Logical Agents

FER

USTC

jianmin@ustc.edu.cn

2024 (£3 B 31 H

Used Materials

Disclaimer: ZKIR4FZ AT S. Russell and P. Norvig's Artificial
Intelligence —A modern approach slides, f&#k#]3 MR {4F0E 4tk &
EKIRTBIRMY, WRAT GitHub RFHFERE, MRS NEEE
RS

Some modeling paradigms

> State-based models: search problems, MDPs, games
» Applications: routing finding, game playing, etc.
» Think in terms of states, actions, and costs
» Variable-based models: CSPs, Bayesian networks
» Applications: scheduling, medical diagnosis, etc.
» Think in terms of variables and factors
» Logic-based models: propositional logic, first-order logic

» Applications: theorem proving, verification, reasoning
» Think in terms of logical formulas and inference rules

Search problems Constraint satisfaction problems
Markov decision processes Markov networks
Adversarial games Bayesian networks
Reflex States Variables
" Low-level intelligence” "High-level intelligence” "

Machine learning

Example

» Question: If X; + X5 =10 and X; — X5 =4, what is X;7?
» Think about how you solved this problem. You could treat it

as a CSP with variables X7 and X3, and search through the
set of candidate solutions, checking the constraints.

» However, more likely, you just added the two equations,
divided both sides by 2 to easily find out that X; = 7.

» This is the power of logical inference, where we apply a set of
truth-preserving rules to arrive at the answer. This is in
contrast to what is called model checking, which tries to
directly find assignments.

» We'll see that logical inference allows you to perform very
powerful manipulations in a very compact way. This allows us
to vastly increase the representational power of our models.

A historical note

v

Logic was dominant paradigm in Al before 1990s

v

Problem 1: deterministic, didn't handle uncertainty
(probability addresses this)

v

Problem 2: rule-based, didn't allow fine tuning from data
(machine learning addresses this)
Strength: provides expressiveness in a compact way

» There is one strength of logic which has not quite yet been
recouped by existing probability and machine learning
methods, and that is expressivity of the model

v

Motivation: smart personal assistant

Tell information
e

Ask questions

Use natural language!

» How to build smart personal assistants?
» Systems like Apple’s Siri, Microsoft Cortana, Amazon Echo
(Alexa), and Google Now (Assistant)
» Smart speaker (eurrent past): Intent Detection + Slot Filling
+ Search
» Smart speaker (future current): Large Language Model (LLM)
+ Reasoning
> Need to:
» Digest heterogenous information
» Reason deeply with that information

Language

v

Language is a mechanism for expression

v

Natural languages (informal):
> XIE: ZTHERR(BEL.

» English: Two divides even numbers.

v

Programming languages (formal):

» Python: def even(x): return x % 2 ==
» C++: bool even(int x) { return x % 2 == 0; }

v

Logical languages (formal):
» First-order logic: Vx. Even(x) — Divides(x, 2)

Two goals of logic

o Represent knowledge about the world

Elaboration Tolerance

» Elaboration Tolerance (McCarthy, 1998)

“A formalism is elaboration tolerant [if] it is
convenient to modify a set of facts expressed in the
formalism to take into account new phenomena or
changed circumstances.”

» Uniform problem representation
For solving a problem instance / of a problem class C,
» | is represented as a set of facts P,
» (s represented as a set of rules P¢, and
» P¢ can be used to solve all problem instances in C

Traditional Software

Programmer

Program

Buinjog wajqoad

<
<

Computer

Traditional Software

Programmer

How?

Suinjog wig|qoad

Computer

Knowledge-driven Software

Program

Suinjos wajqoad

Knowledge

Solver

Computer

Knowledge-driven Software

How?

Suinjog wdqoad

What?

How!

Computer

Knowledge-driven Software

Programmer

Program

Suinjog wiv|qoud

Knowledge

Solver

Expert

Computer

What is the benefit?

=+ Transparency
+ Flexibility

+ Maintainability
+ Reliability

Knowledge

Solver

Expert

What is the benefit?

+ Transparency
+ Flexibility

+ Maintainability
+ Reliability

+ Generality
+ Efficiency

+ Optimality
+ Availability

Knowledge

Solver

Expert

Table of Contents

Knowledge-based agents

Knowledge bases

engine

Knowledge base ~e———— domain-specific content

Knowledge base (#1175 2) = set of sentences in a formal language

HH R B iR

Declarative approach to building an agent (or other system):

TELL (& 7/%) it what it needs to know
W EAT A E—

Then it can ASK (14 17]) itself what to do — answers should follow from the KB

Agents can be viewed at the knowledge level (177 =)
i.e., what they know, regardless of how implemented

Or at the implementation level (L)
i.e., data structures in KB and algorithms that manipulate them

A simple knowledge-based agent

function KB-AGENT(percept) returns an action
static: KB, a knowledge base
t, a counter, initially 0, indicating time

TELL(K B, MAKE-PERCEPT-SENTENCE(percept, t))
action — ASK(K B, MAKE-ACTION-QUERY(t))
TELL(K B, MAKE-A CTION-SENTENCE(action, t))
ft—t+1

return action

o TELL—ASK—TELL

o0 RoTEE B 48 44 T MAKE-PERCEPT-SENTENCEFI MAKE-
ACTION-QUERY #

o IEALE W S e T TELLRRASK

A simple knowledge-based agent

function KB-AGENT(percept) returns an action
static: KB, a knowledge base
1, a counter, initially 0, indicating time

TELL(K B, MAKE-PERCEPT-SENTENCE(percept, t))
action — ASK(K B, MAKE-ACTION-QUERY({))
TELL(K B, MAKE-ACTION-SENTENCE(action, t))
t—t+1

return action

The agent must be able to:

Represent states, actions, etc. KR RARITH
Incorporate new percepts AN B R JofE B
Update internal representations of the world ¥ 7 T # FL &y 3k A& % 1
Deduce hidden properties of the world EEFATHRBERSEE

Deduce appropriate actions I8 5 8 R BB A E AT A

Table of Contents

Wumpus world

Wumpus World PEAS description

Performance measure
gold +1000, death -1000

-1 per step, -10 for using the arrow

Environment
4X AP 4%
BB EN], ERAEF
é%fﬁwumpusﬁ[] JZ AN AL A AR
1,112 S B2 2 07 A6 2 Fa B B 1 52 0.2

Actuators Left turn, Right turn,
Forward, Grab, Shoot
G A AR A
2 bR R I — AN G B
IR A, L
Grab: fo#%H @4 ik fg
Shoot: [& #5f Fir 1F %t 7

H&

Sise5s ZEraze
£o— PIT
= ree— _
[omze e
é(C5CS PIT F —
S s
S
S |yeutt
< csc, -
Saes Zawn
= Broeze | ~ Breee =
A=l . I

START

IS

Wumpus World PEAS description

Sensors
Smell: Ewumpusﬁﬁﬁi&t ARG Z B A
AU TN, FHRET AR ME B,
Breeze: 7t 5 [B H B AHAR N F A 7, &
B AT DA RS 0 B SR

Gliter(%) 4 T AL WA vy, B

P DA B 1A I 4
YR a e, vAZE#SE.

L wompusH A LB, WA W IR R AT
Mo o7 AP R By R

PLSABF 5 8 5 R0 A B dn o RR B4 4T BB 4K,

gl ﬁ!ﬂ(ﬂench, breeze, none, none, none)s

sscss o
SEaers Zowee| (.
Z s P
socees | [(ZOs
Senen S
N
il W11
S SSS. P
Shans Zhmmz
Z Breece
Ol |~ —

START

IS

Wumpus world characterization

Complete?? No —only local perception
Deterministic?? Yes —outcomes exactly specified
Episodic?? No —sequential at the level of actions
Static?? Yes —Wumpus and Pits do not move
Discrete?? Yes

Single-agent?? Yes —Wumpus is essentially a natural feature

Exploring a wumpus world

OK

OK OK

Exploring a wumpus world

5,
)

]
A

B

oK

Exploring a wumpus world

P?

B OK P?
P
oK

Exploring a wumpus world

P?

Exploring a wumpus world

=15 -UB
oX

%_
i

Exploring a wumpus world

scmji
P

Exploring a wumpus world

OK

Exploring a wumpus world

BGS OK

Table of Contents

Logic in general —models and entailment (Z&2;)

Ingredients of a logic

» Logics are formal languages for representing information such
that conclusions can be draw

» Syntax: defines a set of valid formulas (Formulas)
Example: Rain A Wet

» Semantics: for each formula, specify a set of models
(assignments / configurations of the world)

Wet
0 1

Example: _
1

» Inference rules: given f, what new formulas g can be added
that are guaranteed to follow (like, Modus Ponens (MP))?

Rain

Example: from Rain A Wet, derive Rain

Schema for logic

Syntax Semantics

formula

= models

e
e
=
[
| |
Inference)\

rules

v

Entailment: KB |= « iff a is true in all worlds where KB is
true iff M(KB) C M(«)
Inference: KB F « iff a can be inferred (or derived, or
deduced) from KB by a procedure
Soundness:

whenever KB & «, it is also true that KB |= «

v

v

v

Completeness:
whenever KB |= «, it is also true that KB+ «

Entailment in the wumpus world

Situation after detecting nothing in

[1,1], moving right, breeze in

[2,11—5H1H KB

Consider possible models for KB

assuming only pits ? ?
% FEAH AR B 77 M 2 75 L BB ol

3 Boolean choices = 8 possible
models

Wumpus models

(1] 1

@ -]
_ e

Wumpus models

KB = wumpus-world rules + observations

Wumpus models

KB = wumpus-world rules + observations

a, = “[1,2] is safe”, KB |=OL], proved by model checking (FIALAG 1

TEKB Y EIEAMEALT, o) OV, PIEKB Fay

)

Wumpus models

KB = wumpus-world rules + observations

Wumpus models

KB = wumpus-world rules + observations
a, = “[2,2] is safe”, KB/POLQ
TEKBR ISR, o, JfE, [HILKB K o,

» Propositional logic with only Horn clauses
» Propositional logic

» Modal logic

> First-order logic with only Horn clauses

» First-order logic

» Second-order logic

» Non-monotonic logic: Default logic, Autoepistemic logic,
Circumscription, MKNF (MBNF)

> ...

-'\@" Key idea: tradeofF

Balance expressivity and computational efficiency.

Table of Contents

Propositional (Boolean) logic fipRiZ 45

Syntax of propositional logic

» Propositional symbols (atomic formulas): A, B, C, ...
» Logical connectives: -, A, V, =, &
» Build up formulas recursively—if f and g are formulas, so are
the following:
» Negation: —f
» Conjunction: fA g
» Disjunction: fV g
> Implication: f— g
» Biconditional: f< g
» Formulas by themselves are just symbols (syntax). No
meaning yet (semantics)!

» Atom: atomic formula
» Literal: atomic formula or negated atomic formula

» Clause: disjunction of literals

Model

E X (Model)
A model w in propositional logic is an assignment of truth values
to propositional symbols.

Example:
» 3 propositional symbols: A, B, C

» 23 = 8 possible models w:

{A:0,B:0,C:0}
{A:0,B:0,C:1}
{A:0,B:1,C:0}
{A:0,B:1,C:1}
{A:1,B:0,C:0}
{A:1,B:0,C:1}
{A:1,B:1,C:0}
{A:1,B:1,C:1}

Interpretation function

E X (Interpretation function)

Let fbe a formula and w a model. An interpretation function
Z(f,w) returns:

» true (1) (say that w satisfies f)
» false (0) (say that w does not satisfies f)

Interpretation function: definition

» Base case:
» For a propositional symbol p (e.g., A, B, C): Z(p, w) = w(p)

> Recursive case:
» For any two formulas fand g, define:

I(fw) Z(gw) I(=fiw) Z(fAgw) I(fVgw) I(f = g,w) I(f < g,w)
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 0 0 0 1 0 0
1 1 0 1 1 1 1

Interpretation function: example

Formula: f = (wAAB) < C
Model: w={A:1,B:1,C :0}
Interpretation:

I(~AAB) & Cyw) = 1

I(-ANB,w) =0 Z(C,w) =0

I(-Aw) =0 |[I(B,w)=1

Z(Aw) =1

Wumpus world sentences

Let P, be true if there is a pitin [i, j] .

Let B . beirve if there is a breezein i, i] .

“Pits cause breezes in adjacent squares”

Wumpus world sentences

Let P, be true if there is a pitin [i,] .

Let be true if there is a breeze in [i, |] .

B:.]
_‘E.l
—B,,

B,

“Pits cause breezes in adjacent squares”
B, < (P,v Py
By = PV Py,vP;y)

“A square is breezy if and only if there is an adjacent pit”

Truth tables for inference

Bia | Boa | Pia | Pio| Pog | Pap | Pan | i | Rp | Ry | Ry | Rs | KB
false | false | false | false | false | false | false | true | true | true | true | false | false
false | false | false | false | false | false | true | true | true | false | true | false | false
false | true | false | false | false | false | false | true | true | false | true | true | false
false | true | false | false | false | false | true | true | true | true | true | true | irue
false | true | false | false | false | true | false | true | true | true | true | true | true
false | true | false | false | false | true | true | true | true | true | true | true || true
false | true | false | false | true | false | false | true | false | false | true | true | false

true | true | true | true | true | true | true | false | true | true | false | true || false

Enumerate rows (different assignments to symbols),

if KB is true in row, check that & is too

Formula represents a set of models

So far: each formula fand model w has an interpretation
Z(f,w) € {0,1}

E X (Models)
Let M(f) be the set of models w for which Z(f,w) = 1.

M(f)

D

Models: example

Formula:
f = Rain V Wet

Models:
Wet

M(f) = 0
1

Rain

‘Q’ Key idea: compact representation

A formula compactly represents a set of models.

Knowledge base

E X (Knowledge base)

A knowledge base KB is a set of formulas representing their
conjunction / intersection:

M(KB) = (] M(h.

feKB

Intuition: KB specifies constraints on the world. M(KB) is the set
of all worlds satisfying those constraints.

Let KB = {Rain V Snow, Traffic}.

M (Rain V Snow) M (Traffic)

Knowledge base: example

M(Rain) M(Rain — Wet)
Wet

Rain
E

Intersection:

Rain
ig

Entailment
EX
Entailment KB entails f (written KB = f) iff M(f) 2 M(KB).

» Intuition: fadded no information/constraints (it was already
known)

» Example: Rain A Snow |= Snow

M(F)

Contradiction

EX
Contradiction KB contradicts fiff M(KB) N M(f) = 0.

» Intuition: f contradicts what we know (captured in KB)

» Example: Rain A Snow contradicts =Snow

@ O

Contingency

» Intuition: fadds non-trivial information to KB
) c M(KB)n M(f) c M(KB).

» Example: Rain and Snow

Contradiction and entailment

Proposition (Contradiction and entailment)
KB contradicts f iff KB entails —f.

@ o

Contradiction:

Entailment:

Tell operation

Tell[f] =+ | KB = ?

Tell: It is raining.
Tell[Rain]
Possible responses:

e Already knew that: entailment (KB = f)
e Don't believe that: contradiction (KB = —f)

e Learned something new (update KB): contingent

Ask operation

Ask[f] == | KB

Ask: Is it raining?
Ask[Rain]
Possible responses:

e Yes: entailment (KB = f)
e No: contradiction (KB | —f)

° : contingent

Satisfiability

TE M (Satisfiability)
A knowledge base KB is satisfiable if M(KB) # ().

Reduce Ask[f] and Tell[f] to satisfiability:

‘Is KBU {—f} satisfiable?}

no yes

entailment| |Is KB U {f} satisfiable?

no yes

contradiction| |contingent

Model checking

» Checking satisfiability (SAT) in propositional logic is special
case of solving CSPs!

» Mapping:

propositional symbol = variable
formula = constraint

model = assignment

Model checking

- @

KB={AV B,B + —-C}

Propositional symbols (CSP variables):
{A,B,C}

CSP:

AV B B+ -C

Consistent assignment (satisfying model):

{A:1,B:0,C:1}

Model checking

E X (Model checking)
Input: knowledge base KB
Output: exists satisfying model (M (KB) # 0)?

» Popular algorithms:

» DPLL (backtracking search + pruning)
» WalkSat (randomized local search)

» Next: Can we exploit the fact that factors are formulas?

Inference rules

Example of making an inference:

It is raining. (Rain)
If it is raining, then it is wet. (Rain — Wet)
Therefore, it is wet. (Wet)

Rain, Rain — Wet (premises)
Wet (conclusion)

E X (Modus ponens inference rule)
For any propositional symbols p and g:

p, P—q
q

Inference framework

EX
If f1,...,fx g are formulas, then the following is an inference rule:
fi, ..., fx
g

A
'@ Key idea: inference rules

Rules operate directly on syntax, not on semantics.

Inference algorithm

— Algorithm: forward inference—

Input: set of inference rules Rules.
Repeat until no changes to KB:

Choose set of formulas f1,..., fi € KB.
If matching rule % exists:
Add g to KB.

E X (Derivation)
KB derives/proves f (KB f) iff feventually gets added to KB.

Inference example

@
Starting point:
KB = {Rain, Rain — Wet, Wet — Slippery}
Apply modus ponens to Rain and Rain — Wet:
KB = {Rain, Rain — Wet, Wet — Slippery, Wet}
Apply modus ponens to Wet and Wet — Slippery:
KB = {Rain, Rain — Wet, Wet — Slippery, Wet, Slippery}

Converged.

Can't derive some formulas: =Wet, Rain — Slippery

Desidarata for inference rules

Semantics

Interpretation defines entailed/true formulas: KB |= f:

M(F)

Syntax:

Inference rules derive formulas: KB I f

How does {f : KB |= f} relate to {f : KB+ f}?

Soundness and Completeness

E X (Soundness)

A set of inference rules Rules is sound if:

{f: KB+ £ C{f: KBEf}.

E X (Completeness)

A set of inference rules Rules is complete if:

{f: KB+ £ D {f: KBEf}.

Soundness: example

Rain, Rain — Wet
Wet

Is

(Modus ponens) sound?

M(Rain) N M(Rain — Wet) C? M (Wet)

Rain
E
Rain
Rain
ﬁ

Soundness: example

Wet, Rain — Wet
SO

?
Rain und?

Is

M(Wet) N M(Rain — Wet)

Unsound!

Completeness: example

Recall completeness: inference rules derive all entailed formulas (f
such that KB = f)

_O -

Setup:
KB = {Rain, Rain V Snow — Wet}
f = Wet

Rules = {f’gﬁ} (Modus ponens)
Semantically: KB = f (f is entailed).
Syntactically: KB/ f (can't derive f).

Incomplete!

Fixing completeness

Option 1: Restrict the allowed set of formulas

propositional logic

propositional logic with only Horn clauses
Option 2: Use more powerful inference rules

Modus ponens

|

resolution

Table of Contents

Inference rules and theorem proving

Proof methods

Proof methods divide into (roughly) two kinds:

» Application of inference rules #EIER NI Kz F

» Legitimate (sound) generation of new sentences from old

» Proof = a sequence of inference rule applications J#EIE 3} MIfY
Rz R =51

» Can use inference rules as operators in a standard search alg.

> SHIEAMEREHREERIFRBHTEEERMN EX
JR4R R B (E A R HEER M BT B T RERY 2 A -

» Typically require translation of sentences into a normal form

» Model checking

» Truth table enumeration (always exponential in n)

» Improved backtracking, e.g.,
Davis-Putnam-Logemann-Loveland

» Heuristic search in model space (sound but incomplete), e.g.,
min-conflicts-like hill-climbing algorithms

Definite clauses

E X (Definite clauses)

A definite clause has the following form:

(PLA--ApK)—q

where p1,...,px (k> 0) and g are propositional symbols.

Intuition: If py,..., px hold, then g holds.
Examples:

» (Rain A Snow) — Traffic
» Traffic

Non-examples:
» Rain A Snow

» —Traffic

» (Rain A Snow) — (Traffic V Peaceful)

Horn clauses

E X (Horn clauses)

A Horn clause is either:
> a definite clause (p1 A -+ A px — q)
» a goal clause (p1 A+~ Apx) = L

Examples:
> Definite:
(Rain A Snow) — Traffic
» Goal:
(Traffic A Accident) — L
equivalent:

—(Traffic A Accident)

Modus ponens

E X (Modus ponens)

P, --- Pk (p17"'apk)_>q
q

Example:

e

Wet, Weekday, Wet A Weekday — Traffic
Traffic

Can be used with forward chaining or backward chaining.
These algorithms are very natural and run in linear time.

Completeness of modus ponens

EIE (Modus ponens on Horn clauses)
Modus ponens is complete with respect to Horn clauses:

» Suppose KB contains only Horn clauses and p is an entailed
propositional symbol.

» Then applying modus ponens will derive p.

Upshot:
KB |= p (entailment) is the same as KB\ p (derivation)!

Answering questions

ks
Rain
Weekday

Rain — Wet P, Pk, (DA APE) g
q

e Definition: Modus ponens

Wet A Weekday — Traffic

Traffc A Careless = Accident
Query: Ask[Traffic|
"Yes" subproblem: KB = Traffic
Equivalent: KB contradicts —Traffic
Equivalent: KB U {Traffic — false} I false?
"No" subproblem: KB = —Traffic
Equivalent: KB - —Traffic — impossible!

Answering questions

» Note that for the “no” subproblem, it is actually impossible to
derive —Traffic. This is because modus ponens can only
generate propositional symbols, not their negations. This
means always either answer “yes” or “| don't know".

» This is reasonable because setting all variables to true is
always a valid model no matter what the Horn clauses are, so
we can never say “no”.

“Yes" subproblem

Rain
Weekday ‘ Definition: Modus ponens:
Rain - Wet P oPe (DA APE) =g
Wet A Weekday — Traffic ?
Traffic A Careless — Accident
Question: KB U {Traffic — false} I false?
false!
e
// T
\\\\\

[Weekday] [Wet A Weekday — Traffic]

Forward chaining

Idea: fire any rule whose premises (#T42) are satisfied in the KB, add its conclusion
to the KB, until query (#7]) is found
MR EP W EmEL (EXF) Héh. WREFBWFANERCH, H2EEH
B Bl SRR, HHE R, A FqR R eA 3
HATE S —F e
P=Q 7
LAM=P
BAL=>M
AAnP> L M
AAB=> L L
A
B A B

Forward chaining algorithm

function PL-FC-ENTAILS? (KB, g) returns true or false
inputs: KB, the knowledge base, a set of propositional Horn clauses
q, the query, a proposition symbol
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbals, initially the symbols known in KB

while agenda is not empty do
p— Popr(agenda)
unless inferred[p] do
inferred[p] — true
for each Horn clause ¢ in whose premise p appears do
decrement count|c]
if count[c] = 0 then do
if HEAD[¢] = ¢ then return frue
Pusu(HEAD(], agenda)
return false

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Properties of forward chaining

» XFF3FF Horn KB, Forward chaining 2
- ER: 8MEEXAR ERSEMN—AE A
- BEH BNMEESHNEFIEAEIESEIER

Proof of completeness

FCV] 4 BBk BZE I 1 SR i)

L FCENIE AL, ST R F DL 0 HEEE
F Rinferred RMBZRE, S 5L R NGNS Atrve, HE Hfdlse.
EZHER R A — R A m

s JSRAGKB T HIEE T T A Em A
VEM]: BB FH) o A A = b fEmi Hfalse
WM a A...na, TEmdAtrves b fEmt Hfalse
5B A FIE—A AR EmMr &

L mAEKB—AMER

s MR KB|=q . qfEKBRIFTA BB RSN, BiEm

o qfEmHUNE D fEinferred % N B > PR FCHLIFAERT H K

Backward chaining

Idea: AE 1 qR 17 #HAT:
to prove g by BC,
check it g is known already (&2 £q BahE) , or

prove by BC all premises of some rule concluding q

(%&%ﬁﬁ*%%u LN, AR P A
%@m%ﬁm ﬁ

Avoid loops: check if new subgoal is already on the goal stack
Avoid repeated work: check if new subgoal

1) has already been proved true, or

2) has already failed

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Forward vs. backward chaining

FC is , cf. automatic, unconscious processing,

e.g., object recognition, routine decisions
May do lots of work that is irrelevant to the goal

BCis , appropriate for problem-solving,

e.g., Where are my keys2 How do | get into a PhD program?

Complexity of BC can be much less than linear in size of KB

Resolution 3%%

Conjunctive Normal Form 5 HUIE 7 (CNF)

clauses
E.g., (A v —B) A (B v —C v —D)

Resolution inference rule &5 HEEEHII (for CNF):

[y vk, m

LI ENITEE] e W)

VoV om,

[v

VoV VLGV v v m,

where [and m are complementary literals CHASCF)

Eg., Pi3V Py =Py,

Pl,]

Resolution is sound and complete for propositienal logic

i L R e R 22 R T A e A (1

Vol VY iy Ve VoM,

")
= O,
o

2

s iox

-
5

Conversion to CNF

By & (PiaV)

1.

Eliminate <, replacing o = 3 with (o« = 3) A (8 = «a).

(Brg = (PiaV Poa)) A((PraV Pa1) = Biy)

. Eliminate =, replacing a = 3 with =« v 3.

(=B1aV PiaV Pyy) A (=(Pi2V Pey)V Bry)

. Move — inwards using de Morgan’s rules and double-negation:

(=B11V PioV Poy) A((mPi2 AN—=Pay) V Byy)

. Apply distributivity law (\/ over /) and flatten:

(mB11V PiaoV Pyy) AN(=PaV Byg) A(—FPay V Byy)

Resolution algorithm

Recall: KB operation boil down to satisfiability
KBl=o if and only if (KB A -«) is unsatisfiable

Algorithm: resolution-based inference
Convert all formulas to CNF
Repeatedly apply resolution rule

Return unsatisfaible iff derive false

Resolution algorithm

Proof by contradiction, i.e., show KBA—a unsatisfiable

function PL-RESOLUTION(KB, @) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
«, the query, a sentence in propositional logic

clauses+ the set of clauses in the CNF representation of KB A —a
new«— { }
loop do
for each C;, C; in clauses do
resolvents — PL-RESOLVE(C;, C;)
if resolvents contains the empty clause then return true
new— new U resolvents
if new C clauses then return false
clauses — clauses U new

Resolution example

KB=(B1y & (PlaV Pyy))AN-Bija=-P

‘_‘Pu\/ Bu| |_‘Bl.1VPl.JV Pu‘ |_‘PL:\/ Bn| |_‘B1.1 ‘

Time complexity

Modus ponens inference rule

P, vt Pk (pLAApe) 2 g
q

Each rule application adds clause with one propositional
symbol = linear time

Resolution inference rule
ANV NV =hV g VeV
AV VHVaV---Vgn,

Each rule application adds clause with many propositional
symbols = exponential time

Comparison

Horn clauses

Modus ponens

linear time

less expressive

any clauses

resolution

exponential time

more expressive

Summary

Logical agents apply to a
to derive new information and make decisions

Basic concepts of logic:
— : formal structure of
— : truth of sentences wrt
— : necessary truth of one sentence given another
— : deriving sentences from other sentences
— : derivations produce only entailed sentences
— : derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated information,
reason by cases, etfc.

Forward, backward chaining are linear-time, complete for Horn clauses
Resolution is complete for propositional logic

Propositional logic lacks expressive power

Homework

> 713 ($=H)

» Prove the completeness of the forward chaining algorithm

	Knowledge-based agents
	Wumpus world
	Logic in general — models and entailment (蕴涵)
	Propositional (Boolean) logic 命题逻辑
	Inference rules and theorem proving
	Forward chaining 前向链接
	Backward chaining 反向链接
	Resolution 归结

