechanisms to improve performance

Learning agents

Learning agents

Design of a learning element is affected by

- Which components of the performance element are to be learned
- ▶ What feedback is available to learn these components
- What representation is used for the components

Learning agents

Machine learning is an interdisciplinary field focusing on both the mathematical foundations and practical applications of systems that learn, reason and act. 机器学习是一个交叉学科的领域,着重于研究具有学习、推理和行动的系统所需要的数学基础以及实际应用

Other related terms: Pattern Recognition (模式识别), Neural Networks (神经网络), Data Mining (数据挖掘), Statistical Modeling (统计模型) ...

Using ideas from: Statistics, Computer Science, Engineering, Applied Mathematics, Cognitive Science (认知科学), Psychology (心理学), Computational Neuroscience (计算神经学), Economics

The goal of these lectures: to introduce important concepts, models and algorithms in machine learning.

Why machine learning?

- Large amounts of data
 - Web data
 - Medical data
 - Biological data
- Expensive to analyze by hand
- Computers become cheaper and more powerful

From: R. Grossman, C. Kamath, V. Kumar, "Data Mining for Scientific and Engineering Applications"

Why machine learning?

What is machine learning useful for?

Automatic speech recognition (自动语音识别)

Now most Speech Recognizers or Translators are able to learn — the more you play/use them, the smarter they become

Computer vision

e.g., object, face and handwriting recognition

Information retrieval-信息检索

Reading, digesting, and categorizing a vast text database is too much for human

- ▶ Web Pages Retrieval (检索)
- ► Categorization (分类)
- ► Clustering (聚类)
- Relations between pages

Financial prediction

Medical diagnosis (医学诊断)

(image from Kevin Murphy)

Bioinformatics (生物信息学)

e.g. modeling gene microarray (微阵列) data, protein structure prediction

Robotics

Movie recommendation systems

Challenge: to improve the accuracy of movie preference predictions Netflix \$1m Prize.

Three Types of Learning

Imagine an agent or machine which experiences a series of sensory inputs: $x_1, x_2, x_3, x_4, ...$

- Number Supervised learning (监督学习): The machine is also given desired outputs $y_1, y_2, ...$, and its goal is to learn to produce the correct output given a new input.
- ▶ Unsupervised learning (无监督学习): outputs $y_1, y_2, ...$ Not given, the agent still wants to build a model of x that can be used for reasoning, decision making, predicting things, communicating etc

ト Reinforcement learning (强化学习): The machine can also produce actions $a_1, a_2, ...$ which affect the state of the world, and receives rewards (or punishments) $r_1, r_2, ...$. Its goal is to learn to act in a way that maximizes rewards in the long term.

Key Ingredients

- ▶ Data The data set D consists of N data points: $D = \{x_1, x_2..., x_N\}$
- ▶ Predictions We are generally interested in predicting something based on the observed data set. Given D what can we say about x_{N+1} ?
- Model To make predictions, we need to make some assumptions. We can often express these assumptions in the form of a model, with some parameters (参数)

Given data D, we learn the model parameters, from which we can predict new data points.

Key Ingredients

Machine Learning \approx Looking for a Function

Speech Recognition

$$f($$
)= "How are you"

• Image Recognition

Playing Go

• Dialogue System

$$f($$
 "Hi" $)=$ "Hello" (what the user said) (system response)

Image Recognition:

Framework

$$f(\bigcap_{i \in I} f(i)) = f(i)$$

A set of function

Model

$$f_1, f_2 \cdots$$

$$=$$
 "cat" f_2

$$f_1$$

$$)=$$
 "dog"

$$=$$
 "snake"

Image Recognition:

Framework

$$f(\bigcap_{i=1}^{n})=$$
 "cat"

Image Recognition:

Framework

Learning = Representation + Evaluation + Optimization

- ▶ 学习 = 表示 + 评价 + 优化
 - ▶ 表示 (Representation): 确定假设空间 (hypothesis space)
 - ▶ Pick some class of functions f(x) (decision trees, linear functions, etc.)
 - ▶ 评价(Evaluation): 评价函数(目标函数、打分函数)来判断优劣
 - Pick some loss function, measuring how we would like f(x) to perform on test data.
 - ► 优化(Optimization):需要一个搜索方法,能够在假设空间中找到评价函数得分最高的函数
 - ▶ Fit f(x) so that it has a good average loss on training data.

为什么机器学习是可能的

- ▶ 为什么机器学习是可能的?
 - ► 什么样的问题能够被有效率的学习 (What can be learned efficiently)?
 - ► 什么样的问题天生无法有效地被学习 (What is inherently hard to learn)?
 - ► 成功的学习需要多少样本 (How many examples are needed to learn successfully)?
 - ▶ 学习有没有一个综合性的模型指导 (Is there a general model of learning)?
- ► PAC 学习框架 (Probably Approximately Correct learning framework) 可以解释上述问题

Table of Contents

Learning agents

Probably Approximately Correct (PAC) Learning

Leslie Valiant (莱斯利·瓦朗特)

Leslie Valiant

PAC learning was invented by Leslie Valiant in 1984, and it birthed a new subfield of computer science called computational learning theory and won Valiant some of computer science's highest awards.

基本概念

为了叙述 PAC 模型, 先引进一些记号:

- ▶ 输入空间 (input space) 记作 \mathcal{X} ,表示所有样本 (examples) 或实例 (instances) 的所有可能取值的集合
- ▶ 所有可能的标签 (labels) 或目标値 (target values) 的集合记作 ジ
- ► 一个概念 (concept) 记作 c: X → Y, 是从 X 到 Y 的一个 映射 (规则)
- ▶ 一个概念类 (concept class) 是一些我们希望学习到的概念的 集合,记作 \mathcal{C}
- ▶ 我们假设,所有的样本都是独立同分布的 (i.i.d.),满足一个 固定的但是未知的分布 D (fixed but unknown distribution)

监督学习问题

我们可以将学习问题进行如下叙述:

- ▶ 首先,给定学习器 (learner) 一个由可能概念构成的固定集合,即假说集 (hypothesis set),记作 \mathcal{H} ,这个假说集不一定必须和 \mathcal{C} 有重合
- ▶ 接着,给予学习器样本 $S = (x_1, ..., x_m)$ 与对应的标签 $(c(x_1), ..., c(x_m))$,其中每个样本都是根据分布 \mathcal{D} 来 i.i.d. 得到的,c 是需要学到的目标概念,属于概念类 \mathcal{C}
- ▶ 学习器需要根据带有标签的数据集 S, 从假说集 \mathcal{H} 中选择 一个假说 h_s , 该 h_s 有着相对于目标概念 c 很小的泛化误差 (generalization error)。

两种误差

▶ 泛化误差 (generalization error): 给定 h∈ H, c∈ C, 分布 D, h 的泛化误差为

$$R(h) = P_{x \sim \mathcal{D}}[h(x) \neq c(x)]$$

▶ 经验误差 (empirical error): 给定样本集合 $S = (x_1, ..., x_m)$

$$\hat{R}_{S}(h) = \frac{1}{m} \sum_{i=1}^{m} [h(x_i) \neq c(x_i)]$$

- 比较经验误差与泛化误差:
 - ▶ 经验误差是 h 在训练数据 S 上的平均误差
 - ▶ 泛化误差是 h 在分布 D 上的期望误差
 - ▶ 两者存在联系,因为 S 是根据 D 独立同分布产生的

$$E_{S \sim \mathcal{D}^m}[\hat{R}_S(h)] = R(h)$$

PAC models for Supervised Learning

PAC Model

1. Generate instances from unknown distribution p^*

$$\mathbf{x}^{(i)} \sim p^*(\mathbf{x}), \, \forall i$$
 (1)

2. Oracle labels each instance with unknown function c^{st}

$$y^{(i)} = c^*(\mathbf{x}^{(i)}), \forall i$$
 (2)

3. Learning algorithm chooses hypothesis $h \in \mathcal{H}$ with low(est) training error, $\hat{R}(h)$

$$\hat{h} = \operatorname*{argmin}_{h} \hat{R}(h) \tag{3}$$

4. Goal: Choose an h with low generalization error R(h)

Two Types of Error

True Error (aka. expected risk)

$$R(h) = P_{\mathbf{x} \sim p^*(\mathbf{x})}(c^*(\mathbf{x}) \neq h(\mathbf{x}))$$

Train Error (aka. empirical risk)

isk)

This quantity is always unknown

$$\hat{R}(h) = P_{\mathbf{x} \sim \mathcal{S}}(c^*(\mathbf{x}) \neq h(\mathbf{x}))$$

$$= \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}(c^*(\mathbf{x}^{(i)}) \neq h(\mathbf{x}^{(i)}))$$

$$= \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}(y^{(i)} \neq h(\mathbf{x}^{(i)}))$$

We can measure this on the training data

where $S = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\}_{i=1}^N$ is the training data set, and $\mathbf{x} \sim S$ denotes that \mathbf{x} is sampled from the empirical distribution.

Three Hypotheses of Interest

The **true function** c^* is the one we are trying to learn and that labeled the training data:

$$y^{(i)} = c^*(\mathbf{x}^{(i)}), \forall i \tag{1}$$

The **expected risk minimizer** has lowest true error:

$$h^* = \operatorname*{argmin}_{h \in \mathcal{H}} R(h) \tag{2}$$

The **empirical risk minimizer** has lowest training error:

$$\hat{h} = \operatorname*{argmin}_{h \in \mathcal{H}} \hat{R}(h) \tag{3}$$

PAC 学习理论

- ▶ PAC 学习理论考虑,能否从假设空间 升 中学习一个好的假设 h
- ▶ "好的假设"需要满足两个条件 (PAC 辨识条件):
 - ▶ 近似正确 (Approximately Correct): 泛化误差 R(h) 足够小
 - ightharpoonup R(h) 越小越好,最好泛化误差能能于 0,但一般是不可能的。那我们就把 R(h) 限定在一个很小的数 ϵ 之内,即只要假设 h 满足 $R(h) \leq \epsilon$,我们就认为 h 是近似正确的
 - ▶ 可能正确 (Probably Correct): h 在很大概率上近似正确
 - ▶ 不指望选择的假设 h 百分之百是近似正确的,即 $R(h) \le \epsilon$,只要很可能是近似正确的就可以,即我们给定一个值 δ ,假设 h 满足 $P(R(h) \le \epsilon) \ge 1 \delta$
- ▶ 同时学习所需的样本数量不能太大,样本数量是关于 $1/\epsilon$, $1/\delta$, 样本大小,size(c) 的多项式函数

PAC Learnable

定义

A concept class $\mathcal C$ is said to be PAC-learnable if there exists an algorithm $\mathcal A$ and a polynomial function function $poly(\cdot,\cdot,\cdot,\cdot)$ such that for any $\epsilon>0$ and $\delta>0$, for all distribution $\mathcal D$ on $\mathcal X$ (containing instances of length n) and for any target concept $c\in\mathcal C$, the following holds for any sample size $m\geq poly(1/\epsilon,1/\delta,n,size(c))$:

$$P_{S \sim \mathcal{D}^m}[R(h_S) \leq \epsilon] \geq 1 - \delta$$

If $\mathcal A$ further runs in $poly(1/\epsilon,1/\delta,n,size(c))$, then $\mathcal C$ is said to be efficiently PAC-learable. When such an algorithm $\mathcal A$ exists, it is called a PAC-learning algorithm for $\mathcal C$.

Guarantees for finite hypothesis sets – consistent case

- ▶ 一致情形 (consistent): $c \in \mathcal{H}$
 - ▶ target concept *c* 在 learner 的(有限)假设集合(hypothesis set) *H* 中

定理 (Learning bound – finite \mathcal{H} , consistent case)

Let $\mathcal H$ be a finite set of functions mapping from $\mathcal X$ to $\mathcal Y$. Let $\mathcal A$ be an algorithm that for any target concept $c\in\mathcal H$ and i.i.d. sample S returns a consistent hypothesis h_S : $\hat R_S(h_S)=0$. Then, for any $\epsilon,\delta>0$, the inequality $P_{S\sim\mathcal D^m}[R(h_S)\leq\epsilon]\geq 1-\delta$ holds if

$$m \geq \frac{1}{\epsilon} \left(\log |\mathcal{H}| + \log \frac{1}{\delta} \right).$$

This sample complexity result admits the following equivalent statement as a generalization bound: for any $\epsilon, \delta > 0$, with probability at least $1 - \delta$,

$$R(h_S) \leq \frac{1}{m} \left(\log |\mathcal{H}| + \log \frac{1}{\delta} \right).$$

霍夫丁不等式(Hoeffding's Inequality)

定理 (Hoeffding's Inequality)

Let X_1, \ldots, X_m be i.i.d. random variable in [0, 1], for any $\epsilon > 0$

$$P(\left|\frac{1}{m}\sum_{i=1}^{m}X_i - \frac{1}{m}\sum_{i=1}^{m}E(X_i)\right| \ge \epsilon) \le 2e^{-2m\epsilon^2}.$$

- ▶ 该定理给出了位于区间 [0,1] 的两两随机变量其期望与均值 之间满足的关系,在任意分布 D 下
- ▶ 由泛化误差 R(h) 与经验误差 $\hat{R}_S(h)$ 的定义易知 $E(\hat{R}_S(h)) = R(h)$, 由此得到

$$P_{S \sim \mathcal{D}^m} \left[\left| \hat{R}_S(h) - R(h) \right| \ge \epsilon \right] \le 2e^{-2m\epsilon^2}$$

• 令 $\delta=2e^{-2m\epsilon^2}$, 则 Fix a hypothesis $h: \mathcal{X} \to \{0,1\}$. Then, for any $\delta>0$, the following inequality holds with probability at least $1-\delta$:

$$R(h) \leq \hat{R}_{S}(h) + \sqrt{\frac{\log \frac{2}{\delta}}{2m}}.$$

Guarantees for finite hypothesis sets – inconsistent case

▶ 不一致情形 (inconsistent): $c \notin \mathcal{H}$, 更通常的情况

定理 (Learning bound – finite \mathcal{H} , inconsistent case)

Let $\mathcal H$ be a finite hypothesis set. Then, for any $\delta>0$ with probability at least $1-\delta$, the following inequality holds:

$$\forall h \in \mathcal{H}, \ R(h) \leq \hat{R}_{\mathcal{S}}(h) + \sqrt{\frac{\log |\mathcal{H}| + \log \frac{2}{\delta}}{2m}}.$$

Guarantees for finite hypothesis sets – inconsistent case

▶ Thus, for a finite hypothesis set *H*,

$$R(h) \leq \hat{R}_{S}(h) + O\left(\sqrt{\frac{\log_2|\mathcal{H}|}{m}}\right)$$

- ▶ For a fixed $|\mathcal{H}|$, to attain the same guarantee as in the consistent case, a quadratically larger labeled sample is needed
- This can also be viewed as an instance of the so-called Occam's Razor principle
 - ▶ Plurality should not be posited without necessity, also rephrased as, the simplest explanation is best.

Summary: Learning

- ▶ Machine Learning \approx Looking for a Function
- ► Learning = Representation + Evaluation + Optimization
 - ▶ Representation: hypothesis set
 - Evaluation: loss function
 - Optimization: search approach
- ▶ PAC Learning: 机器学习为什么是可能的?

$$P_{S \sim \mathcal{D}^m}[R(h_S) \leq \epsilon] \geq 1 - \delta$$

- ▶ 近似正确 (Approximately Correct): 泛化误差 R(h) 足够小
- ▶ 可能正确 (Probably Correct): h 在很大概率上近似正确
- ► PAC criterion: the learner produces a high accuracy learner with high probability

$$P_{S \sim \mathcal{D}^m} \left[\left| R(h) - \hat{R}_S(h) \right| \le \epsilon \right] \ge 1 - \delta$$