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Supervised learning

» Supervised learning
» An agent or machine is given N sensory inputs
D= {x1,x2,...,xn}, as well as the desired outputs
Y1, Y2,...,¥n, its goal is to learn to produce the correct output
given a new input.
» Given D what can we say about xpy17

» Classification: yi,yo,..., yn are discrete class labels, learn a
labeling function f(x) =y

Naive bayes

Decision tree

K nearest neighbor

Least squares classification

Logistic regression
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Classification

Classification = learning from labeled data. Dominant problem in
Machine Learning
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Linear Classification

Binary classification can be viewed as the task of separating classes
in feature space (4HEZ|H)):

wix+b=0

wix+b<0
° Decide ¥=1 ifwx+b>0,
otherwise ¥ = —1

[ ]
Y= h(x) = sign(w™ + b)




Linear Classification

Which of the linear separators is optimal?




Classification Margin (]8]EE)

» Geometry of linear
classification
» Discriminant function
yx)=w'x+b
> SE& (norm): |IX]| 7RG
EEMETEPHKE
> (1K= 2 Xl
> Xl o= /200 X

S 1/
> [IXllp = (7 xilP) °

> ||X]|oo 1= max; x|

» Important: the distance
does not change if we scale
w—a-w, b—>a-b
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i ox0, W, x AN #oE
> B X0 ‘T—SFE S EHIER A x1, M wixi+b=0
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Classification Margin (]8]EE)

. . Txi+b
» Distance from example x; to the separator is r= %
» Examples closest to the hyperplane (#83£MH) are support

vectors (FiFEE).
» Margin m of the separator is the distance between support
vectors




Maximum Margin Classification (£xK[B]EE433E)
» Maximizing the margin is good according to intuition and
PAC theory.

» Implies that only support vectors matter; other training
examples are ignorable.




Maximum Margin Classification (£xK[B]EE433E)
» Maximizing the margin is good according to intuition and

PAC theory.

» Implies that only support vectors matter; other training
examples are ignorable.




Maximum Margin Classification Mathematically

> Let training set {(x;,¥i)},_1 v Xi € RY y; € {—1,1} be
separated by a hyperplane with margin m. Then for each
training example (x;, y;) :
T .
w' xi+b< —c ify=-1 T
. . >
w'xi+b>c ify=1 @y,(w x,+b)_c
» For every support vector X
the above inequality is an equality.
Vs (WTXS + b) =c
> In the equality, we obtain that
distance between each xs and the

hyperplane is
r— ‘was+b| . ys(Wsz+b) c

oWl [[wll l[wll



Maximum Margin Classification Mathematically

» Then the margin can be expressed through w and b:
m=2r= =25

l[wll

» Here is our Maximum Margin Classification problem:
2c
max —— subject to y; (WTX,' + b) > Vi
wb [[wl|
c
max —— subject to  y; (WTX,' + b) > c, Vi
wb [[w]
» Note that the magnitude (X/J\) of ¢ merely scales w and b,
and does not change the classification boundary at all!

» So we have a cleaner problem:

1
max —— subject to y; (wa,-+ b) >1,Vi
wb [|wl|

» This leads to the famous Support Vector Machines 3 #3618
#l1—believed by many to be the best “off-the-shelf”
supervised learning algorithm



Support Vector Machine

» A convex quadratic programming ([ %
#KI) problem with linear constraints: S

H2

maxL subject to y; (waH— b) >1 S i e
wb [[w] ,
The attained margin is now given by m
Only a few of the classification constraints are relevant—
support vectors
» Constrained optimization (ZJ3R{4L)
» We can directly solve this using commercial
(QP) code
» But we want to take a more careful investigation of Lagrange
duality (Frt&RAE XHB), and the solution of the above in its

dual form.
» deeper insight: support vectors, kernels (%)...



Quadratic Programming (—&x#i%1)
» Minimize (with respect to x)

1
g(x) = ixTQ Xx+c'x

Subject to one or more constraints of the form:

v

Ax <b (inequality constraint)
Ex=d (equality constraint)

v

If @ >0, then g(x) is a convex function ({qEHEY) : In this
case the quadratic program has a global minimizer

v

Quadratic program of support vector machine:

minw'w subject to y; (WTX,'—I— b) >1,Vi

w,b



FIt&BA B ki

> PR SRFIE: X TF—MEXARRIMA R

min f(x) s.t. h(x) =0
FMT minflx) + Ah(x), HF A R—1TEHEE,
EfTME.
> SFAEXLR
min f{x) s.t. g(x) <0
ENT

min max fx) + Ag(x) st. A>0



KKT &4

> FAREXFHARMRNL, BITZEDEBERERIZR.
BERENEBHESHENSIBE—ERERILTER.

min max fx) + Ag(x) st. A>0
RILEE X BRUTHRMGE (KKT &4):
» g(x*) <0
» A>0
> Ag(x") =0

> VAX) + AVg(x*) =0

> WE KKT FHHA—ERRME ERAB—EHE KKT
4



X e fo] &
> F—APAEXARMEER, EXXHBEE A
max m)jn fx) + Ag(x) st. A>0

% min 0 max 331
> IHMBRIIFR: BEERE x HRHE/IVE, EEREREEK )\
HWEXEERTS. ERLEREDEHFAZEFNH
’ﬁﬁ?ﬁﬂﬁ%ﬁﬂﬁﬁﬁﬁ(E%ﬂﬁ%%i*%?ﬁﬁ
]2

max min f{x, A) = min f{x, \*) < max f(x*,A) = min max fx, A)

> MREFEXMEME, WELEEH:

max min f{x, A\) = min max fx, \)

» JLERAERNOEAEE (x) 2—NMORE) 2B EEIME
%, £ SVM B, EFRERBELEE. EE2— 1 EXNE
2] 2



FIEBAH ik . KKT &4, 3HBlalgR

[RE
min  f(z)
s.t oglz) <0

minmax f(z) + Aglz)
st A>0
JE"E_'E g(z") <0
B A0
ABE
(KKT) Ag(z*)=0

Vi(z*) + AVg(z*) =0

e

max min f(x) + Ag(z)
T
s.t A>0

WMRELT, .
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Solving Maximum Margin Classifier
» Qur optimization problem:

minw ' w subject to 1 —y; (wa; + b) <0,Vi

w,b
> The Lagrangian:

L(w,b,a) = %WTW — Zn:oz,- [y,- (WTX; + b) — 1}
i=1

1 n
= §WTW + Z;oz,- {1 —Yi (WTX,-+ b)}

» Consider each constraint:
max a; 11—y (wa,- +b)] =0 if w, b satisfies primal constraints
Q2

=00 otherwise



Solving Maximum Margin Classifier

» Qur optimization problem:

minw ' w subject to 1 —y; (WTX,' + b) <0,Vi (1)

w,b

v

The Lagrangian:

n

L(w,b,a) = 1WTW — Za,- [y,- (WTX,' + b) — 1}

2 ,

i=1
> Lemma:

I -+ - : .
max L(w, b,a) = oW W if w, b satisfies primal constraints
a>0

=00 otherwise

v

(1) can be reformulated as miny, , maxa>o L(W, b, &)
The dual problem (XHEEIE): maxa>0 miny p L(W, b, a)

v



The Dual Problem (X3{&[a]&R)

max min L(w, b, «)
a>0 w,b

We minimize L with respect to w and b first:

oL
a—wL(w b, cx) E Qiyix; = (2)
oL
oy L(w, b,a) Zoz,y,—O (3)

Note: d(Ax+b)"(Ax +b) = (2(Ax+b)"A) dx

d (xTa) =d (aTx) =a'ldx

Note that the bias term b dropped out but had produced a
“global” constraint on «



The Dual Problem (X3{&[a]&R)

max min L(w, b, )
a>0 w,b

We minimize L with respect to w and b first:

oL
8—WL(W b, ) Za,y, =0

oL

a—waba Za,y,—O

Note that (2) implies
n
W = Z QYiX|
=1

Plug (4) back to L, and using (3), we have

n
L(w, b, a) Z o — Z Qiyy; (X,TXJ')

iJ:l



The Dual Problem (X3{&[a]&R)

Now we have the following dual optimization problem:

n
1
maxg ai——=
a )
i=1

This is a quadratic programming problem again
- A global maximum can always be found
But what's the big deal?
1. w can be recovered by w =" ajyix;
2. b can be recovered by b= y; — w'x; for any i that a; # 0

3. The “kernel"— #% X,-ij

n

n
aiaGyiy; <X,ij> subject to «; > 0, Vi, Z ajyi=0
1 i=1

iij =



Support Vectors

If a point x; satisfies y; (wa,-+ b) > 1
Due to the fact that
T _ T
maxa;[l—y;(w X;—i—b)}—o y,-(w X;—i—b)Zl
;>0

=00 otherwise

We have a* = 0; x; not a support vector

w is decided by the points with non-zero a’s

n
W = g QiyiXi
i=1



Support Vectors

only a few «;'s can be nonzero

Class 2 Call the training data points
15=0.6 ¢§10=0 whose ¢'s are nonzero the
© / support vectors (SV)
W =0
=
bs=0 = d)(z:o
= ,=0.8
04=0 o
= - U.6_—1.4 WTX +b=1
0y=0 _ T _
Class 1 3=0 wix+b=0




Support Vector Machines

Once we have the Lagrange multipliers «;, we can reconstruct the
parameter vector w as a weighted combination of the training

examples:
n
W= E QYiXj = E QYiX|
i=1 i€sv

For testing with a new data x’
» Compute w'x' +b= Y iesy Qi (X,TX/) +b
» classify x’ as class 1 if the sum is positive, and class 2
otherwise

Note: w need not be formed explicitly



Interpretation of support vector machines

» The optimal w is a linear combination of a small number of
data points. This “sparse #%Ei" representation can be viewed
as data compression (${#EJE4E) as in the construction of
kNN classifier

» To compute the weights «;, and to use support vector
machines we need to specify only the inner products FJFR (or
kernel) between the examples x,' x;

» We make decisions by comparing each new example x’ with
only the support vectors:

y* = sign <Z Qiyi (x?x’) + b)

ieSv



Soft Margin Classification

» What if the training set is not linearly separable?

» Slack variables (FA#1ZE &) & can be added to allow
misclassification of d|ff|cult or noisy examples, resulting
margin called soft.

> SEEMS yi(w x+b) > 1, EMAEEX, W& x B
BEE w x4+ b=0MiZ; SEERIAE vi(wxi+b) <1,
BUMRE BT

> B & RERXMREE, E15 (v x+b)>1-¢, Er
K & RATgE/N

» MFEMB S, AkSEATF 1, § BHRA 0 MM =NE
E1-¢RYUERS, {HMEET RILHERNKNEE




Soft Margin Classification Mathematically

v

“Hard” margin QP:
. T . . T
mlgw w subject to Vi, y; (w X,-+b> >1

> “Soft” margin QP:

1
min fwTw+CZ£,- subject to Vi, y; (WTX,' + b) >1-&£,6>0
w,b 2 ;

» Note that & = 0 if there is no error for x;

v

&;is an upper bound of the number of errors

» Parameter C can be viewed as a way to control “softness": it
“trades off" the relative importance of maximizing the margin
and fitting the training data (minimizing the error).

- Larger C — more reluctant to make mistakes
- Larger C (2R #iEIR Hard Margin SVM



SVMs with slack variables

a=C0<t<1

» Support vectors: points with o > 0
» If 0 < a< C:SVson the margin, £ =0

» If 0 < a= C: SVs over the margin, either misclassified
(>1)ornot (0<&<1)



The Optimization Problem

» The dual of this new constrained optimization problem is

n n
1
mo?X E 1 o — 5 E Oé,'Oéjy,'yj (X?Xj)
=

=1
n

subject to Vi, 0< oy < C, Y ayi =0
i—1

> This is very similar to the optimization problem in the linear
separable case, except that there is an upper bound C on «;
now

» Once again, a QP solver can be used to find «;



Loss in SVM

1
min ~w ' w+C E & subject to Vi, y; (wa,-—i— b) >1-§,&>0
w,b 2 -

Loss is measured as
§i = max (0, 1 —vyi <WTX,‘ + b)) = [1 — Vi (WTXi+ b)}
+

This loss is known as hinge loss

1
r‘gl n 2—CWTW + z,: hingeloss;

Llof(x)) hinge

0 W)



Linear

SVMs: Overview

The classifier is a separating hyperplane.
Most “important” training points are support vectors; they
define the hyperplane.

Quadratic optimization algorithms can identify which training
points x; are support vectors with non-zero Lagrangian
multipliers ;.

Both in the dual formulation of the problem and in the
solution training points appear only inside inner products:

Find a;...ay such that fix) = 2¢, + b
Q(a) =Za; - ‘/zZZa,ajy,-yis maximized and
(1) 2ay;=0

(2) 0sa;sCforall a;




Non-linear SVMs

» Datasets that are linearly separable with some noise work out

great:
—o ' ’
0 X

» But what are we going to do if the dataset is just too hard?

—_—% *o—0— 00— @ =
0 X

» How about---mapping data to a higher-dimensional space:

XZ




Non-linear SVMs: Feature spaces

General idea: the original feature space can always be mapped to
some higher-dimensional feature space where the training set is

separable:
L]
L]
®e . : o
I °
. ° . ® °
[ ° H . ®
o o °
L]
° ° . ° °
P L] ®
L]




The “Kernel Trick”

» Recall the SVM optimization problem

n n
1
mo?x E 1 o — 5 E oz,-ajy,-yj (X?Xj)
=

ij=1

n
subject to Vi, 0 < o; < C, Zaiyi =0
i—1

» The data points only appear as inner product

» As long as we can calculate the inner product in the feature
space, we do not need the mapping explicitly

» Many common geometric operations (angles, distances) can be
expressed by inner products

» Define the kernel function K by K (x;,x;) = ¢ (x) " o (%)



An Example for feature mapping and kernels

» Consider an input x = [x1, xa] "
» Suppose ¢(-) is given as follows
-
¢ (|: i; :|> = |:]-a \/§X1, \/§X2a X%a Xga \/§X1X2]
» An inner product in the feature space is
-
X1 )(1 - X1 )(1
ez (2 - (2]) (%
» So, if we define the kernel function as follows, there is no need

to carry out ¢(-) explicitly

K(x,x’) = (1 + XTX/>2



More Examples of Kernel Functions

> Linear: K(x;,%;) = x; x;

» Mapping ® : x — p(x), where p(x) is x itself
» Polynomial (IR of power p: K(xj,x;) = (1 + x,ij)p
» Gaussian (radial-basis function {Z[6 &K E):

2
I =1

K(X,’7 Xj) =e o2
» Mapping & : x — ¢(x), where p(x) is infinite-dimensional
» Higher-dimensional space still has intrinsic dimensionality d
(the mapping is not onto), but linear separators in it
correspond to non-linear separators in original space



Kernel matrix

» Suppose for now that K is indeed a valid kernel corresponding
to some feature mapping ¢, then for xq, ..., x,, we can
compute an n x n matrix {Ki,} where Kij = ¢ (x;) ¢ (x))

> This is called a kernel matrix!

» Now, if a kernel function is indeed a valid kernel, and its

elements are dot-product in the transformed feature space, it
must satisfy:

» Symmetry K= K"
> Positive-semidefinite (£IEE) z' Kz >0, Vz € R"



Matrix formulation

n n

1

mo.?x E 1 o — 5 E laiaj}/iyjK<Xia Xj)
= I,)=

n n
1
= mO?X E aj — 5 E a,-ajy,-yjK,-J
i=1 ij=1

1
—maxa'e — —a' (ny o K) «
a 2

subject to Vi, 0 < o; < C, D7 aiyi =0



Nonlinear SVMs — RBF Kernel

Linear

B8
o2

28 @
C]
“n @ 4 @

@ E‘E f

: = \ Q

@ . .

RS
SR
Gaussian Y \\\



Summary: Support Vector Machines

» Linearly separable case — Hard margin SVM
» Primal quadratic programming
» Dual quadratic programming

> Not linearly separable? — Soft margin SVM

» Non-linear SVMs — Kernel trick




Summary: Support Vector Machines
» SVM training: build a kernel matrix K using training data
» Linear: K(x;,x)) = X7 x;
» Gaussian (radial-basis function {Z[a & FH£]):
ll<i—>;11
K(xi,xj) =€ o7
» Solve the following quadratic program :

maxa ' e — %aT (ny o K) «

n
subject to Vi, 0 < «; < C, Zai}’i =0
i=1

» SVM testing: now with «;, recover b
n
b=y — ZajyjK(x,-, x;)  for any ithat a; # 0
j=1

» we can predict new data points by:

y* = sign (Z ayiK (x;,x") + b)

iesv



Machine Learning with Scikit-Learn

Scikit-Learn
» Machine learning library written in Python
» Simple and efficient, for both experts and non-experts
» Classical, well-established machine learning algorithms
» Shipped with documentation and examples
» documentation: https://scikit-learn.org/dev/index.html

> examples:
https://scikit-learn.org/dev/auto_examples/index.html



Bk 1

> IRIERAN T A hRRESE (BIEHER £ EREMRER
B) HilZE, LEFEESIIGE—B (BIIZIRER0) M
RIRH

> RNZFFEIFEIEKRE ming (Xw —y)? BEEHEHR
B ow = (XTX)"'XTy (ChEHKEE, RIZEEZED D).
WRBANNEREF B SFHERRKRIRE, EMELHK
ERHAERT, SINSSENT \w ' Dw, He D A33fs%E
B BARMNBRE. BMARN RS EF I EBER AT
R AL [ R :

min(Xw — y)? + A\w ' Dw
w

(1) EWAAEFEAENXI w Dw Ik L2 #eHI w'w B9IEH
B4. DAL TE D BAEX, ERNBEMSAEKR
Etu?

(2) B LB BFHITKAE



Bk 2

» RIEF n MRS x1, .. x0 IER—1BRET o x — o(x),
PULRE X AZ RS K(x,x) = (%) - p(x'). RIERABIZIZEE
FTRERIZIERE K: Kij= K(x;,x) B TR

(1) K @—IFRERE
(2) KB—MHIEEHERE, B vzeR", 2Kz > 0,



1EAk 3

» BHRIEAIS x = (1,2)T, 2 =(2,3)7, x3=(3,3)7, faffl=
x1 = (2,1)7, x5 = (3,2)7, &k Hard Margin SVM 5K Ia
RoaBSBFEmfisRRRES, HEELEHSEBFE.
BRI R FEE.



felk 4

~ HE O Lce(w,b), 3o

j
Lee(w, b) = —[ylogo(w-x+b)+ (1 —y) log(1 —o(w-x+ b))]

4 Logistic Regression B Loss Function,
> 2
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