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Supervised learning has many successes

" K X
» Document classification P EREEECECRA
» Protein prediction , liiﬁﬁﬁ
» Face recognition

v

Speech recognition

v

Vehicle steering etc.




However...

v

Labeled data can be rare or expensive in many real
applications

SpeeCh Task: speech analysis
. @ Switchboard dataset
Medical data

Protein . @ 400 hours annotation time for each hour of speech
flm = f ihn uhglnm
. be all = bcl b iy iy tr aoc_tr ao 1dl

@ telephone conversation transcription

» Unlabeled data is much cheaper and abundant

Question: Can we use unlabeled data to help?



Unsupervised learning

Learning from unlabeled data (without supervision)

Prediction rule

Training data - Learning -
D=1{x;, X, ..., Xy} &) =y

Algorithm

» What can we predict from unlabeled .
data? LT

» Groups or clusters in the data “@ ' .

[



Unsupervised learning

Learning from unlabeled data (without supervision)

Learning Prediction rule

) fx)oy

Training data '
D={x;, X, ..., X}

Algorithm

» What can we predict from unlabeled
data?

» Groups or clusters in the data
» Density estimation (Z5E{&iT)




Unsupervised learning

Learning from unlabeled data (without supervision)

Prediction rule

Training data - Learning -
D={xy, %y ..., Xy} fx) =y

Algorithm

» What can we predict from unlabeled
data?
» Groups or clusters in the data

» Density estimation (ZE{&iT)
» Low-dimensional structure

» Principal Component Analysis T4
#7 (PCA) (linear)




Unsupervised learning

Learning from unlabeled data (without supervision)

Training data Learning Prediction rule
D={x;, X ..., xN}- Algorithm ‘ fx) =y

» What can we predict from unlabeled
data?

» Groups or clusters in the data

» Density estimation (Z5E{&iT)
» Low-dimensional structure

» Principal Component Analysis 54
#1 (PCA) (linear)

» Manifold learning T3
(non-linear)
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Clustering

v

Are there any “groups” in the data 7

v

What is each group ?

v

How many 7

v

How to identify them?



Clustering

» Group the data objects into subsets
or “clusters”:
» High similarity within clusters
» Low similarity between clusters

» A common and important task
that finds many applications in
Science, Engineering, information
Science, and other places

» Group genes that perform the
same function

» Group individuals that has similar °
political view

» Categorize documents of similar
topics

> Identify similar objects from
pictures




Clustering

» Input: training set of input point
Dtrain - {Xh cee 7Xn}
» Qutput: assignment of each point to a cluster

(C(1),...,C(n)) where C(i) € {1,... Kk}



K-means clustering

Create centers and assign points to centers to minimize sum of
squared distance
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K-means objective

» Each cluster is represented by a centroid p

» Encode each point by its cluster center, pay a cost for
deviation

» Loss function based on reconstruction

n
LosSkmeans Z HMC(J) - XJ’H2

=1



K-means algorithm

» Strategy: alternating minimization
» Step 1: if know cluster centers y, can find best C
» Step 2: if know cluster assignments C, can find best cluster
centers



K-means algorithm
Optimize loss function Loss(j, C)

n
min mci”; ey =i
(1) Fix p, optimize C

i zum P

Assign each point to the nearest cluster center
(2) Fix C, optimize

L0 2 e

77“

Solution: average of points in cluster j, exactly second step
(re-center)



K-Means

* An iterative clustering
algorithm

— Initialize: Pick K random
points as cluster centers

— Alternate:
1. Assign data points to
closest cluster center
2. Change the cluster
center to the average
of its assigned points

— Stop when no points’
assignments change



K-means clustering: Example

* Pick Krandom
points as cluster
centers (means)

Shown here for K=2




K-means clustering: Example

lterative Step 1

» Assign data points to
closest cluster center




K-means clustering: Example

lterative Step 2

» Change the cluster
center to the average of
the assigned points




K-means clustering: Example
Repeat until convergence
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Properties of K-means algorithm

» Guaranteed to converge in a finite number of iterations

» To a local minimum
» The objective is non-convex, so coordinate descent on is not
guaranteed to converge to the global minimum

» Running time per iteration: simple and efficient
» Assign data points to closest cluster center

O(KN)
» Change the cluster center to the average of its assigned points

O(N)

» Different initialization will lead to different results
» K-means problem is NP-hard (ZRIAXHIRLER)
» Not robust to noise and outliers



K-means convergence

Objective
. . k
minmin Yiq Dl — wil?

1. Fixpy, optlmlze C: . |$tep 1 of kmeans

mlnz Z lx — w;|? = m1n2|xl #xl

i=1 xEC;
2. Fix C, optimize u:

m#in Z}ic=1 ercilx - ul?

— Take partial derivative of y; and set to zero, we have

1
Hi = 1l Z x | Step 2 of kmeans
XEC;

Kmeans takes an alternating optimization approach, each step is guaranteed to
decrease the objective — thus guaranteed to converge




K-means getting stuck

A local optimum:
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K-means not able to properly cluster

Changing the features (distance function) can help

Y R
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Principle component analysis

» What is dimensionality reduction?
» Why dimensionality reduction?
» Principal Component Analysis (PCA)

» Nonlinear PCA using Kernels



What is dimensionality reduction?

» Dimensionality reduction refers to the mapping of the original
high-dimensional data onto a lower-dimensional space.
- Criterion for dimensionality reduction can be different based on
different problem settings.
> Unsupervised setting: minimize the information loss
RIEEMNE: HASBXNMETEREES BB
> Supervised setting: maximize the class discrimination
RAASHE: BASEXNMEEE LR ER TS
> ERBTHOULELE, mEEN
» Given a set of data points of d dimension variables
{x1,%X2,...,Xn}

» Compute the linear transformation (projection)

PeR¥M: xe R sy=P'xcR™ (m<<d)



What is dimensionality reduction?

Original data

reduced data

Linear transformation

y € R™

x € R4

PecR>XM. xe Rl 5y=P'xeR"



High-dimensional data
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Why dimensionality reduction?

» Most machine learning and data mining techniques may
not be effective for high-dimensional data
» Curse of Dimensionality
» Query accuracy and efficiency degrade rapidly as the dimension
increases.

» The intrinsic dimension may be small.

» For example, the number of genes responsible for a certain
type of disease may be small.



Curse of Dimensionality (44§ 5 %)

» When dimensionality increases, data
becomes increasingly sparse in the space
that it occupies

I
n W o

N
e ——

Iog, ,(MAX_DIST - MIN_DIST) / MIN_DIST))
-~

» Definitions of density and distance
between points, which is critical for
clustering and outlier detection, become

e

o

Iess meaningfu' "E 02‘5‘ 10 15 20 2;\30_\334_5‘;0
> If N; = 100 represents a dense sample for
a single input problem, then Ny = 100'°
is the sample size required for the same > Randomly generate
sampling density with dimension 10. 500 points
» The proportion of a hypersphere (#8%kE) * Compute difference
with radius r and dimension d, to that of a between max and
hyercube (#B3ZF7{4) with sides of length min distance
2r and dimension d converges to 0 as d between any pair of

goes to infinity —nearly all of the points
high-dimensional space is “far away” from
the center



High dimensional spaces are empty

The volume of an hypercube with an edge length of » = 0.1 is 0.1 — when
p grows, it quickly becomes so small that the probability to capture points
from your database becomes very very small...

Points in high dimensional spaces are isolated

To overcome this limitation, you need a number of sample which grows
exponentially with p...




Lost in space
Let's consider a hypersphere of radius r inscribed in a hypercube
with sides of length 2r. Then take the ratio of the volume ({f%R)
of the hypersphere to the hypercube. We observe the following
trends.

» in 2 dimensions:

V(52(r)) wr

V(Ha(2n) — 47 78:5% |
» in 3 dimensions:
A
V(S3(r)) _ 37T :524%

V(H3(2r) 88

» when the dimensionality d increases
asymptotically

. V(S4(r)) . /2
dll[go V(Hy4(2r)) d[»ngo 2"F(g +1) -0



Why dimensionality reduction?

» Visualization: projection of high-dimensional
data onto 2D or 3D.

» Data compression: efficient storage and retrieval

» Noise removal: positive effect on query accuracy.



Application of feature reduction

» Face recognition
» Handwritten digit recognition

» Text mining

v

Image retrieval

v

Microarray data analysis

Protein classification

v



What is Principal Component Analysis?

» Principal component analysis (PCA)
- Reduce the dimensionality of a data set by finding a new set of
variables, smaller than the original set of variables
- Retains most of the sample’s information.
- Useful for the compression and classification of data.

» By information we mean the variation present in the sample,
given by the correlations between the original variables.
» The new variables, called principal components (PCs), are
uncorrelated, and are ordered by the fraction of the total
information each retains.



Principal components (PCs)

Given n points in a d dimensional space, for large d, how does one
project on to a low dimensional space while preserving broad trends
in the data and allowing it to be visualized?



Geometric picture of principal components

» Given n points in a d dimensional space, for large d, how does
one project on to a 1 dimensional space

» Choose a line that fits the data so the points are spread out
well along the line



Let us see it on a figure

Good Better

PCA REREREEMAT/N, FTLURGEARYENEIER NS
T ZMOWEETURAERERT (0 AHE):

Var(a) = = > (ai— 1)’

i=1

X EHITHROME, Bl p=0:

1 n
Var(a) = — E a;
n
i=1



Geometric picture of principal components
XPHARFEAT ML

TR ULEREYE, B x' =0, ITFiRESEM: Find a line

that
» maximize the variance of the projected data

» maximize the sum of squares of data samples’ projections on
that line

» minimize the sum of squares of distances to the line




Algebraic Interpretation — 1D

» Minimizing sum of squares of distances to the line is the same
as maximizing the sum of squares of the projections on that
line, thanks to Pythagoras (EEiABFHIHT).

g1

X.'I

|

RRRER: <"



Algebraic Interpretation — 1D
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BEKEHN x'u=u'x subjectto u'u=1



Geometric picture of principal components

5

2nd Pilﬂincipal|

Component, 1, o 1st Principal
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Geometric picture of principal components

» the 15t PC uy is a minimum distance fit to a line in X space
» the 2"d PC uy is a minimum distance fit to a line in the
plane perpendicular (EEF) to the 1t PC

PCs are a series of linear least squares fits to a sample, each
orthogonal (EEEF) to all the previous.



Algebraic derivation of PCs

» Given a sample of n observations on a vector of d variables
{x1,x2,...,x,} € R4

> First project the data onto a one-dimensional space with a d
-dimensional vector u; (where ulTul =1):

T T T
{ul X1,Uq X2, , Uy Xn}

» Find u; to maximize the variance the projected data:

1 ¢ 2
fE (u?x;—u?i) =u] Su,
n

i=1

Where x = 157 x;and S= 157 (x;i— %) (xi— %)



Algebraic derivation of PCs

> To solve maxy, ulTSul subject to ulTul =1
» Let \; be a Lagrangian multiplier (34&E0 H 3€F)

L= ulTSul + M (1 — uru1>
ﬂ:Sul—)qm:O
ouy
5111 = /\1111
= u; is an eigenvector (4F4E[6] &)
ulTSu1 =)\

= u; corresponds to the eigenvector with the largest eigenvalue A;

» B, maxy, u] Su; subject to uj u; = 1 HILERHZ4EMH S
A KHFIEE
> JEfE S HHEETEAE: MEHFUESZTR [S- M =0(A
B, SHMEEALMAEENE



Algebraic derivation of PCs

» To find the second component u,

» Solve the following

maquTSuQ subject to u;ug =1& ulTuQ =0
u2

- ug is the eigenvector with the second largest eigenvalue A,



Algebraic derivation of PCs

» Main steps for computing PCs
» Calculate the covariance matrix S

1 ¢ _ _
= EZ(x;fx)(x;fX)T
=1
or first center the data:  {x},x},...,x,} and X' =0

1
let X = [x|,%;,...,x,] € R%"; then S= ;xxT

» Find the first m eigenvectors {u;}!",
» Form the projection matrix

P:[u1 Uz --- llm] ERdxm
» A new test point can be projected as:

Xpew € R — P Xpew € R™



Algebraic derivation of PCs

y=PlxeR"

» Getting the old data back?

- If Pis a square matrix (/7P&), we can recover x by
x=(P") 'y=Py=PP'x
i*: u/u;=1and u/u;=0 for i j, then PTP= I, (where
m=n)and (PT)"1 =P

» Here Pis not full (m << d), but we can still recover x by
x = Py = PP"x, and lose some information

» Objective:

» Lose least amount of information



Optimality property of PCA

Dimension reduction

‘Recytruction
X € R¥™" Y = PTX ¢ Rm*n —>|X' —PPTX ¢ RdX"|
PT c Rmxd

X € Rn

PTX c Rm*n
.

Pc Rdxm

X' e Rdxn ~e—— .
39



Optimality property of PCA
Main theoretical result:
The matrix P consisting of the first m eigenvectors of the
covariance matrix S solves the following min problem:

arg min = arg min || X - PP'X|?
PeRdxm PERIxm

= arg max trace(X PP'X)

Reconstruction PeRdxm
error = arg max trace(P' XX 'P)
PeRdxm
= arg max trace(PTSP)
PeRdxm
subject to P'P=1,

Notice that, for a matrix A m x n and B n x m,

trace(AB) = trace(BA) = > >0, ajbji

argming Y0 07 (x; — xjj)* is equivalent to arg maxp 7 D1 XX
as S0 S >(,-j2 = trace((PPTX)TPPTX) = trace(X" PP X)

PCA projection minimizes the reconstruction error among all linear
projections of size m.



PCA for image compression

N

wd

m=8

Original
=64 m=100 Image

E- A A




Nonlinear PCA using Kernels

Rewrite PCA in terms of dot products
» Assume the data has been centered, i.e., Z,x,- =0
» The covariance matrix S can be written as §$= 2 >~ xx;

> If u is an eigenvector of S corresponding to nonzero eigenvalue
1 T 1 T
Su:;Zx,-x,-u:)\u:>u=52<x,-u>xi
i i

» Eigenvectors of S lie in the space spanned by all data points
Kernel methods:
» denote the representation of x as ¢(x)
» define the kernel function k: X x X — R by
k(xi, %)) = @(xi) " p(x;)
> define the kernel matrix K: Kjj = k(xj, x;)



Nonlinear PCA using Kernels

1 1
Su= ;Zx/xju: Au = u= EZ (X,Tu) X;
i i
The covariance matrix can be written in matrix form
| —
S=—XX",where X =[Xx,,X,, -, X, ].

n
“:zaixf:X“ SuleXTXa:/lXa
i n

L (" e = AX X)a
n

— | Lx"x)a =20 | —=
n




Nonlinear PCA

® O
o 2 9 o
© ® Linear projections
o @) will not detect the
@) pattern.
O
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Comments on PCA

» Linear dimensionality reduction method
» Can be kernelized

» Many nonlinear dimensionality reduction methods (Isomap,
graph Laplacian eigenmap, and locally linear embedding/LLE)
can be described as kernel PCA with a special kernel

» Non-convex optimization problem

» But easy to solve--




Want to Learn More?

» Machine Learning: a Probabilistic Perspective, K. Murphy

» Pattern Classification, R. Duda, P. Hart, and D. Stork.
Standard pattern recognition textbook. Limited to
classification problems. Matlab code.
http://rii.ricoh.com/~stork/DHS.html

» Pattern recognition and machine learning. C. Bishop

» The Elements of statistical Learning: Data Mining, Inference,
and Prediction. T. Hastie, R. Tibshirani, J. Friedman,
Standard statistics textbook. Includes all the standard
machine learning methods for classification, regression,
clustering. R code. http://www-stat-class.stanford.
edu/~tibs/ElemStatLearn/

» Introduction to Data Mining, P.-N. Tan, M. Steinbach, V.
Kumar. AddisonWesley, 2006

» Principles of Data Mining, D. Hand, H. Mannila, and P.
Smyth. MIT Press, 2001

> Gt Ik,


http://rii.ricoh.com/~stork/DHS.html
http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/
http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/

Machine Learning in Al
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Machine Learning History
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Summary

» Supervised learning

> Learning Decision Trees

» K Nearst Neighbor Classfier
> Linear Predictions

» Support Vector Machines

» Unsupervised learning

» Clustering
» Principle Component Analysis



Bk

» K-means X2 E—ESIWE? MRE, AHIERAIETE: W
BAE, Y.
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