Game Playing

HER

USTC
jianmin@ustc.edu.cn

2024 4£3 B 20 H

Used Materials

Disclaimer: ZKIR4FZ AT S. Russell and P. Norvig's Artificial
Intelligence —A modern approach slides, f&#k#]3 MR {4F0E 4tk &
EKIRTBIRMY, WRAT GitHub RFHFERE, MRS NEEE
RS

Table of Contents

Games

Game Playing

Game playing was thought to be a good problem for Al
research:

v

game playing is non-trivial
Perfect play (ExfLRAE)

» players need “human-like” intelligence
» games can be very complex (e.g., Chess, Go)
> requires decision making within limited time

v

» games usually are:

» well-defined and repeatable
» fully observable and limited environments

v

can directly compare humans and computers

Computers Playing Chess

Computers Playing Go

Challenge Match

8- 15 March 2016

IE

HMENERE
i RE=RERE PEMERE
it 1074 1075
ElFmBkHE 10721 10731
EfrsiE 10746 107123
PESE 10748 107150
hFiH 107105 10770
Bl 107172 104360

Games vs. search problems

“Unpredictable” opponent (AAFMAIXTFE) = solution is a
strategy specifying a move for every possible opponent reply

Time limits = unlikely to find goal, must approximate

X F R R A = HERES

Plan of attack:
» Computer considers possible lines of play (Babbage, 1846)

» Algorithm for perfect play (Zermelo, 1912; Von Neumann,
1944)

» Finite horizon, approximate evaluation (Zuse, 1945; Wiener,
1948;Shannon, 1950)

» First chess program (Turing, 1951)

» Machine learning to improve evaluation accuracy (Samuel,
1952-57)

» Pruning (B74%) to allow deeper search (McCarthy, 1956)

Types of games

Deterministic Stochastic (chance)
perfect chess, checkers, | Backgammon (3 %X
information | Go (E#L) , fhA)
othello monopoly
imperfect battleships, bridge, poker, scrabble
information | plind tictactoe | (¥FF ¥)
nuclear war

Game Theory

» Models strategic interactions as games

» In normal-form games (matrix games), all players
simultaneously select an action, and their joint action
determines their individual payoff

» One-shot interaction
» Can be represented as an n-dimensional payoff matrix, for n
players

> A player’s strategy is defined as a probability distribution over
his possible actions
» Stochastic games is an extension of normal-form games and

MDPs in the sense that they deal with multiple agents in a
multiple state situation.

Normal-Form Game

» A normal-form game can be defined as a tuple
(n, A1._n, R1._n) where:
> nis the number of agents
> A; is the action set for player i
» A= A; X --- X A, is the joint action set
» R; : A— R is the reward function of player i
» Each agent i selects policy 7 : Aj — [0, 1] (m; € PD(A))),
takes action a; € A; with probability 7;(a;), and receives utility
R,-(al, ey a,,)
» Given policy profile (my,...,m,), expected utility to i is

R,’(7T1,..., ZR HT['J aj

acA

» Agents want to maximise their expected utilities

Normal-Form Game: Prisoners’ Dilemma

Example: Prisoner’s Dilemma

e Two prisoners questioned in isolated cells

e Fach prisoner can Cooperate or Defect

e Utilities (row = agent 1, column = agent 2):

C D
Cl-1-1]-50
D| 0-51]-3-3

Normal-Form Game: Rock-Paper-Scissors

Example: Rock-Paper-Scissors

e Two players, three actions

* Rock beats Scissors beats Paper beats Rock
e Utilities:

Optimality Concepts

Optimality Concepts in Normal-Form Games:

» Best-Response Function: set of optimal strategies given the
other agents current strategies.

7'(';-'< S BR,'(ﬂ'_,') iff
v € PD(A)) Ri((mf, m—i)) > Ri((mj,m_))

» Nash Equilibria: all agents are using best-response strategies.
Vi=1l...n m¢€ BR,‘(T&',,')

» All Normal-Form Games have at least one Nash Equilibrium

Game Classification: Zero-sum

e 2 players with opposing objectives.

e There is only one Nash equilibrium

¢ Minimax to find it.

(a) Reward function for player 1 (b) Reward function for player 2

Two-Player Zero-Sum Games

» Characteristics:

» Two opponents play against each other.
» symmetrical rewards (always sum zero).
» Usually only one equilibrium and if more exist they are
interchangeable
> Interchangeable: (w1, m2) F (u1, uo) 2 Nash equilibria,
'ﬂ%l] (1, p2), {p1, m2) HRZ Nash equilibria; FEEATXAERHE

» Minimax to find an equilibrium (2, A, O, R, —R):

max min Y 7(a)R(a, o)
TEPD(A) ocO vy

» Formulated as a Linear Program.
» Solution in the strategy space: simultaneous playing
invalidates deterministic strategies.

Minimax Search

m Minimax values can be
found by depth-first
game-tree search

m Introduced by Claude
Shannon: Programming a
Computer for Playing Chess

m Ran on paper!

[\

Etc

Minimax Search Example

max

min

max

min

Game tree (2-player, deterministic, turns)

MAX (X)
MIN (0)
MAX (X)
MIN (0)
[xJo[x] [x]o[x] [x]o[x
TERMINAL [[0[X| [O]0[X X
| [o]] [x[x[o] [x]o]o
Utility -1 0 +1

Deterministic Two-Player

> E.g. tic-tac-toe, chess, checkers

» Game search

A state-space search tree

Players alternate

Players Each layer, or ply, consists of a round of moves
Choose move to position with highest achievable utility

vV vy vy

» Zero-sum games

» One player maximizes result
» The other minimizes result

Table of Contents

Perfect play (S{LHERE)

Minimax Principle

» Assume both players play optimally
» The computer assumes after it moves the opponent will choose
the minimizing move
» The computer chooses the best move considering both its
move and the opponent’s optimal move

computer's
ossible moves

max
min

ee oee 00 °°° terminal States

board evaluation from computer's perspective

Minimax
Perfect play (F{L3ER&) for deterministic, perfect-information
games
Idea: choose move to position with highest minimax value
= best achievable payoff against best play
EXNFHERARARBIZGT, ESHEDALLHERKER
&R

BRIEA DR E R RRUREEIT, WA SHRIME (MIN
TR) BRAE (MAX FR) SEXREHHAE

> MAX fREEFRRKENRE

> MIN fLEERBR/IMERIRTS

MINMAX - VALUE(n) =
UTILITY (n) Y IR

MAX, g, urorsy MINMAX - VALUE(s) 24nMAXT £
N, g, rors(ryMINMAX - VALUE(s) 24 AMIN £

Minimax
Perfect play (F{L3ER&) for deterministic, perfect-information
games
Idea: choose move to position with highest minimax value
= best achievable payoff against best play
ENFHREARILREHIFEHT, ESBEDAILEEREER
&R

BIEA AR E IR BRI REHT, BAT RHRME (MIN
Te) BRAE (MAX 1TR) SENEKESHAE

E.g., 2-ply game:
MAX

MIN

Minimax algorithm

function MINIMAX-DECISION(state) returns an action
inputs: state, current state in game

return the a in ACTIONS(state) maximizing MIN-VALUE(RESULT(q, state))

function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
Ve —00
for a, sin SUCCESSORS(state) do v+ MAX(v, MIN-VALUE(s))
return v

function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
V00
for a, sin SUCCESSORS(state) do v« MIN(v, MAX-VALUE(s))
return v

Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)
Optimal?? Yes, against an optimal opponent. Otherwise??
Time complexity?? O(b™)

Space complexity?? O(bm) (depth-first exploration)

For chess, b~35, m~~100 for “reasonable” games
= exact solution completely infeasible

But do we need to explore every path?

a — (8 Pruning

» Some of the branches of the game tree won't be taken if
playing against an intelligent opponent

» “If you have an idea that is surely bad, don't take the time to
see how truly awful it is.”
— Pat Winston

> Pruning can be used to ignore some branches

a — (3 pruning example

MAX

MIN

12

23

o — 3 example

MAX

MIN

X

23

€2

a — (3 pruning example

MAX

MIN 3

a — (3 pruning example

MAX

MIN 3

a — (3 pruning example

MAX

MIN 3

Why is it called a — 3

» « is the best value (to MAX) found so far on the current path
FB R AL ERE EREREFEARIE MAX B95E (B
RAfE) ©®F

» If vis worse than o, MAX will avoid it, so can stop
considering v's other children = prune that branch

» Define 8 similarly for MIN

« — [pruning

> «: the minimum score that the maximizing player is assured of
» 3: the maximum score that the minimizing player is assured of

» Whenever § < «, the maximizing player need not consider
further descendants of this node, as they will never be reached
in the actual play.

MAX

MIN

MAX

MIN

MAX

The o — 3 algorithm

function ALPHA-BETA-SEARCH(slale) returns an action
v +— MAX-VALUE(state, —00, +00)
return the action in ACTIONS(state) with value v

function MAX-VALUE(state, e, 3) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
Y+ —00
for each @ in ACTIONS(state) do
v+ MAX(v, MIN-VALUE(RESULT(s,a), &, 3))
if v > [then return v
a«— MAX(a, v)
return v

function MIN-VALUE(state, a,) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v +— 400
for each a in ACTIONS(state) do
v+ MIN(v, MAX-VALUE(RESULT(s,a) . «, (3))
if v < o then return v
3 —MIN(3, v)
return v

Working of a — (3 pruning

Working of a — (3 pruning

Working of a — (3 pruning

— Min

Working of a — (3 pruning

Working of a — (3 pruning

Working of a — (3 pruning

Effectiveness of @ — 3 Search

» Effectiveness depends on the order in which successors are
examined; more effective if best successors are examined first

» Worst Case:
- ordered so that no pruning takes place
- no improvement over exhaustive search

> Best Case:
- each player's best move is evaluated first

» In practice, performance is closer to best, rather than worst
case

Properties of o — (3

Pruning does not affect final result
Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity = O(b™/?)
=-doubles solvable depth

A simple example of the value of reasoning about which
computations are relevant (a form of metareasoning)

Unfortunately, 35°° is still impossible!

Table of Contents

Resource limits and approximate evaluation

Resource limits

Standard approach: Depth-limited search
® Use CUTOFF-TEST (# W7 i) instead of TERMINAL-TEST (& jt l4%)
e.g., depth limit (perhaps add quiescence search # %1% %)
® Use EVAL instead of UTILITY
JVT DU L R R M 8 B R AT B B EVALEUR 8 R B 3

i.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 10* nodes/second
= 10° nodes per move =~ 357

= «a — [F reaches depth 8 = pretty good chess program

4-ply lookahead is a hopeless chess player!
- 4-ply =~ human novice
- 8-ply = typical PC, human master
- 12-ply = Deep Blue, Kasparov

Evaluation functions

¢ Function which scores non-terminals

Black to move White to move

White slightly better Black winning

* ldeal function: returns the utility of the position
» In practice: typically weighted linear sum of features (4F)

Eval(s) = w,fy(s) + wyby(s) + ... + w,f(s)
e.g., for chess, w; = 9 with

f(s) = (number of white queens) - (number of black queens), etc.

Binary-Linear Value Function

m Binary feature vector x(s): e.g. one feature per piece
m Weight vector w: e.g. value of each piece

m Position is evaluated by summing weights of active features

1 +5 13

1 +3 | A

0 +1 | A
. _ _ |1 -5 1=
(s, w)=x(s) -w=

0 3|8

0 Y

More on Evaluation Functions

» The board evaluation function estimates how good the
current board configuration is

> A linear evaluation function of the features is a weighted sum
of fi, f, f3, ..
- More important features get more weight

» The quality of play depends directly on the quality of the
evaluation function

» To build an evaluation function we have to:
- construct good features using expert domain
knowledge
- pick or learn good weights

Digression: Exact values don't matter

MAX
MIN 1X' 1K 20
1 é 4 1 0 20 400

Behavior is preserved under any monotonic (E2iEH])
transformation of EVAL

Only the order matters:
payoff (Z5E) in deterministic games acts as an ordinal utility

(F#%0H) function

Dealing with Limited Time

> In real games, there is usually a time limit T on making a
move

» How do we take this into account?
- cannot stop alpha-beta midway and expect to use
results with any confidence

- so, we could set a conservative depth-limit that
guarantees we will find a move in time < T

- but then, the search may finish early and the
opportunity is wasted to do more search

Dealing with Limited Time

» In practice, iterative deepening search (IDS) is used
- run a — 3 search with an increasing depth limit
-when the clock runs out, use the solution found for the

last completed o — 3 search
(i.e., the deepest search that was completed)

Deterministic games in practice

Chess (EFr5#) : Deep Blue defeated human world
champion Gary Kasparov in a six-game match in 1997. Deep
Blue searches 200 million positions per second, uses very
sophisticated evaluation, and undisclosed methods for
extending some lines of search up to 40 ply.

- TENEBRAERRRPORKBEFFS]. MRELEE
—TREFERRBNH—RRT IR ROUT A SRR X

2
7%

—Kasparov
-Kasparov lost the match 2 wins to 3 wins and 1 tie search
-Deep Blue played by “brute force” (i.e., raw power from
computer speed and memory); it used relatively little that is similar
to human intuition and cleverness
-Used minimax, o — (3, sophisticated heuristics

Deterministic games in practice

Checkers (FHi¥EBEH) : Chinook, the World Man-Machine
Checkers Champion

» Chinook ended 40-year-reign of human world champion
Marion Tinsley in 1994.

» In 2007, checkers was solved: perfect play leads to a draw

Chinook cannot ever lose

BR T —ARAT BT 8 774 443,748 401,247/ 1 5 T8N T 09 L B L
¥ &, € # 5% R (endgame) & HL 3% A bk

50 machines working in parallel on the problem

Deterministic games in practice

Othello (B82 %): human champions refuse to compete against
computers, who are too good.

Go (El#H) : human champions refuse to compete against
computers, who are too bad. In go, b > 300 (##&# 19x19) , so
most programs use pattern knowledge bases to suggest plausible
moves.

A new benchmark for Artificial Intelligence (A TEREHAIRER)

AlphaGo: First to beat human pro in 19x19 Go

* Google DeepMind computer go player

— deep neural networks:
* value networks: to evaluate board positions
* policy networks: to select moves
— trained by
* supervised learning
* reinforcement learning by self-play
— search algorithm

* Monte-Carlo simulation + value/policy networks

AlphaGo: Background

* reduction of search space:
— reduced depth
* position evaluation
— reduced branching

* move sampling based on policy

* policy = probability distribution p(als)

Deep Neural Networks in AlphaGo

Rollout policy SL policy network RL policy network Value network Policy network Value network

Po Yo

'% “%, / :
&"’ A
Human expert positions Self-play p;swtwcns

AlphaGo uses two types of neural networks:

Py, (als) %)

Jiomeu [einaN

‘ L

g

— policy network: what is the next move?
* learned from human expert moves
— value network: what is the value of a state?

* learned from self-play using a policy network

SL = supervised learning, RL = reinforcement learning .

Deep Neural Networks in AlphaGo

AlphaGo win rate (%)

70+
60
50+
40+
304
204
10

128 filters
192 filters
256 filters
384 filters

50 51 52 53 54 55 56 57 58 59

Training accuracy on KGS dataset (%)

Table of Contents

Games of chance (B4 JLEEZHIHEX)

Nondeterministic games:backgammon(Fg ;¥ fiH)

25 24 23 22 21 20 19 18 17 16 15 14 13

o> «F = = T 9Dae

Nondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling

Simplified example with coin-flipping:

MAX

JLEF K> CHANCE

MIN

Nondeterministic games in general

* Weight score by the
probability that move occurs yax

* Use expected value for move:
instead of using max or min, CHANCE
compute the average,
weighted by the probabilities
of each child MIN

* Choose move with Ajghest
expected value

Stochastic Game

» Multiple-state / Multiple-agent environment. Like an
extension of MDPs and Normal-Form Games.

» Markovian but not from each player’s point of view.

» A stochastic game is a tuple (n, S, Ay, T, Ri,.) where:

>

>

>

n represents the number of agents

S the state set

A; the action set of agent jand A= A; X --- X A, the joint
action set

T:SxAxS—[0,1] is a transition function which depends
on the actions of all players

R:Sx AxS— R is areward function representing the
expected value of the next reward, which also depends on the
actions of all players.

» Each agent i selects policy 7r; : S — PD(A;) (probability
7i(ai | s))

» Joint policy m = (mj, m_;)

Optimality Concepts in Stochastic Games

Optimality Concepts in Stochastic Games:

» The discounted reward over time is usually considered, as in

MDPs:
Vi(s)=E Z’Y Mok | se=sm
k=0
=Y 7w(sa)>_ T(sa5) (R(sa5)+7V(s))
a s
Q@ (s, a) = Z T(s,a,9) (Ri(s,a,s) +vVi (¢))
s

» Best-response function: defined for policies with the state
values as reference.

7T;-k S BR,'(TK',,') iff
¥ € Sx PD(A),Ys€ S V™ (s) > Vimmi(s
» Nash equilibria: All players are using best-response policy.

Vi=1l...n m€ BR,'(ﬂ',,')

Maximum Expected Utility

» Why should we average utilities? Why not minimax?

» Principle of maximum expected utility: an agent should chose
the action which maximizes its expected utility, given its
knowledge

» General principle for decision making

» Often taken as the definition of rationality

» We'll see this idea over and over in this course!

Algorithm for nondeterministic games

EXPECTIMINIMAX gives perfect play

Just like MINIMAX, except we must also handle chance nodes:

if stateis a Max node then

return the highest EXPECTIMINIMAX-VALUE of SUCCESSORS(state)
if stateis a Min node then

return the lowest EXPECTIMINIMAX-VALUE of SUCCESSORS (state)
if stateis a chance node then

return average of EXPECTIMINIMAX-VALUE of SUCCESSORS(state)

Stochastic Two-Player

Dice rolls increase b: 21 possible rolls with 2
dice

— Backgammon ~ 20 legal moves

— Depth 4 =20 x (21 x 20)* 1.2 x 10°

As depth increases, probability of reaching a
given node shrinks

— So value of lookahead is diminished

— So limiting depth is less damaging

— But pruning is less possible...

TDGammon uses depth-2 search + very
good eval function + reinforcement
learning: world-champion level play

»
&

242322212019 1817 16 1514 13

Digression: Exact values DO matter

MAX
DICE

MIN

Behaviour is preserved only by positive linear transformation of EVAL

Hence EVAL should be proportional to the expected payoff
VP B8 2R 7R A R B A R (B B O R

Table of Contents

Games of imperfect information

Games of imperfect information

E.g., card games, where opponent’s initial cards are unknown
Typically we can calculate a probability for each possible deal
Seems just like having one big dice roll at the beginning of the
game

Idea: compute the minimax value of each action in each deal, then
choose the action with highest expected value over all deals

AN — D ERAMBRLETHTER, FRITEHERITHEM
R AT AR MR K(E, REE RESaIMASERTEF2IX
B XS EEE.

Example

Four-card bridge/whist/hearts hand, MAX to play first

zpzziElze ZEMcEE ZENEE ST
— — — — 0
zzosizzzcElce CFl: TilE

—IFIniRER, ANEXSFHM 3 3K, BRTE—HAE.
ERMN: AREE, —EEHRAEE: kX R—RE—
BEH

BHE AR 4

Example

Four-card bridge/whist/hearts hand, MAX to play first

g e R o
MIN [avf2efo 49j24f o) [olol 8] o) | 8 z 28
-GN
MIN [2¢f2a]oaf3a 44]20f05}3. mm mm 38) = 28]

HEHMEATER 4

Example

Four-card bridge/whist/hearts hand, MAX to play first
gt i K o
UWHTZCORNTIZCOEEE S Tt £
gt i D
M [sefaels 2 T CpEt €
mmmmm cizz cpdd £
MIN |4 f2alosfos] azCSiyaz a2 T B

5 IRE

HFEHKEAMER

Example

Example (cont.)

s =
X,z
—

£
Z
—

-

Al - Berlin Chen 68

Proper analysis

* Intuition that the value of an action is the average of its values
in all actual states is WRONG

With partial observability, value of an action depends on the

information state or belief state ({Z £k 74) the agent is in
Can generate and search a tree of information states

Leads to rational behaviors such as
@ Acting to obtain information
@ Signaling to one’s partner

@ Acting randomly to minimize information disclosure

Computers Playing Texas Holder

AMYSTERY ALJUST CRUSHED
THE BEST HUMAN PLAYERS AT
PORER

According to the human players
that lost out to the machine,
Libratus is aptly named. It does a
little bit of everything well:

knowing when to bluff
and when to bet low with very good cards,

as well as when to change its bets just to
thrown off the competition.

Summary

» Games are fun to work on!
-perfection is unattainable must approximate
-Games are to Al as grand prix racing is to automobile
design
» Game playing is best modeled as a search problem
-Search trees for games represent alternate
computer/opponent moves

» Evaluation functions estimate the quality of a given board
configuration for each player

» Minimax is an algorithm that chooses “optimal” moves by
assuming that the opponent always chooses their best move

» Alpha-beta is an algorithm that can avoid large parts of the
search tree, thus enabling the search to go deeper —iBER TR
HFRIRERE

Summary of Search

» Uninformed search strategies
Breadth-first search (BFS), Uniform cost search, Depth-first
search (DFS),Depth-limited search, lterative deepening search

» Informed search strategies
-Best-first search: greedy, A*
-Local search: hill climbing, simulated annealing etc.

» Constraint satisfaction problems
-Backtracking = depth-first search with one variable
assigned per node
-Enhanced with: Variable ordering and value selection
heuristics, forward checking, constraint propagation

Bk

» 8=k 59, 5.8, 5.13

	Games
	Perfect play（最优策略）
	minimax decisions
	- Pruning

	Resource limits and approximate evaluation
	Games of chance (包含几率因素的游戏)
	Games of imperfect information

