Supervised Learning: Support Vector Machines

吉建民

USTC jianmin@ustc.edu.cn

2024年5月7日

Used Materials

Disclaimer: 本课件采用了 S. Russell and P. Norvig's Artificial Intelligence –A modern approach slides, 徐林莉老师课件和其他网络课程课件,也采用了 GitHub 中开源代码,以及部分网络博客内容

Table of Contents

Supervised Learning

Learning Decision Trees
K Nearest Neighbor Classifier
Linear Predictions
Logistic Regression
Support Vector Machines

Supervised learning

- Supervised learning
 - An agent or machine is given N sensory inputs $D = \{x_1, x_2, \dots, x_N\}$, as well as the desired outputs y_1, y_2, \dots, y_N , its goal is to learn to produce the correct output given a new input.
 - Given D what can we say about x_{N+1} ?
- ▶ Classification: $y_1, y_2, ..., y_N$ are discrete class labels, learn a labeling function $f(\mathbf{x}) = y$
 - Naïve bayes
 - Decision tree
 - K nearest neighbor
 - Least squares classification
 - Logistic regression

Classification

 ${\sf Classification} = {\sf learning} \ {\sf from} \ {\sf labeled} \ {\sf data}. \ {\sf Dominant} \ {\sf problem} \ {\sf in} \\ {\sf Machine} \ {\sf Learning}$

Linear Classification

Binary classification can be viewed as the task of separating classes in feature space (特征空间):

Decide $\hat{y}=1$ if $\mathbf{w}^{\mathsf{T}}\mathbf{x}+b>\mathbf{0}$, otherwise $\hat{y}=-1$

$$\hat{y} = h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b)$$

Linear Classification

Which of the linear separators is optimal?

Classification Margin (间距)

- Geometry of linear classification
- ► Discriminant function $\hat{y}(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x} + b$
- ▶ 范数 (norm): ||邓| 表示向量存向量空间中的长度

$$\|\vec{x}\|_1 := \sum_{i=1}^n |x_i|$$

$$\|\vec{x}\|_2 := \sqrt{\sum_{i=1}^n x_i^2}$$

$$\|\vec{x}\|_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

- $||\vec{x}||_{\infty} := \max_i |x_i|$
- Important: the distance does not change if we scale w → a · w. b → a · b

点到平面距离公示推导

空间中任意一点 \mathbf{x}_0 到超平面 $S: \mathbf{w}^{\mathsf{T}}\mathbf{x} + b = 0$ 的距离 d 为:

$$d = \frac{|\mathbf{w}^{\top} \mathbf{x}_0 + b|}{\|\mathbf{w}\|}$$

注: x_0 , w, x 为 N 维向量

- ▶ 设点 \mathbf{x}_0 在平面 S 上的投影为 \mathbf{x}_1 , 则 $\mathbf{w}^{\mathsf{T}}\mathbf{x}_1 + b = 0$
- ▶ 由于向量 $\overrightarrow{\mathbf{x}_0\mathbf{x}_1}$ 与平面 S 的法向量 \mathbf{w} 平行,所以

$$|\mathbf{w} \cdot \overrightarrow{\mathbf{x}_0} \overrightarrow{\mathbf{x}_1}| = \|\mathbf{w}\| \|\overrightarrow{\mathbf{x}_0} \overrightarrow{\mathbf{x}_1}\| = \|\mathbf{w}\| d$$

向量点积公式: $\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$, θ 为 \mathbf{a} 和 \mathbf{b} 的夹角

■ 同时

$$\mathbf{w} \cdot \overrightarrow{\mathbf{x}_0} \overrightarrow{\mathbf{x}_1} = w^1 (x_0^1 - x_1^1) + w^2 (x_0^2 - x_1^2) + \dots + w^N (x_0^N - x_1^N)$$

$$= w^1 x_0^1 + w^2 x_0^2 + \dots + w^N x_0^N - (w^1 x_1^1 + w^2 x_1^2 + \dots + w^N x_1^N)$$

$$= w^1 x_0^1 + w^2 x_0^2 + \dots + w^N x_0^N - (-b)$$

▶ 所以

$$\|\mathbf{w}\|d = |\mathbf{w}^{\top}\mathbf{x}_0 + b|$$

Classification Margin (间距)

- ▶ Distance from example \mathbf{x}_i to the separator is $r = \frac{|\mathbf{w}^\top \mathbf{x}_i + b|}{\|\mathbf{w}\|}$
- ▶ Examples closest to the hyperplane (超平面) are support vectors (支持向量).
- ► Margin *m* of the separator is the distance between support vectors

Maximum Margin Classification (最大间距分类)

- Maximizing the margin is good according to intuition and PAC theory.
- Implies that only support vectors matter; other training examples are ignorable.

Maximum Margin Classification (最大间距分类)

- Maximizing the margin is good according to intuition and PAC theory.
- ▶ Implies that only support vectors matter; other training examples are ignorable.

Maximum Margin Classification Mathematically

▶ Let training set $\{(\mathbf{x}_i, y_i)\}_{i=1..n'}$, $\mathbf{x}_i \in \mathbf{R}^d$, $y_i \in \{-1, 1\}$ be separated by a hyperplane with margin m. Then for each training example (\mathbf{x}_i, y_i) :

$$\mathbf{w}^{\top} \mathbf{x}_i + b \le -c \quad \text{if } y_i = -1 \\ \mathbf{w}^{\top} \mathbf{x}_i + b \ge c \quad \text{if } y_i = 1 \quad \Leftrightarrow y_i \left(\mathbf{w}^{\top} \mathbf{x}_i + b \right) \ge c$$

- For every support vector \mathbf{x}_s the above inequality is an equality. $y_s(\mathbf{w}^{\top}\mathbf{x}_s + b) = c$
- In the equality, we obtain that distance between each x₅ and the hyperplane is

$$r = \frac{|\mathbf{w}^T \mathbf{x}_s + b|}{\|\mathbf{w}\|} = \frac{\mathbf{y}_s(\mathbf{w}^T \mathbf{x}_s + b)}{\|\mathbf{w}\|} = \frac{c}{\|\mathbf{w}\|}$$

Maximum Margin Classification Mathematically

- ► Then the margin can be expressed through w and b: $m = 2r = \frac{2c}{\|\mathbf{w}\|}$
- ► Here is our Maximum Margin Classification problem:

$$\max_{\mathbf{w},b} \frac{2c}{\|\mathbf{w}\|} \text{ subject to } y_i \left(\mathbf{w}^\top \mathbf{x}_i + b \right) \ge c, \forall i$$

$$\max_{\mathbf{w},b} \frac{c}{\|\mathbf{w}\|} \text{ subject to } y_i \left(\mathbf{w}^\top \mathbf{x}_i + b \right) \ge c, \forall i$$

- Note that the magnitude (大小) of c merely scales w and b, and does not change the classification boundary at all!
- So we have a cleaner problem:

$$\max_{\mathbf{w},b} \frac{1}{\|\mathbf{w}\|} \quad \text{subject to} \quad y_i \left(\mathbf{w}^\top \mathbf{x}_i + b \right) \ge 1, \forall i$$

▶ This leads to the famous Support Vector Machines 支持向量 机—believed by many to be the best "off-the-shelf" supervised learning algorithm

Support Vector Machine

▶ A convex quadratic programming (凸二次 规划) problem with linear constraints:

$$\max_{\mathbf{w},b} \frac{1}{\|\mathbf{w}\|} \quad \text{subject to} \quad y_i \left(\mathbf{w}^{\top} \mathbf{x}_i + b\right) \geq 1$$

The attained margin is now given by $\frac{1}{\|\mathbf{w}\|}$ Only a few of the classification constraints are relevant \rightarrow support vectors

- ▶ Constrained optimization (约束优化)
 - We can directly solve this using commercial quadratic programming (QP) code
 - ▶ But we want to take a more careful investigation of Lagrange duality (拉格朗日对偶), and the solution of the above in its dual form.
 - ▶ deeper insight: support vectors, kernels (核)...

Quadratic Programming (二次规划)

Minimize (with respect to x)

$$g(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} Q \mathbf{x} + \mathbf{c}^{\top} \mathbf{x}$$

Subject to one or more constraints of the form:

$$A \mathbf{x} \leq \mathbf{b}$$
 (inequality constraint)
 $E \mathbf{x} = \mathbf{d}$ (equality constraint)

- ▶ If $Q \ge 0$, then g(x) is a convex function (凸函数): In this case the quadratic program has a global minimizer
- Quadratic program of support vector machine:

$$\min_{\mathbf{w},b} \mathbf{w}^{\top} \mathbf{w}$$
 subject to $y_i \left(\mathbf{w}^{\top} \mathbf{x}_i + b \right) \geq 1, \forall i$

拉格朗日乘子法

▶ 拉格朗日乘子法: 对于一个等式约束的优化问题

$$\min f(x)$$

s.t.
$$h(x) = 0$$

等价于 $\min f(x) + \lambda h(x)$, 其中 λ 是一个自由变量, 可以取任何值。

▶ 对于不等式的约束

$$\min f(x)$$

s.t.
$$g(x) \le 0$$

等价于

$$\min_{x} \max_{\lambda} f(x) + \lambda g(x)$$

s.t.
$$\lambda \geq 0$$

KKT 条件

对于不等式条件约束的优化,我们没有办法消除它的约束。但是我们能够推导出它的最优解一定满足的几个性质。

$$\min_{x} \max_{\lambda} f(x) + \lambda g(x) \qquad \qquad \text{s.t. } \lambda \ge 0$$

最优解 x* 满足以下条件 (KKT 条件):

- $g(x^*) \le 0$
- $\lambda \geq 0$
- $\lambda g(x^*) = 0$
- ▶ 满足 KKT 条件的不一定是最优解,但最优解一定满足 KKT 条件

对偶问题

▶ 对于一个不等式约束的原问题,定义对偶问题为:

$$\max_{\lambda} \min_{x} f(x) + \lambda g(x) \qquad \text{s.t. } \lambda \ge 0$$

将 min 和 max 对调

- ▶ 对偶的好处:通常先确定 × 的函数最小值,比原问题先求 λ 的最大值更容易。但原问题跟对偶问题并不是等价的
- 所有对偶问题都满足弱对偶性(原始问题始终大于等于对偶问题)

$$\max_{\lambda} \min_{x} f(x,\lambda) = \min_{x} f(x,\lambda^*) \leq \max_{\lambda} f(x^*,\lambda) = \min_{x} \max_{\lambda} f(x,\lambda)$$

▶ 如果具有强对偶性,则彼此等价:

$$\max_{\lambda} \min_{x} f(x, \lambda) = \min_{x} \max_{\lambda} f(x, \lambda)$$

▶ 几乎所有的凸优化问题(f(x) 是一个凸函数)都满足强对偶性,在 SVM 中,它的损失函数是凸函数,它是一个强对偶问题

拉格朗日乘子法、KKT 条件、对偶问题

Solving Maximum Margin Classifier

Our optimization problem:

$$\min_{\mathbf{w},b} \mathbf{w}^{\top} \mathbf{w}$$
 subject to $1 - y_i \left(\mathbf{w}^{\top} \mathbf{x}_i + b \right) \leq 0, \forall i$

▶ The Lagrangian:

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} - \sum_{i=1}^{n} \alpha_{i} \left[y_{i} \left(\mathbf{w}^{\top} \mathbf{x}_{i} + b \right) - 1 \right]$$
$$= \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} + \sum_{i=1}^{n} \alpha_{i} \left[1 - y_{i} \left(\mathbf{w}^{\top} \mathbf{x}_{i} + b \right) \right]$$

Consider each constraint:

$$\max_{\alpha_i \ge 0} \alpha_i \left[1 - y_i \left(\mathbf{w}^\top \mathbf{x}_i + b \right) \right] = 0 \quad \text{if } \mathbf{w}, \ b \text{ satisfies primal constraints}$$
$$= \infty \quad \text{otherwise}$$

Solving Maximum Margin Classifier

Our optimization problem:

$$\min_{\mathbf{w},b} \mathbf{w}^{\top} \mathbf{w}$$
 subject to $1 - y_i \left(\mathbf{w}^{\top} \mathbf{x}_i + b \right) \le 0, \forall i$ (1)

▶ The Lagrangian:

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} - \sum_{i=1}^{n} \alpha_{i} \left[y_{i} \left(\mathbf{w}^{\top} \mathbf{x}_{i} + b \right) - 1 \right]$$

Lemma:

$$\begin{aligned} \max_{\alpha \geq 0} L(\mathbf{w}, b, \alpha) &= \frac{1}{2} \mathbf{w}^\top \mathbf{w} \quad \text{if } \mathbf{w}, \ b \text{ satisfies primal constraints} \\ &= \infty \qquad \qquad \text{otherwise} \end{aligned}$$

- ▶ (1) can be reformulated as $\min_{\mathbf{w},b} \max_{\alpha>0} L(\mathbf{w},b,\alpha)$
- ▶ The dual problem (对偶问题): $\max_{\alpha>0} \min_{\mathbf{w},b} L(\mathbf{w},b,\alpha)$

The Dual Problem (对偶问题)

$$\max_{\alpha \geq 0} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha)$$

We minimize L with respect to w and b first:

$$\frac{\partial L}{\partial \mathbf{w}} L(\mathbf{w}, b, \alpha) = \mathbf{w}^{\top} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i^{\top} = 0$$
 (2)

$$\frac{\partial L}{\partial \mathbf{b}} L(\mathbf{w}, b, \alpha) = -\sum_{i=1}^{n} \alpha_i y_i = 0$$
 (3)

Note:
$$d(\mathbf{A}\mathbf{x} + \mathbf{b})^T(\mathbf{A}\mathbf{x} + \mathbf{b}) = (2(\mathbf{A}\mathbf{x} + \mathbf{b})^T\mathbf{A}) d\mathbf{x}$$

 $d(\mathbf{x}^T\mathbf{a}) = d(\mathbf{a}^T\mathbf{x}) = \mathbf{a}^Td\mathbf{x}$
Note that the bias term b dropped out but had produced a

"global" constraint on α

The Dual Problem (对偶问题)

$$\max_{\alpha \geq 0} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha)$$

We minimize L with respect to \mathbf{w} and b first:

$$\frac{\partial L}{\partial \mathbf{w}} L(\mathbf{w}, b, \alpha) = \mathbf{w}^{\top} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i^{\top} = 0$$
 (2)

$$\frac{\partial L}{\partial \mathbf{b}} L(\mathbf{w}, b, \alpha) = -\sum_{i=1}^{n} \alpha_i y_i = 0$$
 (3)

Note that (2) implies

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i \tag{4}$$

Plug (4) back to L, and using (3), we have

$$L(\mathbf{w}, b, \alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,i=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j} \right)$$

The Dual Problem (对偶问题)

Now we have the following dual optimization problem:

$$\max_{\alpha} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \left(\mathbf{x}_i^{\top} \mathbf{x}_j\right) \ \text{ subject to } \ \alpha_i \geq 0, \forall i, \sum_{i=1}^n \alpha_i y_i = 0$$

This is a quadratic programming problem again

- A global maximum can always be found

But what's the big deal?

- 1. w can be recovered by $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$
- 2. b can be recovered by $b = y_i \mathbf{w}^{\top} \mathbf{x}_i$ for any i that $\alpha_i \neq 0$
- 3. The "kernel"— 核 $\mathbf{x}_i^{\top} \mathbf{x}_i$

Support Vectors

If a point \mathbf{x}_i satisfies $y_i \left(\mathbf{w}^{\top} \mathbf{x}_i + b \right) > 1$

Due to the fact that

$$\max_{\alpha_i \ge 0} \alpha_i \left[1 - y_i \left(\mathbf{w}^\top \mathbf{x}_i + b \right) \right] = 0 \qquad y_i \left(\mathbf{w}^\top \mathbf{x}_i + b \right) \ge 1$$
$$= \infty \qquad \text{otherwise}$$

We have $\alpha^* = 0$; \mathbf{x}_i not a support vector \mathbf{w} is decided by the points with non-zero α 's

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

Support Vectors

only a few α_i 's can be nonzero!!

Call the training data points whose α_i 's are nonzero the support vectors (SV)

20

Support Vector Machines

Once we have the Lagrange multipliers α_i , we can reconstruct the parameter vector \mathbf{w} as a weighted combination of the training examples:

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = \sum_{i \in SV} \alpha_i y_i \mathbf{x}_i$$

For testing with a new data x'

- ► Compute $\mathbf{w}^{\top}\mathbf{x}' + b = \sum_{i \in SV} \alpha_i y_i (\mathbf{x}_i^{\top}\mathbf{x}') + b$
- classify x' as class 1 if the sum is positive, and class 2 otherwise

Note: w need not be formed explicitly

Interpretation of support vector machines

- ► The optimal w is a linear combination of a small number of data points. This "sparse 稀疏" representation can be viewed as data compression (数据压缩) as in the construction of kNN classifier
- ▶ To compute the weights α_i , and to use support vector machines we need to specify only the inner products 内积 (or kernel) between the examples $\mathbf{x}_i^{\top}\mathbf{x}_i$
- ▶ We make decisions by comparing each new example \mathbf{x}' with only the support vectors:

$$y^* = \operatorname{sign}\left(\sum_{i \in SV} \alpha_i y_i \left(\mathbf{x}_i^{\top} \mathbf{x}'\right) + b\right)$$

Soft Margin Classification

- What if the training set is not linearly separable?
- ▶ Slack variables (松弛变量) ξ_i can be added to allow misclassification of difficult or noisy examples, resulting margin called soft.
 - ▶ 分类正确的点 $y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) \ge 1$,左侧的值越大,则点 \mathbf{x}_i 离 超平面 $\mathbf{w}^{\top}\mathbf{x} + b = 0$ 越远;分类错误的点 $y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) < 1$, 越小偏离越远
 - ▶ 用 ξ_i 来衡量这种偏离度,使得 $y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) \geq 1 \xi_i$,同时要求 ξ_i 尽可能小
 - ▶ 对于正确的点,本来就大于 1, ξ_i 自然为 0; 而错误的点则需要 $1 \xi_i$ 来纠正偏离, ξ_i 就衡量了点犯错误的大小程度

Soft Margin Classification Mathematically

▶ "Hard" margin QP:

$$\min_{W,b} \mathbf{w}^{\top} \mathbf{w} \quad \text{subject to} \quad \forall i, \ y_i \left(\mathbf{w}^{\top} \mathbf{x}_i + b \right) \geq 1$$

"Soft" margin QP:

$$\min_{\mathbf{w},b} \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} + C \sum_{i} \xi_{i} \text{ subject to } \forall i, \ y_{i} \left(\mathbf{w}^{\top} \mathbf{x}_{i} + b \right) \geq 1 - \xi_{i}, \ \xi_{i} \geq 0$$

- ▶ Note that $\xi_i = 0$ if there is no error for \mathbf{x}_i
- ξ_i is an upper bound of the number of errors
- ▶ Parameter *C* can be viewed as a way to control "softness": it "trades off" the relative importance of maximizing the margin and fitting the training data (minimizing the error).
 - Larger $C \rightarrow$ more reluctant to make mistakes
 - Larger C 使得结果越接近 Hard Margin SVM

SVMs with slack variables

- Support vectors: points with $\alpha > 0$
- ▶ If $0 < \alpha < C$: SVs on the margin, $\xi = 0$
- ▶ If $0<\alpha=\mathit{C}$: SVs over the margin, either misclassified $(\xi>1)$ or not $(0<\xi\leq1)$

The Optimization Problem

▶ The dual of this new constrained optimization problem is

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j} \right)$$
subject to $\forall i, \ 0 \leq \alpha_{i} \leq C, \ \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$

- ▶ This is very similar to the optimization problem in the linear separable case, except that there is an upper bound C on α_i now
- Once again, a QP solver can be used to find α_i

Loss in SVM

$$\min_{\mathbf{w},b} \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} + C \sum_{i} \xi_{i} \text{ subject to } \forall i, \ y_{i} \left(\mathbf{w}^{\top} \mathbf{x}_{i} + b \right) \geq 1 - \xi_{i}, \ \xi_{i} \geq 0$$

Loss is measured as

$$\xi_i = \max\left(0, 1 - y_i\left(\mathbf{w}^{\top}\mathbf{x}_i + b\right)\right) = \left[1 - y_i\left(\mathbf{w}^{\top}\mathbf{x}_i + b\right)\right]_+$$

This loss is known as hinge loss

$$\min_{\mathbf{w},b} \frac{1}{2C} \mathbf{w}^{\top} \mathbf{w} + \sum_{i} hingeloss_{i}$$

Linear SVMs: Overview

- ► The classifier is a separating hyperplane.
- Most "important" training points are support vectors; they define the hyperplane.
- Quadratic optimization algorithms can identify which training points \mathbf{x}_i are support vectors with non-zero Lagrangian multipliers α_i .
- ▶ Both in the dual formulation of the problem and in the solution training points appear only inside inner products:

Find $\alpha_1...\alpha_N$ such that $\mathbf{Q}(\boldsymbol{\alpha}) = \Sigma \alpha_i - \frac{1}{2} \Sigma \Sigma \alpha_i \alpha_j y_i y_i \mathbf{x}_i^T \mathbf{x}_j$ is maximized and (1) $\Sigma \alpha_i y_i = 0$

(2) $0 \le \alpha_i \le C$ for all α_i

$$f(\mathbf{x}) = \Sigma \alpha_i \mathbf{y}_i \mathbf{x}_i^\mathsf{T} \mathbf{x} + b$$

Non-linear SVMs

▶ Datasets that are linearly separable with some noise work out great:

But what are we going to do if the dataset is just too hard?

▶ How about · · · mapping data to a higher-dimensional space:

Non-linear SVMs: Feature spaces

General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

The "Kernel Trick"

Recall the SVM optimization problem

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j} \right)$$
subject to $\forall i, \ 0 \leq \alpha_{i} \leq C, \ \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$

- The data points only appear as inner product
 - ► As long as we can calculate the inner product in the feature space, we do not need the mapping explicitly
 - Many common geometric operations (angles, distances) can be expressed by inner products
- ▶ Define the kernel function K by $K(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i)^\top \varphi(\mathbf{x}_j)$

An Example for feature mapping and kernels

- Consider an input $\mathbf{x} = [x_1, x_2]^{\top}$
- Suppose $\phi(\cdot)$ is given as follows

$$\phi\left(\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]\right) = \left[1, \ \sqrt{2}x_1, \ \sqrt{2}x_2, \ x_1^2, \ x_2^2, \ \sqrt{2}x_1x_2\right]^\top$$

▶ An inner product in the feature space is

$$\left\langle \phi\left(\left[\begin{array}{c} \mathsf{x}_1\\ \mathsf{x}_2 \end{array}\right]\right), \phi\left(\left[\begin{array}{c} \mathsf{x}_1'\\ \mathsf{x}_2' \end{array}\right]\right) \right\rangle = \phi\left(\left[\begin{array}{c} \mathsf{x}_1\\ \mathsf{x}_2 \end{array}\right]\right)^\top \phi\left(\left[\begin{array}{c} \mathsf{x}_1'\\ \mathsf{x}_2' \end{array}\right]\right)$$

▶ So, if we define the kernel function as follows, there is no need to carry out $\phi(\cdot)$ explicitly

$$K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^{\top} \mathbf{x}')^2$$

More Examples of Kernel Functions

- $\blacktriangleright \text{ Linear: } K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^\top \mathbf{x}_j$
 - ▶ Mapping $\Phi : \mathbf{x} \to \varphi(\mathbf{x})$, where $\varphi(\mathbf{x})$ is \mathbf{x} itself
- ▶ Polynomial (多项式) of power $p: K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^{\top} \mathbf{x}_j)^p$
- ▶ Gaussian (radial-basis function 径向基函数):

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{\sigma^2}}$$

- ▶ Mapping Φ : $\mathbf{x} \to \varphi(\mathbf{x})$, where $\varphi(\mathbf{x})$ is infinite-dimensional
- Higher-dimensional space still has intrinsic dimensionality d (the mapping is not onto), but linear separators in it correspond to non-linear separators in original space

Kernel matrix

- ▶ Suppose for now that K is indeed a valid kernel corresponding to some feature mapping ϕ , then for x_1, \ldots, x_n , we can compute an $n \times n$ matrix $\{K_{i,i}\}$ where $K_{i,i} = \varphi(\mathbf{x}_i)^\top \varphi(\mathbf{x}_i)$
- This is called a kernel matrix!
- Now, if a kernel function is indeed a valid kernel, and its elements are dot-product in the transformed feature space, it must satisfy:
 - ▶ Symmetry $K = K^{\top}$
 - ▶ Positive-semidefinite (半正定) $\mathbf{z}^{\top} K \mathbf{z} \geq 0$, $\forall \mathbf{z} \in R^n$

Matrix formulation

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$$

$$= \max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K_{i,j}$$

$$= \max_{\alpha} \alpha^{\top} \mathbf{e} - \frac{1}{2} \alpha^{\top} \left(\mathbf{y} \mathbf{y}^{\top} \circ K \right) \alpha$$

subject to $\forall i, \ 0 \le \alpha_i \le C, \ \sum_{i=1}^n \alpha_i y_i = 0$

Nonlinear SVMs - RBF Kernel

Summary: Support Vector Machines

- ightharpoonup Linearly separable case ightarrow Hard margin SVM
 - Primal quadratic programming
 - Dual quadratic programming
- Not linearly separable? → Soft margin SVM
- ► Non-linear SVMs Kernel trick

Summary: Support Vector Machines

- ▶ SVM training: build a kernel matrix K using training data
 - ▶ Linear: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^{\mathbf{T}} \mathbf{x}_j$
 - ▶ Gaussian (radial-basis function 径向基函数):

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{\sigma^2}}$$

Solve the following quadratic program :

$$\max_{\alpha} \alpha^{\top} \mathbf{e} - \frac{1}{2} \alpha^{\top} \left(\mathbf{y} \mathbf{y}^{\top} \circ \mathbf{K} \right) \alpha$$

subject to
$$\forall i, \ 0 \le \alpha_i \le C, \ \sum_{i=1}^n \alpha_i y_i = 0$$

▶ SVM testing: now with α_i , recover b

$$b = y_i - \sum_{i=1}^n \alpha_j y_j K(\mathbf{x}_i, \mathbf{x}_j)$$
 for any i that $\alpha_i \neq 0$

we can predict new data points by:

$$y^* = \operatorname{sign}\left(\sum_{i \in SV} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}') + b\right)$$

Machine Learning with Scikit-Learn

Scikit-Learn

- Machine learning library written in Python
- ▶ Simple and efficient, for both experts and non-experts
- Classical, well-established machine learning algorithms
- Shipped with documentation and examples
 - documentation: https://scikit-learn.org/dev/index.html
 - examples: https://scikit-learn.org/dev/auto_examples/index.html

- 试证明对于不含冲突数据集(即特征向量完全相同但标记不同)的训练集,必存在与训练集一致(即训练误差为0)的决策树。
- ▶ 最小二乘学习方法在求解 $\min_{\mathbf{w}}(\mathbf{X}\mathbf{w}-\mathbf{y})^2$ 问题后得到闭式解 $\mathbf{w}^* = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$ (为简化问题,我们忽略偏差项 \mathbf{b})。如果我们知道数据中部分特征有较大的误差,在不修改损失函数的情况下,引入规范化项 $\lambda \mathbf{w}^T \mathbf{D} \mathbf{w}$,其中 \mathbf{D} 为对角矩阵,由我们取值。相应的最小二乘分类学习问题转换为以下形式的优化问题:

$$\min_{\mathbf{w}} (\mathbf{X} \mathbf{w} - \mathbf{y})^2 + \lambda \mathbf{w}^T \mathbf{D} \mathbf{w}$$

- (1) 请说明选择规范化项 $\mathbf{w}^T \mathbf{D} \mathbf{w}$ 而非 L2 规范化项 $\mathbf{w}^T \mathbf{w}$ 的理由 是什么。D 的对角线元素 D_{ii} 有何意义,它的取值越大意味 着什么?
- (2) 请对以上问题进行求解。

- ▶ 假设有 n 个数据点 $\mathbf{x}_1, \dots, \mathbf{x}_n$ 以及一个映射 φ : $\mathbf{x} \to \varphi(\mathbf{x})$,以此定义核函数 $K(\mathbf{x}, \mathbf{x}') = \varphi(\mathbf{x}) \cdot \varphi(\mathbf{x}')$ 。试证明由该核函数 所决定的核矩阵 K: $K_{i,j} = K(\mathbf{x}_i, \mathbf{x}_j)$ 有以下性质:
 - (1) K 是一个对称矩阵;
 - (2) K 是一个半正定矩阵,即 $\forall \mathbf{z} \in \mathbf{R}^n, \ \mathbf{z}^T K \mathbf{z} \geq 0$ 。

▶ 已知正例点 $x_1 = (1,2)^T$, $x_2 = (2,3)^T$, $x_3 = (3,3)^T$, 负例点 $x_4 = (2,1)^T$, $x_5 = (3,2)^T$, 试求 Hard Margin SVM 的最大间隔分离超平面和分类决策函数,并在图上画出分离超平面、间隔边界及支持向量。

▶ 计算 $\frac{\partial}{\partial w_i} L_{CE}(\mathbf{w}, b)$,其中

$$L_{CE}(\mathbf{w},b) = -[y\log\sigma(\mathbf{w}\cdot\mathbf{x}+b) + (1-y)\log(1-\sigma(\mathbf{w}\cdot\mathbf{x}+b))]$$

为 Logistic Regression 的 Loss Function。

▶ 已知

$$\frac{\partial}{\partial z}\sigma(z) = \frac{\partial}{\partial z}\frac{1}{1+e^{-z}} = -\left(\frac{1}{1+e^{-z}}\right)^2 \times (-e^{-z})$$
$$= \sigma^2(z)\left(\frac{1-\sigma(z)}{\sigma(z)}\right) = \sigma(z)(1-\sigma(z))$$