吉建民

USTC jianmin@ustc.edu.cn

2024年5月7日

Used Materials

Disclaimer: 本课件采用了 S. Russell and P. Norvig's Artificial Intelligence –A modern approach slides, 徐林莉老师课件和其他网络课程课件,也采用了 GitHub 中开源代码,以及部分网络博客内容

Table of Contents

Unsupervised Learning

Clustering

Principle Component Analysis

Supervised learning has many successes

- Document classification
- Protein prediction
- Face recognition
- Speech recognition
- Vehicle steering etc.

However...

- Labeled data can be rare or expensive in many real applications
- Speech
- Medical data
- Protein
-

Task: speech analysis

- Switchboard dataset
- telephone conversation transcription
- 400 hours annotation time for each hour of speech

 $\textbf{film} \Rightarrow \texttt{f} \ \texttt{ih_n} \ \texttt{uh_gl_n} \ \texttt{m}$

be all \Rightarrow bcl b iy iy_tr ao_tr ao l_dl

Unlabeled data is much cheaper and abundant

Question: Can we use unlabeled data to help?

- What can we predict from unlabeled data?
 - Groups or clusters in the data

- What can we predict from unlabeled data?
 - Groups or clusters in the data
 - ▶ Density estimation (密度估计)

Training data
$$D = \{\mathbf{x_1}, \mathbf{x_2} \dots, \mathbf{x_N}\}$$
 Learning Algorithm Prediction rule
$$f(\mathbf{x}) \to y$$

- What can we predict from unlabeled data?
 - Groups or clusters in the data
 - ▶ Density estimation (密度估计)
 - Low-dimensional structure
 - ▶ Principal Component Analysis 主元分 析 (PCA) (linear)

- What can we predict from unlabeled data?
 - Groups or clusters in the data
 - ▶ Density estimation (密度估计)
 - Low-dimensional structure
 - ▶ Principal Component Analysis 主元分析 (PCA) (linear)
 - ► Manifold learning 流行学习 (non-linear)

Table of Contents

Unsupervised Learning
Clustering
Principle Component Analysis

Clustering

- Are there any "groups" in the data ?
- What is each group ?
- ▶ How many ?
- How to identify them?

Clustering

- Group the data objects into subsets or "clusters":
 - High similarity within clusters
 - Low similarity between clusters
- A common and important task that finds many applications in Science, Engineering, information Science, and other places
 - Group genes that perform the same function
 - Group individuals that has similar political view
 - Categorize documents of similar topics
 - Identify similar objects from pictures

Clustering

Input: training set of input point

$$D_{train} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$$

Output: assignment of each point to a cluster

$$(C(1), \ldots, C(n))$$
 where $C(i) \in \{1, \ldots, k\}$

K-means clustering

Create centers and assign points to centers to minimize sum of squared distance

K-means objective

- lacktriangle Each cluster is represented by a centroid μ
- Encode each point by its cluster center, pay a cost for deviation
- Loss function based on reconstruction

$$Loss_{kmeans} \sum_{j=1}^{n} \left\| \mu_{C(j)} - \mathbf{x}_{j} \right\|^{2}$$

K-means algorithm

▶ Goal: $\min_{\mu} \min_{C} \sum_{j=1}^{n} \left\| \mu_{C(j)} - \mathbf{x}_{j} \right\|^{2}$

- Strategy: alternating minimization
 - ▶ Step 1: if know cluster centers μ , can find best C
 - ▶ Step 2: if know cluster assignments *C*, can find best cluster centers

K-means algorithm

Optimize loss function $Loss(\mu, C)$

$$\min_{\mu} \min_{C} \sum_{i=1}^{n} \left\| \mu_{C(i)} - \mathbf{x}_{i} \right\|^{2}$$

(1) Fix μ , optimize C

$$\min_{C(1),C(2),...,C(n)} \sum_{i=1}^{n} \|\mu_{C(i)} - \mathbf{x}_{i}\|^{2}$$

Assign each point to the nearest cluster center

(2) Fix C, optimize μ

$$\min_{\mu(1),\mu(2),...,\mu(k)} \sum_{i=1}^{n} \|\mu_{C(i)} - \mathbf{x}_{i}\|^{2}$$

Solution: average of points in cluster *i*, exactly second step (re-center)

K-Means

- An iterative clustering algorithm
 - Initialize: Pick K random points as cluster centers
 - Alternate:
 - Assign data points to closest cluster center
 - Change the cluster center to the average of its assigned points
 - Stop when no points' assignments change

 Pick K random points as cluster centers (means)

Shown here for *K*=2

Iterative Step 1

 Assign data points to closest cluster center

Iterative Step 2

 Change the cluster center to the average of the assigned points

Repeat until convergence

Properties of K-means algorithm

- Guaranteed to converge in a finite number of iterations
 - ► To a local minimum
 - ► The objective is non-convex, so coordinate descent on is not guaranteed to converge to the global minimum
- Running time per iteration: simple and efficient
 - Assign data points to closest cluster center

O(KN)

▶ Change the cluster center to the average of its assigned points

O(N)

- ▶ Different initialization will lead to different results
- ▶ K-means problem is NP-hard (之前公式的最优解)
- Not robust to noise and outliers

K-means convergence

Objective

$$\min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{x \in C_i} |x - \mu_i|^2$$

1. Fix μ , optimize C:

optimize C:
$$\min_{C} \sum_{i=1}^{k} \sum_{x \in C_{i}} |x - \mu_{i}|^{2} = \min_{C} \sum_{i=1}^{n} |x_{i} - \mu_{x_{i}}|^{2}$$

Fix C, optimize μ :

$$\min_{\mu} \sum_{i=1}^k \sum_{x \in C_i} |x - \mu_i|^2$$

Take partial derivative of μ_i and set to zero, we have

$$\mu_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$$

Step 2 of kmeans

Kmeans takes an alternating optimization approach, each step is guaranteed to decrease the objective - thus guaranteed to converge

K-means getting stuck

A local optimum:

Would be better to have one cluster here

K-means not able to properly cluster

Changing the features (distance function) can help

Table of Contents

Unsupervised Learning

Clustering

Principle Component Analysis

Principle component analysis

- What is dimensionality reduction?
- Why dimensionality reduction?
- Principal Component Analysis (PCA)
- Nonlinear PCA using Kernels

What is dimensionality reduction?

- ▶ Dimensionality reduction refers to the mapping of the original high-dimensional data onto a lower-dimensional space.
 - Criterion for dimensionality reduction can be different based on different problem settings.
 - Unsupervised setting: minimize the information loss 最近重构性: 样本点到这个超平面的距离都足够近
 - ► Supervised setting: maximize the class discrimination 最大可分性: 样本点在这个超平面上的投影能尽可能分开
 - 对样本进行中心化处理以后,两者等价
- Given a set of data points of d dimension variables $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$
- Compute the linear transformation (projection)

$$P \in R^{d \times m} : \mathbf{x} \in R^d \to \mathbf{y} = P^{\top} \mathbf{x} \in R^m \ (m << d)$$

What is dimensionality reduction?

$$P \in R^{d \times m}: \ \mathbf{x} \in R^d \to \mathbf{y} = P^{\top} \mathbf{x} \in R^m$$

High-dimensional data

Why dimensionality reduction?

- Most machine learning and data mining techniques may not be effective for high-dimensional data
 - Curse of Dimensionality
 - Query accuracy and efficiency degrade rapidly as the dimension increases.
- The intrinsic dimension may be small.
 - For example, the number of genes responsible for a certain type of disease may be small.

Curse of Dimensionality (维数灾难)

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which is critical for clustering and outlier detection, become less meaningful
- ▶ If $N_1 = 100$ represents a dense sample for a single input problem, then $N_{10} = 100^{10}$ is the sample size required for the same sampling density with dimension 10.
- ▶ The proportion of a hypersphere (超球面) with radius r and dimension d, to that of a hyercube (超立方体) with sides of length 2r and dimension d converges to 0 as d goes to infinity —nearly all of the high-dimensional space is "far away" from the center

- Randomly generate500 points
- Compute difference between max and min distance between any pair of points

High dimensional spaces are empty

The volume of an hypercube with an edge length of r=0.1 is $0.1^p \to$ when p grows, it quickly becomes so small that the probability to capture points from your database becomes very very small...

Points in high dimensional spaces are isolated

To overcome this limitation, you need a number of sample which grows exponentially with $p_{\cdot\cdot\cdot}$

Lost in space

Let's consider a hypersphere of radius r inscribed in a hypercube with sides of length 2r. Then take the ratio of the volume (体积) of the hypersphere to the hypercube. We observe the following trends.

in 2 dimensions:

$$\frac{V(S_2(r))}{V(H_2(2r))} = \frac{\pi r^2}{4r^2} = 78.5\%$$

in 3 dimensions:

$$\frac{V(S_3(r))}{V(H_3(2r))} = \frac{\frac{4}{3}\pi r^3}{8r^3} = 52.4\%$$

when the dimensionality d increases asymptotically

$$\lim_{d\to\infty}\frac{V(S_d(r))}{V(H_d(2r))}=\lim_{d\to\infty}\frac{\pi^{d/2}}{2^d\Gamma(\frac{d}{2}+1)}\to 0$$

Why dimensionality reduction?

- ▶ Visualization: projection of high-dimensional data onto 2D or 3D.
- Data compression: efficient storage and retrieval
- Noise removal: positive effect on query accuracy.

Application of feature reduction

- Face recognition
- Handwritten digit recognition
- Text mining
- Image retrieval
- Microarray data analysis
- Protein classification
-

What is Principal Component Analysis?

- Principal component analysis (PCA)
 - Reduce the dimensionality of a data set by finding a new set of variables, smaller than the original set of variables
 - Retains most of the sample's information.
 - Useful for the compression and classification of data.
- ▶ By information we mean the variation present in the sample, given by the correlations between the original variables.
 - ► The new variables, called principal components (PCs), are uncorrelated, and are ordered by the fraction of the total information each retains.

Principal components (PCs)

Given n points in a d dimensional space, for large d, how does one project on to a low dimensional space while preserving broad trends in the data and allowing it to be visualized?

Geometric picture of principal components

► Given *n* points in a *d* dimensional space, for large *d*, how does one project on to a 1 dimensional space

Choose a line that fits the data so the points are spread out well along the line

Let us see it on a figure

PCA 希望降维后信息损失最小,可以理解为投影后的数据尽可能的分开,这种分散程度可以用方差来表示 (μ 为均值):

$$Var(a) = \frac{1}{n} \sum_{i=1}^{n} (a_i - \mu)^2$$

对数据进行中心化后,即 $\mu = 0$:

$$Var(a) = \frac{1}{n} \sum_{i=1}^{n} a_i^2$$

Geometric picture of principal components

对数据进行中心化:

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

$$\mathbf{x}'_i = \mathbf{x}_i - \bar{\mathbf{x}}, \quad 1 \le i \le n.$$

对于中心化以后的数据,即 $\bar{\mathbf{x}}'=0$,以下说法等价: Find a line that

- maximize the variance of the projected data
- maximize the sum of squares of data samples' projections on that line
- minimize the sum of squares of distances to the line

Algebraic Interpretation — 1D

Minimizing sum of squares of distances to the line is the same as maximizing the sum of squares of the projections on that line, thanks to Pythagoras (毕达哥拉斯).

投影长度为: $\mathbf{x}^{\top} \frac{\mathbf{w}}{\|\mathbf{w}\|}$

Algebraic Interpretation — 1D

投影长度为: $\mathbf{x}^{\mathsf{T}}\mathbf{u} = \mathbf{u}^{\mathsf{T}}\mathbf{x}$ subject to $\mathbf{u}^{\mathsf{T}}\mathbf{u} = 1$

Geometric picture of principal components

Geometric picture of principal components

- ▶ the 1^{st} PC \mathbf{u}_1 is a minimum distance fit to a line in X space
- ▶ the 2^{nd} PC \mathbf{u}_2 is a minimum distance fit to a line in the plane perpendicular (垂直于) to the 1^{st} PC

PCs are a series of linear least squares fits to a sample, each orthogonal (垂直于) to all the previous.

▶ Given a sample of *n* observations on a vector of *d* variables

$$\{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n\}\in R^d$$

First project the data onto a one-dimensional space with a d -dimensional vector \mathbf{u}_1 (where $\mathbf{u}_1^{\top}\mathbf{u}_1 = 1$):

$$\left\{\mathbf{u}_1^{\top}\mathbf{x}_1, \mathbf{u}_1^{\top}\mathbf{x}_2, \cdots, \mathbf{u}_1^{\top}\mathbf{x}_n\right\}$$

▶ Find \mathbf{u}_1 to maximize the variance the projected data:

$$\frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{u}_{1}^{\top} \mathbf{x}_{i} - \mathbf{u}_{1}^{\top} \bar{\mathbf{x}} \right)^{2} = \mathbf{u}_{1}^{\top} S \mathbf{u}_{1}$$

Where
$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$
 and $S = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^{\top}$

- ▶ To solve $\max_{\mathbf{u}_1} \mathbf{u}_1^\top S \mathbf{u}_1$ subject to $\mathbf{u}_1^\top \mathbf{u}_1 = 1$
- ▶ Let \(\lambda_1\) be a Lagrangian multiplier (拉格朗日乘子)

$$L = \mathbf{u}_1^{\top} S \mathbf{u}_1 + \lambda_1 \left(1 - \mathbf{u}_1^{\top} \mathbf{u}_1 \right)$$
$$\frac{\partial L}{\partial \mathbf{u}_1} = S \mathbf{u}_1 - \lambda_1 \mathbf{u}_1 = 0$$
$$S \mathbf{u}_1 = \lambda_1 \mathbf{u}_1$$

 \Rightarrow \mathbf{u}_1 is an eigenvector (特征向量)

$$\mathbf{u}_1^{\top} S \mathbf{u}_1 = \lambda_1$$

- $\Rightarrow \mathbf{u}_1$ corresponds to the eigenvector with the largest eigenvalue λ_1
- ▶ 即, $\max_{\mathbf{u}_1} \mathbf{u}_1^{\top} S \mathbf{u}_1$ subject to $\mathbf{u}_1^{\top} \mathbf{u}_1 = 1$ 的结果就是矩阵 S 的最大特征值
 - ▶ 矩阵 S 特征值计算方法: 构造特征多项式 $|S \lambda I| = 0$ (I 为单位矩阵),特征值为线性方程组的解

- ▶ To find the second component **u**₂
- Solve the following

$$\max_{\mathbf{u}_2} \mathbf{u}_2^{\top} S \mathbf{u}_2 \ \text{ subject to } \ \mathbf{u}_2^{\top} \mathbf{u}_2 = 1 \ \& \ \mathbf{u}_1^{\top} \mathbf{u}_2 = 0$$

- \mathbf{u}_2 is the eigenvector with the second largest eigenvalue λ_2

. . .

- Main steps for computing PCs
 - ► Calculate the covariance matrix *S*

$$S = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^{\top}$$

or first center the data: $\left\{\,\mathbf{x}_1',\mathbf{x}_2',\ldots,\mathbf{x}_n'\,\right\} \quad \text{ and } \bar{\mathbf{x}}'=0$

let
$$X = [\mathbf{x}_1', \mathbf{x}_2^\top, \dots, \mathbf{x}_n'] \in R^{d \times n}$$
; then $S = \frac{1}{n} X X^\top$

- ▶ Find the first *m* eigenvectors $\{\mathbf{u}_i\}_{i=1}^m$
- Form the projection matrix

$$P = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_m] \in R^{d \times m}$$

▶ A new test point can be projected as:

$$\mathbf{x}_{new} \in R^d \to P^\top \mathbf{x}_{new} \in R^m$$

$$\mathbf{y} = P^{\mathsf{T}}\mathbf{x} \in R^m$$

- Getting the old data back?
 - If P is a square matrix (方阵), we can recover ${\bf x}$ by

$$\mathbf{x} = (P^{\mathsf{T}})^{-1} \mathbf{y} = P\mathbf{y} = PP^{\mathsf{T}} \mathbf{x}$$

注: $\mathbf{u}_i^{\top} \mathbf{u}_i = 1$ and $\mathbf{u}_i^{\top} \mathbf{u}_j = 0$ for $i \neq j$, then $P^{\top} P = I_m$ (where m = n) and $(P^{\top})^{-1} = P$

- ► Here P is not full (m << d), but we can still recover x by $x = Py = PP^{T}x$, and lose some information
- Objective:
 - Lose least amount of information

Optimality property of PCA

Optimality property of PCA

Main theoretical result:

The matrix P consisting of the first m eigenvectors of the covariance matrix S solves the following min problem:

$$\arg\min_{P \in R^{d \times m}} \|X - X'\|^2) = \arg\min_{P \in R^{d \times m}} \|X - PP^\top X\|^2$$

$$= \arg\max_{P \in R^{d \times m}} trace(X^\top PP^\top X)$$

$$= \arg\max_{P \in R^{d \times m}} trace(P^\top XX^\top P)$$

$$= \arg\max_{P \in R^{d \times m}} trace(P^\top SP)$$
subject to
$$P^\top P = I_m$$

Notice that, for a matrix $A m \times n$ and $B n \times m$, $trace(AB) = trace(BA) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}b_{ji}$ arg $\min_P \sum_{i=1}^{d} \sum_{j=1}^{n} (x_{ij} - x'_{ij})^2$ is equivalent to $\arg\max_P \sum_{i=1}^{d} \sum_{j=1}^{n} x_{ij}x'_{ij}$, as $\sum_{i=1}^{d} \sum_{j=1}^{n} x'_{ij}^2 = trace((PP^TX)^TPP^TX) = trace(X^TPP^TX)$ PCA projection minimizes the reconstruction error among all linear projections of size m.

PCA for image compression

Nonlinear PCA using Kernels

Rewrite PCA in terms of dot products

- ▶ Assume the data has been centered, i.e., $\sum_{i} x_{i} = 0$
- ▶ The covariance matrix S can be written as $S = \frac{1}{n} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathsf{T}}$
- ightharpoonup If ${f u}$ is an eigenvector of S corresponding to nonzero eigenvalue

$$S\mathbf{u} = \frac{1}{n} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{u} = \lambda \mathbf{u} \implies \mathbf{u} = \frac{1}{n\lambda} \sum_{i} (\mathbf{x}_{i}^{\top} \mathbf{u}) \mathbf{x}_{i}$$

- ▶ Eigenvectors of *S* lie in the space spanned by all data points Kernel methods:
 - lacktriangle denote the representation of ${f x}$ as $\varphi({f x})$
 - ▶ define the kernel function $k : \mathbf{X} \times \mathbf{X} \to \mathbb{R}$ by $k(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i)^\top \varphi(\mathbf{x}_j)$
 - ▶ define the kernel matrix K: $K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$

Nonlinear PCA using Kernels

$$S\mathbf{u} = \frac{1}{n} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{u} = \lambda \mathbf{u} \implies \mathbf{u} = \frac{1}{n\lambda} \sum_{i} (\mathbf{x}_{i}^{\top} \mathbf{u}) \mathbf{x}_{i}$$

The covariance matrix can be written in matrix form

$$S = \frac{1}{n}XX^{T}, \text{ where } X = [x_{1}, x_{2}, ..., x_{n}].$$

$$\mathbf{u} = \sum_{i} \alpha_{i} \mathbf{x}_{i} = X\mathbf{\alpha} \qquad S\mathbf{u} = \frac{1}{n}XX^{T}X\mathbf{\alpha} = \lambda X\mathbf{\alpha}$$

$$\frac{1}{n}(X^{T}X)(X^{T}X)\mathbf{\alpha} = \lambda(X^{T}X)\mathbf{\alpha}$$
Any benefits?
$$\frac{1}{n}(X^{T}X)\mathbf{\alpha} = \lambda\mathbf{\alpha}$$

Nonlinear PCA

Linear projections will not detect the pattern.

Comments on PCA

- Linear dimensionality reduction method
- Can be kernelized
- Many nonlinear dimensionality reduction methods (Isomap, graph Laplacian eigenmap, and locally linear embedding/LLE) can be described as kernel PCA with a special kernel

- ► Non-convex optimization problem
- ▶ But easy to solve…

Want to Learn More?

- Machine Learning: a Probabilistic Perspective, K. Murphy
- ▶ Pattern Classification, R. Duda, P. Hart, and D. Stork. Standard pattern recognition textbook. Limited to classification problems. Matlab code. http://rii.ricoh.com/~stork/DHS.html
- ▶ Pattern recognition and machine learning. C. Bishop
- ➤ The Elements of statistical Learning: Data Mining, Inference, and Prediction. T. Hastie, R. Tibshirani, J. Friedman, Standard statistics textbook. Includes all the standard machine learning methods for classification, regression, clustering. R code. http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/
- Introduction to Data Mining, P.-N. Tan, M. Steinbach, V. Kumar. AddisonWesley, 2006
- Principles of Data Mining, D. Hand, H. Mannila, and P. Smyth. MIT Press, 2001
- ▶ 统计学习方法,李航

Machine Learning in Al

Machine Learning History

Summary

Supervised learning

- ► Learning Decision Trees
- K Nearst Neighbor Classfier
- Linear Predictions
- Support Vector Machines

Unsupervised learning

- Clustering
- Principle Component Analysis

作业

► K-means 算法是否一定会收敛?如果是,给出证明过程;如果不是,给出说明。