Constraint Satisfaction Problems

HER

USTC
jianmin@ustc.edu.cn

2025 £ 3 A 11 H

Used Materials

Disclaimer: ZIR{4EX AT S. Russell and P. Norvig's Artificial
Intelligence —A modern approach slides, &k MR {4 F0E 4t
LIRTBIRE, WFEAT GitHub FIENKRE, MRS MEEE
k=

: (m]
1R A2 [B] 7
Best-first search
» Heuristic functions estimate costs of shortest paths

v

Good heuristics can dramatically reduce search cost

v

Greedy best-first search expands lowest h
» incomplete and not always optimal

v

A* search expands lowest g+ h

» complete and optimal
» also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of
relaxed problems

v

TR A [2] Bt

Local search algorithms

>

the path to the goal is irrelevant; the goal state itself is the
solution

keep a single “current” state, try to improve it

» Hill-climbing search

» depending on initial state, can get stuck in local maxima

Simulated annealing search

» escape local maxima by allowing some “bad” moves but
gradually decrease their frequency

Local beam search
» Keep track of k states rather than just one

Genetic algorithms

Table of Contents

CSP examples

Constraint satisfaction problems (CSPs)

» Standard search problem:

» state is a “black box" — any old data structure that supports
goal test, eval, successor

EATRTIA B B AR . R RS, R4k B0 E BB
» CSP:
» state is defined by X; with values from domain ({Ei3,) D;

» goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

BIMARBFE-LTENTE, FEEXEFENEZER

WHITHEHF
» Simple example of a formal representation language (X=X 4k
FRAE)

» Allows useful general-purpose (i@ R, MAR[O)SEE
BJ) algorithms with more power than standard search
algorithms

Constraint satisfaction problems (CSPs)

A constraint satisfaction problem (CSP) consists of three
components, X, D, and C:

» X is a set of variables, {Xi,..., Xy}

» D is a set of domains, {Dy,...,D,}, one for each variable
» Each domain D; consists of a set of allowable values,
{v1,..., v} for variable X;.

» (C is a set of constraints that specify allowable combinations of
values

» Each constraint C; consists of a pair (scope, rel), where scope
is a tuple of variables that participate in the constraint and rel
is a relation that defines the values that those variables can
take on

» A relation can be represented as an explicit list of all tuples of
values that satisfy the constraint, or as an abstract relation
that supports two operations: testing if a tuple is a member of
the relation and enumerating the members of the relation

Constraint satisfaction problems (CSPs)
To solve a CSP, we need to define a state space and the notion of
a solution

» Each state in a CSP is defined by an assignment of values to
some or all of the variables, {Xi=v;,Xj=v;,...}

» An assignment that does not violate any constraints is called
a consistent or legal assignment

v

A complete assignment is one in which every variable is
assigned

v

A partial assignment is one that assigns values to only some
of the variables

v

A solution to a CSP is a consistent, complete assignment

Example: Map-Coloring

Northern
Territory
Western

Queensland
Australia

South
Australia
New South Wales

Tasmania

Variables X = {WA, NT, Q, NSW, V, SA, T}
Domains D; = {red, green, blue}
Constraints: adjacent regions must have different colors
C ={SA# WA,SA# NT,SA # Q,SA # NSW,SA #V,
WA # NT,NT # Q, Q # NSW, NSW # V}

where SA # WA is a shortcut for ((SA, WA), SA # WA) and SA # WA can be
fully enumerated in turn as

{(red, green), (red, blue), (green, red), (green, blue), (blue, red), (blue, green)}

Example: Map-Coloring

Solutions are assignments satisfying all constraints, e.g.,

{WA = red, NT = green, Q = red, NSW = green, V = red,
SA = blue, T = green}

Constraint graph (ZJ35RE)

Binary CSP: each constraint relates two variables
Constraint graph: nodes are variables, arcs are constraints

D—)
@
4@'%@
®

General-purpose CSP algorithms use the graph structure to speed
up search.
E.g., Tasmania is an independent subproblem!

Varieties of CSPs

> Discrete variables
» finite domains PR X 15
> n variables, domain size d — O(d") complete assignments
> e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
» infinite domains FLFR{EIT, (integers, strings, etc.)
> e.g., job scheduling, variables are start/end days for each job
> need a constraint language (AFRIEE)
> linear constraints solvable, nonlinear undecidable

» Continuous variables

> e.g., start/end times for Hubble Space Telescope observations
» linear constraints solvable in polynomial time by linear
programming (LP) methods

Varieties of constraints

» Unary (—7JC) constraints involve a single variable,
e.g., SA # green
» Binary (ZJT) constraints involve pairs of variables,
e.g., SA# WA
» Higher-order constraints involve 3 or more variables,
e.g., cryptarithmetic (ZZRIE %) column constraints
> Preferences (soft constraints), e.g., red is better than green
often representable by a cost for each variable assignment (4*
T EMERFER)

— constrained optimization problems

Example: Cryptarithmetic

|+
ol+
Cclz =
Dlo o

Variables: F T U WR O X; X, X5

Domains: {0,1,2,3,4,5,6,7,8,9}

Constraints:

alldiff (ET,U,W,R,0)

O+0=R+10-X,
X, *W+W=U+10-X,
X, #T+T=0+10-X,
Xs=F, T#0,F#0

where X1, Xo, and X3 are auxiliary variables representing the digit
carried over into the tens, hundreds, or thousands column.

Real-world CSPs

Assignment problems
e.g., who teaches what class
who reviews which papers

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration
Transportation scheduling
Factory scheduling
Floorplanning (EHE#HE)

Notice that many real-world problems involve real-valued variables

Enumerate assignments
Dumb

Exponential time d"
But complete

can we be clever about exponential time algorithms?

Table of Contents

Backtracking search for CSPs

Standard search formulation (incremental &R {t)

> Let's start with the straightforward approach, then fix it
» States are defined by the values assigned so far

» Initial state: the empty assignment, ()

» Successor function: assign a value to an unassigned variable
that does not conflict with current assignment
— fail if no legal assignments

» Goal test: the current assignment is complete

1. This is the same for all CSPs!

2. Every solution appears at depth n with n variables
— use depth-first search

3. Path is irrelevant, so can also use complete-state formulation
(EEREEXNK)

4. b= (n— l)d at depth /, hence n! - d" leaves!
d is the maximum size of the domain

Backtracking search

» Variable assignments are commutative (AJ3Z#&1%), i.e.,
(WA = red then NT = green) same as (NT = green then

WA = red)
» Only need to consider assignments to a single variable at each
node

b = d and there are d" leaves

» Depth-first search for CSPs with single-variable assignments is
called
backtracking search

» Backtracking search is the basic uninformed algorithm for
CSPs

» Can solve n-queens for n~ 25

Backtracking search

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, esp)

function RECURSIVE-BACKTRACKING (assignment, csp) returns soln/failure
if assignment is complete then return assignment
var<— SELECT-UNASSIGNED- VARIABLE(VARIABLES| csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp] then
add {var = value} to assignment
result — RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

Backtracking example

Backtracking example

Backtracking example

Backtracking example

Backtracking example

Is {—avb, =b vc , —c, —a} satisfiable?

Enumerate a b ¢
1 1 1 x
1 1 0 x
1 0 1 x
1 0 0 x
0 1 1 x
0 1 0 x
0 0 1 x
00 0

Backtrack a

oo o o

I

-

O O =

o

O = O = !

Improving backtracking efficiency

General-purpose methods can give huge gains in speed:
» Which variable should be assigned next?
» In what order should its values be tried?
» Can we detect inevitable (ANA[EEGERY) failure early?

» Can we take advantage of problem structure?

Minimum remaining values

Minimum remaining values gz/0F|R{E (MRV):
choose the variable with the fewest legal values

S SShs SShs S

» Why min rather than max?
» Called most constrained variable

> “Fail-fast” ordering

Degree heuristic (ERB%A3)

Tie-breaker among MRV variables

Degree heuristic:
choose the variable with the most constraints on remaining

R

Improving backtracking efficiency

General-purpose methods can give huge gains in speed:
» Which variable should be assigned next?
» In what order should its values be tried?
» Can we detect inevitable (ANA[EEGERY) failure early?

» Can we take advantage of problem structure?

Least constraining value
Given a variable, choose the least constraining value (M R{E):
> the one that rules out the fewest values in the remaining

variables

» Note that it may take some computation to determine this!

‘1.% Allows 1 value for SA
‘.% Allows 0 values for SA

Combining these heuristics makes 1000 queens feasible

SO S S

Improving backtracking efficiency

General-purpose methods can give huge gains in speed:
» Which variable should be assigned next?
» In what order should its values be tried?
» Can we detect inevitable (AAJEEGHAY) failure early?

» Can we take advantage of problem structure?

Forward checking—gi[o) #25& v

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

H

WA NT Q NSW v SA T
(MEEEEEErE(ENE(ETEEEEEEN]

NT | @
WA SA
NSW

Forward checking—gi[o) #25& v

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

Ho—4
WA NT Q NSW v SA T

CECICE T ICECICECICEr]
(| sEjErE/EsE(EsE]| sE[ESE

NT | @

Forward checking—gi[o) #25& v

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

Forward checking—gi[o) #25& v

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

SYIE S S e e
WA NT NSW v T
I:I:I:II:I:DEI:EII:I:I:II:I:I:IEI:I:IEI:EI

(eeww] W[] —]

2R RHE :

Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection for all
failures:

Constraint propagation

NT and SA cannot both be blue!
Constraint propagation repeatedly enforces constraints locally

Constraint propagation: inference in CSPs

Constraint propagation: using the constraints to reduce the number of legal
values for a variable, which in turn can reduce the legal values for another
variable, and so on

>

A single variable is node-consistent, if all the values in the variable's
domain satisfy the variable's unary constraints

A variable in a CSP is arc-consistent with respect to another variable, if
every value in its domain satisfies the variable’s binary constraints for
some value of the other variable

A two-variable set {X;, X;} is path-consistent with respect to a third
variable X, if, for every assignment {X; = a, X; = b} consistent with the
constraints on {Xj, Xj}, there is an assignment to Xy, that satisfies the
constraints on {Xj, Xm} and {Xm, X;}

A CSP is k-consistent if, for any set of k—1 variables and for any
consistent assignment to those variables, a consistent value can always be
assigned to any kth variable

A CSP is strongly k-consistent if it is k-consistent and is also
(k—1)-consistent, (k—2)-consistent, .., all the way down to 1-consistent.
Global constraint is one involving an arbitrary number of variables (but
not necessarily all variables)

For examples, the Alldiff constraint says that all the variables involved
must have distinct values

NT [g
WATSR
NSW

Arc consistency —i[L A 7

Simplest form of propagation makes each arc consistent
X =Y is consistent iff

for every value x of X there is some allowed y

SRS SSEM S~

(m]| s[fewie sEse] sEsw]

\é/

NT [g
WATSR
NSW

Arc consistency —i[L A 7

Simplest form of propagation makes each arc consistent
X =Y is consistent iff

for every value x of X there is some allowed y

SRS SSEM S~

WA NT Q NSW v SA T

\9_/

NT [g
WATSR
NSW

Arc consistency —i[L A 7

Simplest form of propagation makes each arc consistent
X =Y is consistent iff

for every value x of X there is some allowed y

SSIA SSEA S~

WA NT Q NSW v SA T

~~

If X loses a value, neighbors of X need to be rechecked

NT [g
WATSR
NSW

Arc consistency —5[{tH& T

Simplest form of propagation makes each arc consistent
X =Y is consistent iff

for every value x of X there is some allowed y

SSEA SSEa 5=
(=T ST wXEE (T

—

If X loses a value, neighbors of X need to be rechecked
Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

Arc consistency algorithm AC-3

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X}. Xo. ..., X}
local variables: gueue, a queue of arcs, initially all the arcs in csp

while quecue is not empty do
(X5 X_/) — RE,\[O\'E—]"'IRS]‘(qlu.m!)
if REMOVE-INCONSISTENT-VALUES(X;, X)) then
for each X in NEIGHBORS[X]] do
add (X, X)) to queue

function REMOVE-INCONSISTENT-VALUES(X;, X;) returns true iff succeeds
removed «— false
for each z in DoMAIN[X]] do
if no value y in DOMAIN[X] allows (,7) to satisfy the constraint X; « X
then delete = from DOMAIN[X], removed < true
return removed

O(n*d®) (but detecting all inconsistencies is NP-hard)

Improving backtracking efficiency

General-purpose methods can give huge gains in speed:
» Which variable should be assigned next?
» In what order should its values be tried?
» Can we detect inevitable (ANA[EEGERY) failure early?

» Can we take advantage of problem structure?

Table of Contents

Problem structure and problem decomposition

Problem structure

%l
)

Q)

Tasmania and mainland are independent subproblems
Identifiable as connected components (i%jf18,) of constraint
graph

Can reduce the search space dramatically

Problem structure cont'd

» Suppose each subproblem has ¢ variables out of n total
» Worst-case solution cost is n/c- d<, linear in n
» Eg,n=80,d=2,¢c=20

» 280 = 4 billion years at 10 million nodes/sec
» 4-220 = 0.4 seconds at 10 million nodes/sec

Tree-structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be solved in O(n - d?) time

A — AP 45 A oy CSPIa] T DU A AN i £ R Y R AR

» Compare to general CSPs, where worst-case time is O(d")
» This property also applies to logical and probabilistic
reasoning:
an important example of the relation between syntactic
restrictions (3&i££)3R) and the complexity of reasoning.

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves

such that every node's parent precedes it in the ordering
‘/V‘\\

(E)
\/\/Br—/D\/\/ AL B ‘ DY ENE)
"/ _ '\,-_/\/\/\/\/\/
\/\ N

\ / N4

2. Apply arc-consistency to (Xk, X;), when Xj is the parent of X;
For i from n down to 2, apply REMOVEINCONSISTENT(Parent(X;), X;)

3. Now one can start at Xj assigning values from the remaining domains

without creating any conflict in one sweep through the tree!
For i from 1 to n, assign X; consistently with Parent(X;)

Complexity: O(n - d?)

Nearly tree-structured CSPs

Conditioning: instantiate o variable, prune its neighbors’ domains

O— O—
e {1 @

& = S

O O
Cutset conditioning (#|£3#%) : instantiate (in all ways) a set of variables

such that the remaining constraint graph is a tree

Cutset size ¢ = runtime O(d° (n -c)d?), very fast for small ¢
Finding a smallest cutset is an NP problem, efficient approximate algorithms exist

Tree Decomposition

» Decompose problem into a set of connected sub-problems,
where two sub-problems are connected when they share a
constraint

» Solve sub-problems independently and combine solutions

Table of Contents

Local search for CSPs

lterative algorithms for CSPs

Hill-climbing, simulated annealing typically work with
“complete” states (SEEIRTSHIFZIIL) | i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints
operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts (§/J\#138) heuristic:
choose value that violates the fewest constraints
EESERSHETENHPRR/NNE
i.e., hillclimb with h(n) = total number of violated constraints

Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)
Actions: move queen in column
Goal test: no attacks

Evaluation: h(n) = number of attacks

u}
)
I
il
it

Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for

arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP except in a
narrow range of the ratio
_ number of constraints

number of variables

CPU}
time

|
critical
ratio

Example: 3-SAT problems

Each constraint involves 3 variables

50 1.5s 0.5s
100 3m 10s
150 10h 25s
200 2m
250 3m
300 13m

350 20m

Speedup 1: simulated annealing

Idea: escape local maxima by allowing some “bad” moves
but gradually decrease their frequency

If FORS L BEIRELF, BEBFRTS
Else IR INF 1 BIBERIEZ 2753
LEHEREERE T BERM b

Speedup 2: minmax optimization

Putweights on constraints
repeat

Primal search: update assignment to minimize weighted violation,
until stuck

Dual step: update weights to increase weighted violation,

until unstuck
until solution found. or bored

Speedup 2: minmax optimization

50 1.5s 0.5s 0.001s
100 3m 10s 0.01s
150 10h 25s 0.1s
200 2m 0.25s
250 3m 0.4s
300 13m 1s

350 20m 2.5s

Summary

CSPs are a special kind of problem:

states defined by values of a fixed set of variables
goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per
node

>

Variable ordering and value selection heuristics help
significantly

Forward checking prevents assignments that guarantee later
failure

Constraint propagation (e.g., arc consistency) does additional
work to constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure
Tree-structured CSPs can be solved in linear time

Iterative min-conflicts is usually effective in practice

Bk

» 6.5 (B=hR)
» 6.11, 6.12 (£=KR)

	CSP examples
	Backtracking search for CSPs
	Problem structure and problem decomposition
	Local search for CSPs

