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Supervised learning

» Input data space X

» Output (label, target) space )

» Unknown function f: X — Y

» we are given a set examples (x;, y;), i = 1...N with
x;€eX,y,€)

» Finite ) = classification

» Continuous ) = regression



Classification (433)

» We are given a set of N observations {(x;, yi)},_; n
> Need to map x € X to a label y€ Y

> Example:

digits recognition;

Y={0,...,9}

prediction from microarray data;
Y = {desease present/absent}
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Learning decision trees

Problem: decide whether to wait for a table at a restaurant, based
on the following attributes (J&1%):

1.

AR A

© o N o

10.

Alternate (HIAYIERE): is there an alternative restaurant
nearby?

Bar: is there a comfortable bar area to wait in?
Fri/Sat: is today Friday or Saturday?
Hungry: are we hungry?

Patrons (JfiZ): number of people in the restaurant (None,
Some, Full)

Price: price range (3, $$, $$%)

Raining: is it raining outside?

Reservation (12Y): have we made a reservation?
Type: kind of restaurant (French, Italian, Thai, Burger)

WaitEstimate: estimated waiting time (0-10, 10-30, 30-60,
>60)



Attribute-based representations

Examples described by attribute values (J81%£) (Boolean, discrete,
continuous)
E.g., situations where | will/won't wait for a table

Example Attributes Target

Alt | Bar | Fri| Hun| Pat | Price| Rain | Res| Type | Est | Wait
X, T| F F T |Some| $$$ F T | French| 0-10 T
Xy T F F T Full $ F F Thai |30-60 F
X3 F T F F |Some| $ F F | Burger| 0-10 T
Xy T| F | T| T |Ful $ F F | Thai [10-30| T
X T|F | T F | Full [ $$% F T |French| >60 F
X6 F| T]|F T |Some| $% T T | ltalian | 0-10 T
X7 F| T]|F F [None| § T F | Burger| 0-10 F
Xg F F F T |Some| $$ T T | Thai | 0-10 T
Xo F T T F Full $ T F | Burger| >60 F
X0 T[T T T Full | $$$ F T | Italian | 10-30 F
X F F F F | None $ F F Thai | 0-10 F
Xio T| T T T Full $ F F | Burger | 30-60 T

Classification (432) of examples is positive (T) or negative (F)



Decision trees

One possible representation for hypotheses
i.e. here is the “true” tree for deciding whether to wait:

Patrons?

| Alternate? | | Hungry? |

No Yes No Yes
[ Reservation? ][ Fri/sat? | | Alternate? |

No Yes No




Decision Tree Learning

Tid  Attrib1 Attrib3  Class
1 |ves Large 125K No

2 |No Medium | 100K No

3 |No Small 70K No

4 |ves Medium | 120K No

5 |No Large 95K Yes

6 [No Medium | 60K No

7 | ves Large 220K No

8 [No Small 85K Yes

9 [No Medium | 75K No

10 [ No Small 90K Yes
Tid Attrib  Attrib2  Attrib3  Class
1 [No Small 55K ?

12 | ves Medium | 80K

13 | ves Large 110K ?

14 [ No Small 95K ?

15 [No Large 67K ?

Learn
Model

Apply
Model

Decision
Tree



Expressiveness (FRiZEE 1)

Decision trees can express any function of the input attributes.
E.g., for Boolean functions, truth table row — path to leaf (ER#{

HERNSITHETFHPH—FKER):

A B AxorB
F F F
F
F
F

» Trivially, there is a consistent decision tree for any training set
with one path to leaf for each example (unless f
nondeterministic in x) but it probably won't generalize to new
examples

» Prefer to find more compact decision trees



Hypothesis spaces ({Ei&ZZ18])

How many distinct decision trees with n Boolean attributes?
= number of Boolean functions

= number of distinct truth tables with 2" rows = 22"

E.g., with 6 Boolean attributes, there are
18,446,744,073,709,551,616 trees



Are all decision trees equal?

» Many trees can represent the same concept
» But, not all trees will have the same size!
» e.g., ( (A and B) or (not A and C))

AL
B C t AF tAf
UAF UAS A/\A A/\
T AANAN

Which tree do we prefer?



Learning simplest decision tree is NP-hard

» Formal justification — statistical learning theory

» Learning the simplest (smallest) decision tree is an
NP-complete problem [Hyafil & Rivest' 76]
» Resort to a greedy heuristic:

» Start from empty decision tree
» Split on next best attribute (feature)
> Recurs



Learning Algorithm for Decision Trees

S: {(Xlayl)a‘ . '7(XN7.yN)}7 X = (Xlu‘ . '7Xd)7 vaye {071}

GrowTree(S)
if (y=0 for all (x,y) € S) return new leaf(0)
else if (y=1 for all (x,y) € S) return new leaf(1)
else
choose best attribute x; //DT algorithms differ on this
choice
So = all (x,y) € Swith x; =0;
S = all (x,y) € Swith x;=1;
return new node(x;, GrowTree(Sp), GrowTree(S;))



Decision Tree Learning

» Aim: find a small tree consistent with the training examples

» |dea: (recursively) choose “most significant” attribute as root
of (sub)tree

function DTL(examples, attributes, defoult) returns a decision tree

if ezamples is empty then return default
else if all ezamples have the same classification then return the classification
clse if attributes is empty then return MoDE(ezamples)
else
best < CHOOSE-ATTRIBUTE(attributes, examples)
tree < a new decision tree with root test hest
for each value v; of best do
examples; — {elements of eramples with best = vi}
subtree — DTL(u‘(uuy[« s, attributes — best, :\IODE(u'ump[v w))
add a branch to tree with label v and subtree subtree
return frece

MODE(examples): selects the most common output value among
a set of examples



Choosing an attribute

> ldea: a good attribute splits the examples into subsets that
are (ideally) “all positive” or “all negative”

000000 000000
000000 000000
None /Some Full French ftalian Thai Burger
o000 00 (o] o 00 o0
o0 o000 ] o oo ([ X ]

Patrons? is a better choice



Using information theory ({§81i8)

» Idea: To implement Choose-Attribute in the DTL
algorithm

» Information Content {52 & (Entropy §):
H(V) = EJ[I(V = v;)]

=1(P(v1),...,P(v,)) = Z—P(Vi) log, P (vi)

i=1

» For a training set containing p positive examples and n
negative examples:

P n P p n n
/ ) - - |0g2 - |0g2
p+n p+n p+n p+n p-+n p+n



Entropy
Entropy H(Y) of a random variable Y

H(Y) = Ex[I(Y = yj)] = ZP Y = yj)logy P(Y = y)
i=1
Conditional Entropy H(Y'| X) of a random variable Y conditioned
on a random variable X

v k
HY | X) ==Y P(X=x)) P(Y=yi| X=x)logy P(Y = yi| X =)
j=1 i=1
More uncertainty, more entropy.
Information theory interpretation: H(Y) is the expected number of
bits needed to encode a randomly drawn value of Y (under most
efficient code)



Information gain ({5 E18#)
» Decrease in entropy (uncertainty) after splitting
IG(X) = H(Y) = H(Y | X)

» A chosen attribute A divides the training set E into subsets

Ei, ..., E, according to their values for A, where A has v
distinct values.
v
remainder(A) = Pit Ny ( pi_ M )
"~ P+ n \pi+ni pi+n;

» Information Gain (IG) or reduction in entropy from the
attribute test:

IG(A) =1 P , N — remainder(A)
p+n p+n

» Choose the attribute with the largest 1G

arg max IG(X;) = argmax H(Y) — H(Y | X))



Information gain ({5 218%4)

For the training set, p=n=26, 1(6/12,6/12) = 1 bit
Consider the attributes Patrons and Type (and others too):

2 2 4
IG(Patrons) =1 — [12/(0,1) —I(l 0) % 6 G } = 0.541 bits
2 11, 2 11 422 4 22
IG(Type) =1 — | = I(=, =)+ —1 Y e Iz,
(Type) [12 S IR TLOIE IR DLV U DLV 4)]

= 0 bits

Patrons has the highest |G of all attributes and so is chosen by the
DTL algorithm as the root



Example contd.

Decision tree learned from the 12 examples:

Substantially simpler than “true” tree — a more complex hypothesis
isn't justified by small amount of data



Performance measurement

How do we know that h =~ f 7

1. Use theorems of computational/statistical learning theory

2. Try h on a new test set (UK EE) of examples

(use same distribution over example space as training set)
Learning curve (23] #{Z%) = % correct on test set as a function
of training

1
0.9
0.8
0.7
0.6
c\‘ﬁ, 0.5

0.4

orrect on test set

0 10 20 30 40 50 60 70 80 90100
Training set size



Decision trees will overfit

0.9 T T T T T T T T T

Accuracy

06 On training data ——
On test data -——--

05 L L L L L 1 1 L 1

0 10 20 30 40 50 60 70 80 90

Size of tree (number of nodes)



Decision trees will overfit

» Standard decision trees have no learning bias

» Training set error is always zero!
If there is no label noise
» Lots of variance
» Must introduce some bias towards simpler trees

» Many strategies for picking simpler trees

» Fixed depth
» Minimum number of samples per leaf

» Random forests: BEHl BB EIH N EIGIZRERER N 4
BEARE, gk N ARER, RIB N ERE N N RERT
=, SRLER




Avoiding overfitting in decision trees

How can we avoid overfitting?
» Stop growing when data split is not statistically significant
» Acquire more training data
> Remove irrelevant attributes

» Grow full tree, then post-prune

How to select “best” tree:
» Measure performance over training data

» Measure performance over separate validation data set

» Add complexity penalty to performance measure



Reduced-Error Pruning

Split training data further into training and validation sets
Grow tree based on training set

Do until further pruning is harmful:

1. Evaluate impact on validation set of pruning each possible
node (plus those below it)

2. Greedily remove the node that most improves validation set
accuracy



Pruning Decision Trees

» Pruning of the decision tree is done by replacing a whole
subtree by a leaf node

> The replacement takes place if a decision rule establishes that
the expected error rate in the subtree is greater than in the
single leaf

» For example,

2 correct
4 incorrect
Training @ Validation /Z/
red blue red blue —_—
1 posttive 0 positive 1 positive 1 positive If we had simply predicted the
majority class (negative), we

Onegative 2negative  3negative 1 negative
make 2 errors instead of 4.

Rruned!




Effect of Reduced-Error Pruning

Accuracy

0.65 M o |
But that’s not the case for the test (validation) data
06 1 On training data —— 4
On test data —---
055 F On test data (during pruning) ----- ]
0.5

0 10 20 30 40 50 60 70 80 90 100

Size of tree (number of nodes)



Effect of Reduced-Error Pruning

0.9

085 - /_/// 1

—————————————————————————————

P N e |
] e e Tizrzaen
3
< 4
06 On training data —— 1
On test data --—
0.55 F On test data (during pruning) ----- i
05 L L L L s L s L 1
(4] 10 20 30 40 50 60 70 80 90 100

Size of tree (number of nodes)

The tree is pruned back to the red line where
it gives more accurate results on the test data



Comments on decision tree based classification

Advantages:

> Inexpensive to construct

v

Extremely fast at classifying unknown records

v

Easy to interpret for small-sized trees

v

Accuracy is comparable to other classification techniques for
many simple data sets



C4.5 algorithm

Example: C4.5 algorithm
» Simple depth-first construction.

» Uses information gain ratio (normalized information gain):
16LY,) = HLY) = H(Y | ),
x(Y) = - ZZP (Y=yi| X=x)logy P(Y = yi | X = x),

j=1 i=1
I6(Y, X)

/Gratio(yv)oz Hx(Y) .

» |ID3 algorithm uses information gain

» You can download the software from:

> http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz
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Vector Space ([l &% |8]) Representation

Web page classification
Each document is a vector, one component for each term (=word).

Doc 1 Doc 2 Doc 3
Word 1 3 0 0
Word 2 0 8 1
Word 3 12 1 10
0 1 3
0 0 0

High-dimensional vector space:
» Terms are axes, 10,000+ dimensions, or even 100,000+

» Docs are vectors in this space



Classes in a Vector Space
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Classes in a Vector Space
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Classes in a Vector Space
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Key ingredients of kNN

v

A distance metric (BEEBE£)
How many nearby neighbors to look at?

v

v

A weighting function (optional)

v

How to relate to the local points?



Euclidean Distance Metric

» Euclidean Distance (BX=(EEES):

D(x,x") / — —\/X x)T(x —x')

» Standardized Euclidean Distance (FrAE{LBRREGRERS): EE4E
ELEiRET RN F] MEEE, — M EEAE, BEHNEN

W, BEE x TH O (R ERREES B 2R
/EIE*%#EN 0, 1

D(x,x") ‘/ \/x x)TE-1(x —x/)

He ¥ A5, 50,0 B o, HARIIH 0.




Other Metric
» p-norm (3E#Y, Minkowski distance):

1/p
Ix —x'||, = (Z X — >¥,-|p>

i

» L; norm (Manhattan distance): >, [x; — X}
> Lo norm (BRINEER): /) i(x — )2
» Lo norm: max;|x; — xj|
> Hamming distance: 33 FHREMRE, AIT=PEEFEE
HIEMHE
» Mahalanobis distance (BEGEER):

\/(X —x)T81(x —x/)

> XA x 5 x WA ESER.
> B/ DT AR, NIDKEEE R ARXIES;
> &I AR, M AR IR .



FE. AZE. MAEEK
» 5% (Variance): FZERIRAEZE (Standard Deviation) B
7. TREENEXRHEEPE N KBS ESAESEY
B, RNEENEHEE.

0 = var(X) = E(X — 1)%)
LN
o= E(X—p)? NZ 2, where,u:NZx,-

» thFZE (Covariance): fREZESHFEME—HEIE. hAZE
EHERIHIET EM%&EM&F AT EMETFRUEH
HERITA, MAZEAE: mEEHMRTRIHERIT
A, WHFE . BAENHEXNEBRTFEZEH KN,
FIAARB SR, g, ESERNBAEXRNTUERHE
TELMXRMELS.

cov(X, ) = E((X — u)(Y = 1)) = E(X- Y) — v

WR X5 YRFEHMIAN, W con(X,Y)=0, EH
E(X-Y)=pv,




AE. WAE. hFTERER (con't)

» 75 2Z (Covariance):

_ cov(X,Y)
K var(X) - var(Y)

n RGHEERE, ne|

—1L,1]. g n=1 ZTELEMEX:
n=-1, EE&HEHRBX.
> HhFZE4ERE (Covariance Matrix):

BHRENTEEFENEE
ZEREXR M.
> Y87 n HEERENLE = (X1, Xy, Xa) T HH i X
HIHAZEE, A u,—E( )
> A EEMERE i, SURREH

B X 5 X HmaE
aij = cov(Xi, X;) = E((Xi — pi) (X — 7))
» con(X;, Xj) = con(X;, X)), 1h75 =52 I TFREY



1-Nearest Neighbor (kNN) classifier
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2-Nearest Neighbor (kNN) classifier
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3-Nearest Neighbor (kNN) classifier
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5-Nearest Neighbor (kNN) classifier
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Nearest-Neighbor Learning Algorithm

» Learning is just storing the representations of the training
examples in D.
» Testing instance x:

» Compute similarity between x and all examples in D.
» Assign x the category of the majority of the k most similar
examples in D.

» Also called

» Case-based learning (EFLHIMZES)
» Memory-based learning
> Lazy learning



Nearest neighbor classifiers

Unknown record

/ + -
‘\j_ T g

+

Requires three inputs:

1. The set of stored
training samples

2. Distance metric to
compute distance
between samples

3. Thevalue of k, i.e., the
number of nearest
neighbors to retrieve

—> X, Ye {‘h‘l—



Nearest neighbor classifiers

Unknown record

j:{_“‘" B o
ST
e

_ Tt

+ 4T

To classify unknown sample:

1. Compute distance to
training records

2. ldentify k nearest
neighbors

3. Use class labels of nearest
neighbors to determine
the class label of unknown
record (e.g., by taking
majority vote)



Case Study: kNN for Web Classification

Dataset

» 20 News Groups (20 classes)

» Download :
(http://people.csail.mit.edu/jrennie/20Newsgroups/)

» 61,118 words, 18,774 documents

> Class labels descriptions

comp.
comp.
comp.
comp.
comp.

graphics

os. ms-windows. misc
sys. ibm. pc. hardware
sys. mac. hardware
windows. x

rec. autos

rec. motorcycles
rec. sport. basebal
rec. sport, hockey

sci.crypt
sci.electronics
sci.med

sci. space

misc.

forsale

talk.politics. misc
talk.politics. guns
talk. politics. mideast

talk. religion. misc
alt.atheism
soc. religion. christian




Experimental Setup

» Training/Test Sets:
» 50%-50% randomly split
» 10 runs
> report average results

» Evaluation Criteria:

Zietestset 1 (prEdiCti — true/abeli)

Accuracy =
Y # of test samples



Results: Binary Classes

Accuracy

088 -
086+
0.84 -
082

08r
076+
076
074+
072

07
0

alt.atheism
Vs,
comp.graphics
comp.windows.x
J Vs,
. vs. rec.motorcycles
. ..__
ee
. S K
L e
;
.t';
*x *
w




Is kNN ideal?

=] F = = £ DA



Comments on kNN

v

Instance-based learning: kNN — a Nonparametric (FtS#1H))
classifier
» A nonparametric method does not rely on any assumption
concerning the structure of the underlying density function.
> Very little “learning” is involved in these methods

v

Sample size

» The more the better
> Need efficient search algorithm for NN

Good news:

v

» Simple and powerful methods
» Flexible and easy to apply to many problems.

Bad news:

v

» High memory requirements
» Very dependent on the scale factor for a specific problem
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Classification

Classification
= learning from labeled data. Dominant problem in Machine

Learning
o © © O
O/
©) © ®®
® ®




Linear Classifiers

Binary classification can be viewed as the task of separating classes
in feature space (${EZ|8)):

wix+b=0

wix+b<0

° Decide y=1if w'x+b>0
R otherwise y = —1

y = h(x) =sign (w'x+ b)




Linear Classifiers

h(x) = sign (w'x + b)

> Need to find w (direction) and b (location) of the boundary

» Want to minimize the expected zero/one loss ($5ii5k) for
classifier h: X — ), which is

L(h(x),y) :{ (1) :: 28 ;i



Linear Classifiers

Ideally we want to find a classifier
h(x) = sign (w'x + b) to minimize the 0/1 loss

rvg!g Zl: L0/1 (h(xi),yi)

Unfortunately, this is a hard problem.
Alternate loss functions:
La(h(x),y) = (y— W x — b)2 = (1 — y(w x + b))
Li(h(x),y) = |y —w % — b| = |1 = y(w x + b)
Liinge(h(x),) = (1 = y(w x4 b)) = max(0,1 — y(w" x + b))



Linear Classifiers

Least squares loss function:

La(h(x),y) = (y—wTx—b)’

The goal:
to learn a classifier h(x) = sign(w' x+ b) to minimize the least
squares loss:



Solving Least Squares Classification

Let

I xi1 - X4 41 b
X: . s y: y W =

I xn1 -+ Xnd YN Wy

Loss = min(y — Xw)? = min(Xw — y)?
=min(Xw—y) (Xw—y)



Solving for w

8(;355 —2Xw-y) X=0
X'Xw—-X"y=0
w* = (XTX>71XTy
Note:
d(Ax +b) C(Dx +e) = ((Ax +b) CD + (Dx + e)TcTA) dx

(
d(Ax +b)T (Ax + b) = (2(Ax + b)TA> dx

R XTX A ie, itk BN, WATRBHSS w
» Xt = (XTX)f1 X T is called the Moore-Penrose
pseudoinverse ({Ai) of X
» Prediction for xq:

o L) e )



Regression

National wiLl Forecast

8

Goal:

— Given a training dataset of pairs
(x,y) where

r‘d\‘
* xisavector ~ \—/./ 1)\
* yisascalar "

6

-

Weighted %ILI

— Learn a function (aka. curve or line) TEEE e
y’ = h(x) that best fits the training e
data

Example Applications:
— Stock price prediction

Forecasting epidemics

Speech synthesis

Generation of images (e.g. Deep
Dream)

Predicting the number of tourists
on Machu Picchu on a given day




Regression

Example Application:

Forecasting Epidemics

* Input features, x:
attributes of the
epidemic

¢ Output, y:
Weighted %ILI,
prevalence of the
disease

* Setting: observe
past prevalence to
predict future
prevalence

Figure from Brooks et al. (2015)

National wiLl Forecast

-
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=
*
°
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2
- 4
g
S \—/r’\
« %
o + +
21 29 37 45 1 9 177
Epidemiological Week
c National wiLl Forecast
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3. Y\
5 ;V
2
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o — ""'\

21720737 45 1 9 17
Epidemiological Week

B National wiLl Forecast
©
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2
*
°
v
£
e
]
=
o~
o
21 29 37 45 1 9 17
Epidemiological Week
D National wiLl Forecast
©
_®
=
s A
- A
4
2
]
=

) J 2 \~

°
2172037 45 1 9 17
Epidemiological Week

CDC Baseline
Observed wiLl
Future wiL|

— Mean Prediction
95% Pointwise Bands
10 Posterior Draws

Fig 2. 20132014 national forecast,
i Idata i i

using the final revisit
(A)47,(B)51,(C)1,and (D) 7.

of wiLl values, using;



Regression

~

Example: Dataset with only

x one feature x and one scalar Q: Wh.at is the fuqction that
output y best fits these points?
o
X
o ©
o

v
x



k-NN Regression

Example: Dataset with only

‘): one feature x and one scalar
outputy
o
o0
® o
o

k=1 Nearest Neighbor
Regression

* Train: store all (x, y) pairs
* Predict: pick the nearest x

in training data and return
itsy

k=2 Nearest Neighbor Distance
Weighted Regression

¢ Train: store all (x, y) pairs

* Predict: pick the nearest
two instances x(™ and x(")
in training data and return
the weighted average of
theiry values



Linear Regression (Z&[4[E])3)

fix) =wx+b st f(x) =~y
» SHFRERML, FE

(W', b*) = arg min > (fx) = yi)?
Pl ioy

m

= arg min (yi — wx; — b)2
(WVb) I:1 1 1

> MR Eqwp) = D0 (vi — wxi — b)? TR _FSH
it



21 mY3

> S 3I3t w b kS

» 5840, BEARX (closed-form) fE:

>oimy Yilxi — X)
o 2
27;1 X/? - %(27;1 Xj)

m

N T

i=1




%5t (multi-variate) Zk14%[E 13

fix)=w'x+b st flx)~y;
Let

1 x11 -+ X4 341 b

1 xwv - Xng YN Wy

w* = argmin(Xw —y) " (Xw — y)
w

OEw .

wh=(X"X)"'X"y, XT'X i##



General linear classification

Basis (nonlinear) functions (B %])

fix,w) = b+ w1¢1(x) + waga(X) + -+ + Winopm(x)

DA



Model complexity and overfitting

E.g., curve fitting (BIZILE):

f(x)




Model complexity and overfitting

E.g., curve fitting (FZIE):

f(x)




Model complexity and overfitting

E.g., curve fitting (HZIE):

f(x)
4

- X



Model complexity and overfitting

E.g., curve fitting (HZIE):

f(x)




Model complexity and overfitting

E.g., curve fitting (FHZIE):

f(x)




Model complexity and overfitting
E.g., curve fitting (HMZIE):

f(x)

Occam'’s razor (B8R435l JJJEN]): maximize a combination of

consistency and simplicity fL5EEFESHIE—HIIRE LRI



Regularization (33 L)

Intuition: should penalize not the parameters, but the number of
bits required to encode the parameters

w" = argmin Loss + \ - penalty(w)
w
L2 regularization w* = argmin Loss + A||w||?
w
L1 regularization w* = argmin Loss + \|w|
w
Solving L2-regularized LS

miny (Xw — y)2 + )\HWH2



Comments on least squares classification

» Not the best thing to do for classification

» But

» Easy to train, closed form solution ([f1z\fi%)
» Ready to connect with many classical learning principles



Cross-validation (3z S I&3iF)

» The basic idea: if a model overfits (is too sensitive to data) it
will be unstable, i.e., removal part of the data will change the
fit significantly

» We can hold out (BXH) part of the data, fit the model to the
rest, and then test on the holdout set.



Random Subsampling

= Random Subsampling performs K data splits of the entire dataset

o Each data split randomly selects a (fixed) number of examples without
replacement

¢ For each data split we retrain the classifier from scratch with the training
examples and then estimate E; with the test examples

Total number of examples

s N | I | I
e N |
woemens (| [[ [ I I

= The true error estimate is obtained as the average of the separate
estimates E;
o This estimate is significantly better than the holdout estimate

1 K
E- 2E

Test example




K-Fold Cross-validation

= Create a K-fold partition of the the dataset

¢ For each of K experiments, use K-1 folds for training and a different fold for
testing

= This procedure is illustrated in the following figure for K=4

Total number of examples

Experiment 1 |

Experiment 2 I | |

Experiment 3 I | | |

Test examples
Experiment 4 | | |‘/

= K-Fold Cross validation is similar to Random Subsampling

» The advantage of K-Fold Cross validation is that all the examples in the dataset
are eventually used for both training and testing

= As before, the true error is estimated as the average error rate on test
examples K
1
= _ZEu
K

i=1




Cross-validation

» The improved holdout method: k-fold cross-validation

» Partition data into k roughly equal parts;
» Train on all but jth part, test on j-th part

LL1 1] 111
| TN




Cross-validation

» The improved holdout method: k-fold cross-validation

» Partition data into k roughly equal parts;
» Train on all but jth part, test on j-th part

) X N



Cross-validation

» The improved holdout method: k-fold cross-validation

» Partition data into k roughly equal parts;
» Train on all but jth part, test on j-th part



Cross-validation

» The improved holdout method: k-fold cross-validation

» Partition data into k roughly equal parts;
» Train on all but jth part, test on j-th part



Machine learning paradigm

Choose a model class
- NB, kNN, loss/regularization combination

v

Model selection
- Cross validation

v

v

Training

v

Testing
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Logistic regression

> RXBEMRA "EEOET, ARBRA XELRDT”

» Name is somewhat misleading. Really a technique for
classification, not regression.

» “Regression” comes from fact that we fit a linear model to the
feature space

» Involves a more probabilistic view of classification



Different ways of expressing probability

» Consider a two-outcome probability space, where:

> p(O1) =p
» p(O2) =1-p=gq

» Can express probability of O; as:

notation range equivalents

standard probability p 0 0.5 1
odds p/q 0 1 + o0
log odds (logit) | log(p/q) -0 0 +




Log odds (JLZ)

» Numeric treatment of outcomes O; and O, is equivalent
» If neither outcome is favored over the other, then log odds = 0
» If one outcome is favored with log odds = x, then other
outcome is disfavored with log odds = —x

» Especially useful in domains where relative probabilities can be
miniscule (ff/)\)
» Example: multiple sequence alignment in computational
biology



From probability to log odds (and back again)

z=log (p) logit function
I-p
p
z
€ =1 ’
e 1 - .
p logistic function




Standard logistic function

10

==t ogistic function, o(x) = o

f(x)

> X, the x value of the sigmoid’'s midpoint;

> L, the curve's maximum value;

> k, the logistic growth rate or steepness of the curve.
Standard logistic function where L=1, k=1, xp =0



Logistic regression

v

Model consists of a vector § = (w, b) in (d+ 1)-dimensional
feature space

» For a point x in feature space, project it onto 6 to convert it
into a real number z in the range in the range —oo to +00

z=W'x+b=wx;+ -+ wgxg+ b

» Map z to the range 0 to 1 using the logistic function
1
» Overall, logistic regression maps a point x in

(d + 1)-dimensional feature space to a value in the range 0 to
1



Logistic regression

1

— T . =
Y= U<W L b) 1+ e—(wT~x+b)

ENEiRA: y
n =y
B y AR x (EHEFITTRENE, W1 -y 2EKRHIFTEE

t, FREMILE [ B LR (odds), RRT x {EHIES

RIPERT AT BE M, XFJLERERXEMGEE] “XHHJLE" (log odds, 7R
FR logit), In I 4

| —w' -x+b

Logistic regression SEfx 27 A& M I IRE K ML R EEIE
ESLARCRIREULE,



Learning in logistic regression

» How are parameters of the model (w and b) learned?
» This is an instance of supervised learning
» We have labeled training examples

» We want model parameters such that
» For training examples x, the prediction of the model y is as
close as possible to the true y
» Or equivalently so that the distance between ¥ and y is small



Learning in logistic regression

%y BEREME P(y=1[x), T

Py=1
In ly |X):WTx+b
Pl=0%)
ewa—&—b
Py=t10 = e
1
PY=019 = e

Bid “FRAPLIRE" (maximum likelihood method) 3Ef{&it w 0 b
BEHEE (6, y)m,, 'AKW "IHESL" (log-likelihood)

L(Wv b) = Zln P(YI | Xi; W, b)
i=1

SEIMHARTHEL RSB AT



Cross-entropy loss
€ ye{o1}, W
InP(y | x; w,b) = ylIn O’(WTX +b)+ (1—y)In(l— g(wa + b))
MEZKWK L(w,b), ENTFR/IME E(w, b)

E(w,b) == lyilno(w x;+b)+ (1—y;) In(1— o(w'x;+ b))]
i=1

» The cross-entropy of the distribution g relative to a
distribution p over a given set is defined as:

H(p,q) == _ p(x)Ing(x)
xeX
» Let y = o(w'x+ b), then

m

H(y,7) ==Y [ylny+ (1 —y)In(1 - )
i=1

== Iyho(w'x+b)+(1—y) In(l —o(w'x+b))]
=1



Gradient descent

» Goal:
» find parameters 6 = (w, b)
» such that
A 1
0 = argming— Lce(yi, xi; 0)
m
where

Lee(yixi; 0) = —[yi Ino(w x+b)+(1-y) In(1—o(w ' x;+b))]

» For logistic regression, the loss is convex



lllustrating gradient descent

» The gradient indicates the direction of greatest increase of
the cost/loss function

» Gradient descent finds parameters (w, b) that decrease the
loss by taking a step in the opposite direction of the gradient

Cost(w,b)

&5
N XX
N SR
R
NRRRIRRIRY
N

IQFTRR]  Visualization of the gradient vector in two dimensions w and b.



Stochastic gradient descent

function STOCHASTIC GRADIENT DESCENT(L(), f(). x, y) returns 6
# where: L is the loss function
# f is a function parameterized by 6
# X is the set of training inputs x(1), x(2) ... X
# y is the set of training outputs (labels) y(!), y(2), .. y(")

60
repeat til done # see caption
For each training tuple (x(!), y()) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?
Compute $) = f(x();0)  # What is our estimated output §?
Compute the loss L((7),y(®)) # How far off is $()) from the true output y()?

2. g VoL(f(x;0),y(1) # How should we move 6 to maximize loss?
3.0-0 —ng # Go the other way instead
return 6

The stochastic gradient descent algorithm. Step 1 (computing the loss) is used
to report how well we are doing on the current tuple. The algorithm can terminate when it
converges (or when the gradient < &), or when progress halts (for example when the loss
starts going up on a held-out set).



The gradient for logistic regression

Lep(w,b) = —[ylogo(w-x+b)+(1—y)log(l —oc(w-x+b))]

aLCE(W,b)

= lo(w-x+b)—ylx;
awj [ ( + ) y] J
Feature value for
Difference dimension j
between the
model prediction
and the correct
answer y



Logistic regression

» Advantages:

>

vV Vv vV vV vV VvYY

Makes no assumptions about distributions of classes in feature
space

Easily extended to multiple classes (multinomial regression)
Natural probabilistic view of class predictions

Quick to train

Very fast at classifying unknown records

Good accuracy for many simple data sets

Resistant to overfitting

Can interpret model coefficients as indicators of feature
importance

» Disadvantages:

>

Linear decision boundary
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