Informed Search

HFER

USTC
jianmin@ustc.edu.cn

2024 4£3 B 11 A



Used Materials

Disclaimer: ZKIR4FZ AT S. Russell and P. Norvig's Artificial
Intelligence —A modern approach slides, f&#k#]3 MR {4F0E 4tk &
EKIRTBIRMY, WRAT GitHub RFHFERE, MRS NEEE
RS



Table of Contents

TRAE [



TR A [2] Bt

function TREE-SEARCH( problem, [ringe) returns a solution, or failure
fringe — INSERT(MAKE-NODE(INTIAL-STATE[problem)), fringe)

loop do
if fringe is empty then return failure

node — REMOVE-FRONT (fringe)
if GOAL-TEST[problem] applied to STATE(node) succeeds

return node

fringe — INSERTALL(EXPAND(node, problem), fringe)

> A strategy is defined by picking the
» Variety of uninformed search strategies

> lterative deepening search uses only linear space and not much
more time than other uninformed algorithms



Uninformed search strategies

Uninformed search strategies use only the information available in
the problem definition

» Breadth-first search (J" B4 ER)

» Uniform-cost search (X —E % %)

Depth-first search ((REMLLIER)

Depth-limited search (REBIRIEER)

lterative deepening search (IERIRNIREM LI R)
Bidirectional search (R [E#¥X)

v

v

v

v



Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative Bidirectional
First Cost First Limited  Deepening  (if applicable)
Complete? Yes® Yes»® No No Yes® Yes®?
Time o(b%) optic/dy om™)  o®Y) Oo(b%) O(b%/?)
Space opd)  OWTLC/dy  Oo®bm)  O(be) O(bd) O(b¥/?)
Optimal? Yes® Yes No No Yes® Yes®?
Figure 3.21  Evaluation of tree-search strategies. b is the branching factor; d is the depth
of the shallowest solution; m is the maximum depth of the search tree; [ is the depth limit.
Superscript caveats are as follows: @ complete if b is finite; ® complete if step costs > ¢ for
positive e; © optimal if step costs are all identical; ¢ if both directions use breadth-first search.

» b: Branching factor
» d: Solution Depth

» m: maximum Depth




Repeated states

» Failure to detect repeated states can turn a linear problem
into an exponential one!
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Graph

search

function GRAPH-SEARCH( problem, fringe) returns a solution,
or failure

closed — an empty set

fringe — INSERT(MAKE-NODE (INITIAL-
STATE|probleml)),fringe)

loop do
if fringe is empty then return failure

node — REMOVE-FRONT(fringe)
if GOAL-TEST (problem , STATE[node]) then return node
if STATE[node| is not in closed then

add STATE[node| to closed

fringe — INSERTALL(EXPAND (node, problem), fringe)
end




Informed search

» Uninformed search TLEERIEZE: {7 oM
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Best-first Search (FR{EMLEER)



Best-first search

Idea: use an evaluation function (34} ER%Y) for each node
— estimate of “desirability”
—> Expand most desirable unexpanded node

v

A heuristic is:
» A function that estimates how close a state is to a goal
» Designed for a particular search problem

v

v

Implementation: fringe is a queue sorted in decreasing
order of desirability

— priority queue ({L5EZRBA %)

Special cases: greedy search, A* search

v



Best-first search

Best-first search {

closed hist=1[]
cpen list = [start node]

do {
if open lizt is empty then{
return no solution
}

n = heunistic best node
if n== final node then §{

return path from start to goal node
}

foreach direct available node dof
if node not in open and net in closed list do {

add node to open list
s2tn as his parent node

}

delete n from open list

add n to closed list

} while (open list is not empty)

» Best-first search is an instance of the general TREE-SEARCH
or GRAPH-SEARCH algorithm in which a node is selected for

expansion based on an evaluation function.



Romania with step costs in km
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Greedy search

Evaluation function h(n) (heuristic function J54& E&%])
= estimate of cost from n to the closest goal

(= n B EART AR REFEBESERFEATE)

E.g., hsip(n)= straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to

goal (XEY REBHT RRIENR)



Greedy search example

366



Greedy search example

Arad_ .

253 329 374



Greedy search example

Arad

329 374
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Greedy search example

~ Arad
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380 193
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Properties of greedy search
complete? No — can get stuck in loops, e.g. from lasi to Fagaras,
lasi— Neamt—lasi— Neamt —
Complete in finite space with repeated-state checking
Time? O(b™), but a good heuristic can give dramatic
improvement
Space? O(b™) — keeps all nodes in memory
b: Branch factor, d: Solution depth, m: Maximum depth
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Combining UCS and Greedy

» Uniform-cost orders by path cost, or backward cost g(n)
» Greedy orders by goal proximity, or forward cost h(n)
» A* Search orders by the sum: f(n) = g(n) + h(n)

h=6 1] h=5 72 h=0




A* search

» Evaluation function: f(n) = g(n) + h(n)
» g(n) = cost so far to reach n
BET S n BIFERS
» h(n) = estimated cost to goal from n

BREH: WNHR n BIEHRT R SRR EMFERMIT
&

» f(n) = estimated total cost of path through n to goal

23V n HRRERNMEITEY

» A* search uses an admissible heuristic AR B AT
i.e., h(n) < h*(n) where h*(n) is true cost from n
(also require h(n) > 0, so h(G) = 0 for any goal G)

» e.g., hs;p(n) never overestimates the actual road distance
(SLD: Straight-Line Distance)

EIE

A* is optimal if h(n) satisfies certain conditions.



A* search

A* EEH) = AR :
» The tree-search
version

» The graph-search
version

» The practical
version
HE—FHBEFHIE
B & ki, g(n) BRE
BRTREE /N, MTI{E n
EHAAR BT R

A* search {

clozed st =]
open list = [start node]

do {
if open list is empty then {
return no solution
}

n = heuristic best node
if n == final node then {
return path from start to goal node
}
foreach direct available node do{
if current node not in open and not in closed listdo {
add current node to open list and calculate heuristic
set n as his parent node
}
else{
check if path from star node to current node iz
better;
if it is better calculate heuristics and transfer
current node from closed list to open list
set n as his parrent node

delete n from open list
add n to closed list
} while (open list is not empty)




A* search example

366=0+366



A* search example

~ Arad

393=140+253 447=118+329 449=75+374



A* search example

~ Arad

sbiu

447=118+329 449=75+374

646=200+366 415=239+176 671=201+380 413=220+193



A* search example

Arad

Sibu

447=118+329 449=75+374

646=200+366 415=239+176 671=291+380

CEDICIEDD,

526=366+160 417=317+100 553=300+253



A* search example

Arad

ER

447=118+329 449=T5+374

646=280+366 671=291+380

591=336+253  450=450+0 526=366+160 417=317+100 553=300+253



A* search example

Argd
Siiu
' 47=118+329

646=280+366 671=291+380

Coo> @i Co>

591=336+253  450=450+0 526=366+160 563=300+253

PED Caon G@wied)

418=418+0  615=455+160 607=414+193

449=T5+374



Admissible heuristics

» A* heuristic h(n) is admissible (RA]R44HY) if for every node n,
h(n) < h*(n), where h*(n) is the true cost to reach the goal
state from n

> An admissible heuristic never overestimates the cost to reach
the goal (MR T B fit Blik BARMIEERY), ic. it is
optimistic (FRIKYT)

» Example: hs;p(n) (never overestimates the actual road
distance)

EIE
If h(n) is admissible, A* using TREE-SEARCH is optimal



Optimality of A* (proof)

» Suppose some suboptimal (JEE{E) goal G2 has been
generated and is in the fringe. Let n be an unexpanded node
in the fringe such that n is on a shortest path to an optimal
goal G.

Start

SN

n
@ @ G,

> f(Gy) = g(Gz) since h(Gy) =0

» g(Gy) > g(G) since Gy is suboptimal
» (G) = g(G) since h(G) =0

» f(Gz) > f(G) from above



Optimality of A* (proof)

» Suppose some suboptimal goal Gy has been generated and is
in the fringe. Let n be an unexpanded node in the fringe such
that n is on a shortest path to an optimal goal G

Start

SN

n
[5) @G,

» f{G2) > f{G) from above
» h(n) < h*(n) since h is admissible

> g(n) + h(n) < g(n) + h*(n) < g(G) = (G)
n is on a shortest path to an optimal goal G

> f{n) < fG)

Hence f{Gz) > f(n), and A* will never select Gy for expansion



Consistent heuristics

» A* heuristic is consistent (—) if for every node n, every
successor n’ of n generated by any action a,
h(n) < c(n,a,n’) + h(n')

» Consistency implies admissibility!

» If his consistent, we have
fin') = g(n') + h(n') cnan)
g(n) 4+ c(n,a,n") + h(n')
g(n) + h(n)

—
T
If h(n) is consistent, A* using GRAPH-SEARCH is optimal



Optimality of A* (proof)

» A* expands nodes in order of increasing f value
» Gradually adds "fcontours (Z{H%ZZ)" of nodes
» Contour i has all nodes with f= f; , where f; < i1




Properties of A*

Complete? | Yes (unless there are infinitely many nodes with £ < f{G))

Time? A* EENFREMEENBR RPN ERMLH

But still exponential

Space? Keeps all nodes in memory

Optimal? | Yes

» A* expands all nodes with f(n) < C*
» A* expands some nodes with f(n) = C*
» A* expands no nodes with f(n) > C*



8-puzzle revisited

> 8-puzzle B FK LR FEEEMBIETIE P, HEIBRE
H:

HBa B 0B
s e e e
el e e

Start State Goal State

> FHBSHR 22 5. FXEAFAH3
> BHAREE A 22 SRR ETEEERY 3% ~ 3.1x10"°
> REANE O((n+ 1)), NP ST ()




Admissible heuristics

For the 8-puzzle:
» hy(n) = number of misplaced tiles ($&{LAIHEHFED)

» hy(n) = total Manhattan distance (FTEHFRIE BRI ER
IKERFIEE) (i.e., no. of squares from desired location of

each tile)
HBE 1 )f 2]
s el [edie s
el e fe

> hi(S) =7



Admissible heuristics

» hy(n) = number of misplaced tiles ($&{LHIFED)

» hy(n) = total Manhattan distance (FTEHFREBIRIER
JKEREIEEFN) (i.e., no. of squares from desired location of

2]

2]

4]

a

2]

BEREB

B
B

Start State

each tile)
5]
> hl(S) =8

> hy(S) =3+1+424242434+34+2 = 18

Goal State




Dominance

For the 8-puzzle:
> If ha(n) > hy(n) for all n (both admissible)
» then hy dominates h; (dominate %&i&. H1k)

hs is better for search

v

v

Typical search costs (average number of nodes expanded):
> d=12
» IDS = 3,644,035 nodes
» A*(hy) = 227 nodes
» A*(hg) = 73 nodes
> d=24
» IDS = too many nodes

» A*(hy) = 39135 nodes
» A*(hg) = 1641 nodes

Given any admissible heuristics h,, hyp
h(n) = max(h,(n); hp(n)) is also admissible and dominates h,, hp,



8-puzzles

#R fn) = g(n) +hBE g [0
h(n)= # % N

g(n)='¥'.§,5¥~&
2 8 3
1450 § 4
25 3
2+3im 4y
7 6 5
3+3 3+4 3+2
4+11-ai
/65
773 Tz
5¢0% @y 527 5 4
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Relaxed problems

> A problem with fewer restrictions on the actions is called a
relaxed problem (¥A5th|a] &%)

» The cost of an optimal solution to a relaxed problem is an
admissible heuristic for the original problem
— MRt R R BRI RM R RE BN — 1A RANER
X

> If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then hy(n) gives the shortest solution
MREFAIESEHE, M M SHSENETITH

> If the rules are relaxed so that a tile can move to any adjacent
square, then hy(n) gives the shortest solution
ﬂﬂfﬁ?ﬂu@iﬁ@]ﬁ%ﬁ*ﬁ%ﬂ’ﬂiﬁ, W hy 45 HERERI
Vi

Key point: the optimal solution cost of a relaxed problem is
no greater than the optimal solution cost of the real problem



Relaxed problems

> FIERATH (5]
> RER: —MEFRLUAGE A BEHEIAE B, WRAS
B AFRHEZEEBMME B =k
> it 1 —MEFRAIAAGTE A BEEIA#% B, IRASB
1H4R — ho
> 1;-2\’;'5‘111 20 —PMEFRAIANTH A BHEIH1E B, MR B RE

> it 3 —PEFARINAR A BEHEFEB — M
> MRA—NARABEZRMIES {h, ... hm}

h(n) = max(hi(n), ..., hm(n)) ATRMFLLRZBEXEGR
2



Evaluation Function f(n)

» h(n) — heuristic, estimate of cost from n to the closest goal
(T &= n BB SRR EHNERGITHE)

> g(n) — path cost to n (¥I4E1 R BIXANT SRYBERIRFERY
)

Possible evaluation functions:

» f{n) = g(n) : Uniform Cost

» f{n) = h(n) : Greedy

» f(n) = g(n)+ h(n) : A*

estimates the total cost of a solution path which goes through

node n



Hybrid A*

» Hybrid A*: ZEiHB EREMANBEMRRNEE, IRk
HEL, MR AT TR EE L B B AR AL E
» BERE (x5, 0, ), r RENESEFIR
> (TEHEEL (BERERLS, BEEERERZH) max-left,
no-turn, max-right
- REREH
» non-holonomic-without-obstacles: ZR§FERSY, {BE#H BT
B4R (ELHRESETL), ERFHEPHREREES
» holonomic-with-obstacles: Z[E[EfSY), BZERAT{THZIER,
ERFHEPHREKREES
> B EETEEFRL
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Local Search Algorithms



Local search algorithms

» In many optimization problems, the path to the goal is
irrelevant; the goal state itself is the solution

» State space = set of “complete” configurations (52& 1k

)
1R
— Find configuration satisfying constraints, e.g., n-queens

» In such cases, we can use local search algorithms
» keep a single “current” state, try to improve it
» Constant space, suitable for online as well as offline search



Example: n-queens

» Put n queens on an nxn board with no two queens on the
same row, column, or diagonal




Hill-climbing search

» “Like climbing Everest in thick fog with amnesia (#&4%E)"

function HILL-CLIMBING( problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current + MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor < a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[curreni]
current < neighbor




Hill-climbing search

» Problem: depending on initial state, can get stuck in local

maxima (FEf&K{E)

objectiye function lobal maximum

shoulder
local maximum
"flat" local maximum

tate space
current P

state

Random-restart hill climbing overcomes local maxima — trivially
complete
Random sideways moves escape from shoulders loop on at maxima



Hill-climbing search: 8-queens problem

13.14 13.14
16 15.14.16
14.13 15.14

14 w 16 16

14 17-14.13

» h = number of pairs of queens that are attacking each other,
either directly or indirectly
» h =17 for the above state



Hill-climbing search: 8-queens problem

» A local minimum with h =1



Simulated annealing search (IR X ER)

Idea: escape local maxima by allowing some “bad” moves but
gradually decrease their frequency

function SIMULATED-ANNEALING( problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
T, a “temperature” controlling prob. of downward steps

current < MAKE-NODE(INITIAL-STATE[problem])
for t— 1 to oo do
T'— schedule[f]
if 7= 0 then return current
next«— a randomly selected successor of current
AE« VALUE[neat] = VALUE[current]
if AE > 0 then current <« next

else current < next only with probability e /7




Properties of Simulated Annealing Search

» One can prove: If T decreases slowly enough, then
simulated annealing search will find a global optimum
with probability approaching 1

» Widely used in VLSI layout (B KAIMEERBREHRF),

airline scheduling, etc



Local beam search (JHEREIIEE)

1. Keep track of k states rather than just one
2. Start with k randomly generated states

3. At each iteration, all the successors of all k states are
generated

4. If any one is a goal state, stop; else select the k best
successors from the complete list and repeat.



Local beam search (JHEREIIEE)

v

Like greedy search, but keep k states at all times:
OO —0

\‘:::Ao \::::‘O \\::\\AO
0 0 O

“O
Greedy Search Beam Search

v

Not the same as k searches run in parallel!

v

Searches that find good states recruit other searches to join
them

v

Problem: quite often, all k states end up on same local hill

v

Idea: choose k successors randomly, biased towards good ones



Genetic algorithms (iZfE&E %)

> A successor state is generated by combining two parent states

v

Start with k randomly generated states (population Fh1&%)

v

A state is represented as a string over a finite alphabet (often
a string of Os and 1s)

Evaluation function (fitness function &N E &K #]). Higher
values for better states

v

v

Produce the next generation of states by selection, crossover,
and mutation (£, %%, TH



Genetic algorithms

| 32752411 [ 32748552 || 327452 |

[ 24748552 | 24752411 || 24752411 |

20 26% | 32752411 [32752124 || 32252124 |

11 14% ~[ 24415124 | 24415811 || 2441541[7]
Fitness Selection  Pairs Cross-Over

» Fitness function: number of non-attacking pairs of queens A~

EHRBEMNEFHE (min=0, max= 2T = 28)

24/(24 4 23 + 20 + 11) = 31%
23/(24 4 23 + 20 + 11) = 29% etc



Genetic algorithms

s



Summary

v

Heuristic functions estimate costs of shortest paths

v

Good heuristics can dramatically reduce search cost
Greedy best-first search expands lowest h
» incomplete and not always optimal

v

v

A* search expands lowest g+ h

» complete and optimal
» also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of
relaxed problems

v



Summary

» Local search algorithms:
the path to the goal is irrelevant; the goal state itself is
the solution keep a single “current” state, try to improve
it
» Hill-climbing search:
depending on initial state, can get stuck in local maxima
» Simulated annealing search:
escape local maxima by allowing some “bad” moves but
gradually decrease their frequency
» Local beam search:
keep track of k states rather than just one
» Genetic algorithms



Uninformed/Informed Search

> FHERAXNEREXKRSHE R ERE

> BEHFREAXBEREZMNG BEARHHRIFHERS
B, MEMEHEESNHRANSLREE, FitkE
BERANKA—HE AR RRE.



Uninformed/Informed Search

> FFROIR R RLi%
> SlEE— BRRMEL
> R — BRNE
> ERBEEN— ERASRIE

> RN vs HERE
- BRN: AAFES. EBERER
- BRE: AAXES EBIIIRER (BRHELE)



Bk

ETHRE:
> 4.1,4.2,46, 47
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