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Abstract. This paper proposes a model of metareasoning for Human-
Robot Interaction (HRI). Robots’ basic abilities for HRI—planning, learn-
ing and dialogue—are characterized as three loops in the model, with
each spanning ground, object and meta-level. The model provides a con-
ceptualization of HRI and a framework for incremental development of
large HRI systems such as service robots by building meta-level functions
on top of existing ground/object level components. A case-study focusing
on meta-level control shows that the approach is effective and efficient
for some application domains. In particular, meta-level control suggests
a new opportunity to speed up planning while preserving completeness
without any change to object level planners. The experiments also show
that, for some basic HRI tasks, there are simple meta-level strategies
with performances better than the common strategy in previous work.
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1 Introduction

This paper concerns service robots that work together with humans (hereafter,
service robots for short). It follows that human-robot interaction (HRI) is essen-
tial to these robots [15, 9]. They should be able to understand users’ requests and
provide services for users accordingly by taking actions. The symbiosis of service
robots and humans suggests new opportunities and challenges to Robotics and
AI research. It has been observed that humans’ and robots’ abilities are comple-
mentary in many aspects and thus they should help each other in order to fulfill
better services for humans [14, 6, 8]. One means to this end, which has drawn
increasing interest recently, is to make robots capable of asking humans for help
through human-robot dialogue [5, 13, 11].

Generally, service robots should possess three characteristics: autonomy, adapt-
ability and sociality. Accordingly, these robots must be equipped with three basic
abilities: planning, learning and dialogue (not necessarily through speech). For
instance, a robot is not autonomous if it cannot by itself generate (and execute)
a plan of actions for a task. A further and crucial observation is that the coor-
dination of all the three abilities is needed for robots with these characteristics.
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For example, to show its adaptability to a new task, a robot may need to plan
its dialogue with humans, acquire knowledge/information through the dialogue,
and achieve the task with the acquired knowledge/information. This process has
to be realized by coordinating all the three abilities.

There have been a lot of research achievements regarding these abilities
themselves. But their coordination has been less studied. This paper proposes
a model as a conceptualization for analyzing the research issues and a frame-
work of developing robots with the characteristics. The model consists of three
levels —ground, object, and meta-level—as proposed in Metareasoning litera-
ture [7]. Each component of the robots is cast as a function at some level and
each of the basic abilities, planning, learning and dialogue, is cast as a “loop”
spanning the three levels. The main idea is to model the coordination of the
three basic abilities as the interaction among the three loops at meta-level. This
way, we introduce metareasoning into HRI and put forth an alternative ap-
proach against the HRI challenges. The planning loop extends the traditional
perception-decision making-action loop with meta-level control and monitoring.
The other two loops are similar extensions. Therefore, our model allows one to
re-use various ground/object level components well developed in previous work,
while strengthen and coordinate the basic abilities with new functions introduced
at meta-level.

2 Issues of Metareasoning for HRI

2.1 Metareasoning

As proposed in [7] and well-accepted, metareasoning is captured by a three-level
model as shown in Figure 1. The ground and object level in the model constitute
the perception-decision making-action loop well known in AI. In this loop, an
intelligent agent perceives some stimuli from the environment and behaves to
achieve its goals according to the decisions it makes through reasoning. The
result of these actions at the ground level is perceived and fed back to the
object level, and the cycle continues. Metareasoning is defined as the process of
reasoning about this reasoning cycle and thus constitutes the top level of the
enlarged loop. In other words, reasoning controls actions at the ground level,
whereas metareasoning controls the reasoning at the object level.

Fig. 1. General Metareasoning Model
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Generally, metareasoning consists of the meta-level control and the introspec-
tive monitoring of reasoning. For a classical metareasoner, the goal of meta-level
control is to improve the quality of its decisions by making some computational
effort to decide what and how much reasoning to do as opposed to what actions
to do. For example with an anytime algorithm that incrementally refines plans,
an agent must choose between executing the current plan or further improving it
in order to get a better one. Given that the passage of time itself has a cost, the
metareasoner must judge which choice will lead to greater expected benefit and
make the choice accordingly. On the other hand, the goal of introspective moni-
toring is to gather sufficient information with which to make effective meta-level
control decisions. For instance, [4] maintains statistical profiles of past metar-
easoning choices and the associated performance, using them to mediate the
subsequent control and dynamic composition of reasoning processes.

2.2 The Model of Metareasoning for HRI

The model of metareasoning for HRI (MM-HRI) proposed here is an extension of
the General Metareasoning Model (GMM). The ground-level functions of MM-
HRI include three types of actions: perception (like vision), physical actions
(such as navigation and manipulation) and exchanging messages with users.
Note that there is at least one human user in an HRI setting and thus human-
robot communication is a necessary component of the robot. But the message
function in the ground-level does not cover the full communication function. For
example, ground level is not responsible for deciding what and when to say in
human-robot dialogue.

The object level of MM-HRI includes three functions: planning, learning, and
dialogue. A service robot that performs complex tasks must be able to plan its
behaviors in advance by a planner. The generated plans, courses of ground level
primitive actions (or, atomic actions for short), will be executed at the object
level. In accordance with this object level function, there is a planning loop
spanning three levels of MM-HRI, as shown in Figure 2 [7]. Both the plan gener-
ation and execution are controlled by metareasoning in order to meet following
requirements: 1) computational efficiency, so as to generate (suboptimal) plans
timely; 2) dynamic environment, which may cause replanning due to changes of
the environment and/or users’ intention; 3) incomplete knowledge, which brings
about various object-level operations, eg, postponing the decision of what to
do until the robot gains the information required for planning; 4) uncertainties,
which may also result in replanning when the robot perceives that its actions
did not reach the expected effects. Although some of these problems have been
tackled at object level (eg, [3]), we argue that our three-level model provides a
better framework for development of large-scale intelligent systems, particularly
intelligent service robots described in Section 1.

The learner is responsible for acquiring knowledge from outside, which can be
used by the robot later for problem-solving. Generally, the required knowledge
includes: 1) information about the state of the environment and the robot that
is necessary for planning and fulfilling the tasks at hand; 2) user models, e.g.,
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Fig. 2. Planning loop in MM-HRI

a model of the availability and accuracy of human observation providers with
which the robot can get help more efficiently [14]; 3) domain knowledge required
for the robot’s missions but missing due to the unpredictability of real-world
applications. Note that this kind of knowledge is usually expressed in natural
languages. So we employ the term “material” to cover all the forms received at
ground level. At object level, the robot extracts knowledge (learning results) or
needs for further learning from the material. The latter is processed by metar-
easoner to produce new learning goals for the next circle of learning process [7].
At object level, the learning goals create some form of “learning evocator”, such
as questions to the user, and the cycle continues. The learning loop is shown in
Figure 3.

Fig. 3. Learning loop in MM-HRI

Generally, a service robot has a dialogue manager that is responsible for run-
ning the dialogue process of receiving users’ service requests. This component is
abstracted as a function in the object level of our model. In this paper, however,
by “dialogue” we mean any information exchange between humans and robots,
not limited to those through speech. The dialogue loop in our model is expected
to produce human-robot dialogues not only for receiving service requests, but
also for various kinds of “help” from users and other external sources. Whatever
received from the human-robot communication at ground level is transformed
into some internal representation called “expression” in figure 4. Then a compo-
nent at object level tries to understand it and produce some “content” from it.
The real meaning of the content depends on not only the dialogue itself but also
what are going on in other MM-HRI loops. Anyway, the metareasoner will gen-
erate some “theme” for the next round of dialogue, with which some messages
are generated at object level and sent to ground level.
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Fig. 4. Dialogue loop in MM-HRI

These three loops must coordinate and interleave their running in order to
fulfill the overall performance of the robot. The interactions among the MM-
HRI loops mainly occur at meta-level, which is the basic role of the robot’s
metareasoner. Figure 5 shows the sketch of the interaction and the entire MM-
HRI. Note that Figure 2, 3, and 4 only show the internal nodes of each loop,
respectively. Actually, either planning or learning loop includes both users and
the environment as its external nodes, while dialogue loop includes users as the
only external node of it.

Fig. 5. Sketch of MM-HRI

2.3 Meta-level Interactions

Here we briefly describe meta-level interactions among MM-HRI loops, without
specifying the interaction mechanisms formally.

(1) Planning via Learning. Lacking knowledge or information causes plan-
ning intractable or even infeasible. The difficulty can be reduced or even over-
come when robots gain more information and/or knowledge. For example, a
robot can observe its environment with its sensors or acquire relevant infor-
mation/knowledge through dialogues with its users. Therefore, what is really
needed is some mechanisms at meta-level with which the robot can coordinate
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its planning and learning loop. For instance, the metareasoner can identify miss-
ing information that is necessary for the robot’s planner at object level and try
to get the information before planning. When the robot is required to response
to a task-stream, i.e., a stream of tasks, it can plan for some of the tasks with
complete information and execute the plan first. Meanwhile during the execu-
tion, it can observe the environment to collect information needed for other
tasks. In this process, interleaving of planning and learning loop is launched and
controlled by the metareasoner.

(2) Learning via Dialogue. There are various types of learning. In this paper,
we focus on knowledge acquisition through human-robot dialogue. [13] demon-
strates this kind of learning where the robot asks humans for help. In one of
our previous case-studies, robot KeJia successfully solved a problem, which it
had failed before, with knowledge it acquired through human-robot dialogue in
a limited segment of English [5]. In these cases, the Understanding component
also plays an essential role in learning. The basic topic in this type of learning
is about how to ask users’ help—what, when and where to ask [14], which re-
quires the coordination of all the three loops. We will present some meta-level
strategies of this type in Section 3.

(3) Dialogue via Planning. We have described some interactions between
dialogue and planning loop above. Besides, there are other ways of interaction
between them. Topics discussed a lot in the literature include dialogue generation
by planning, understanding by virtue of planning, etc. These are also covered by
our model. Moreover, our model covers some topics that are not so well studied
yet. A key issue of human-robot collaboration is about how to collaborate on
a common task jointly by humans and robots. The human and robot partners
should form joint intention and then carry out joint actions for the task [2].
Therefore, a robot partner must coordinate its behavior involving dialogue and
planning loop in the collaboration.

3 Case-Study: Meta-level Scheduling

The domain we chose, called eGPSR, is an enhanced variant of a test, called
General-Purpose Service Robot, of RoboCup@Home [12]. In this test, a robot
is given a set of tasks chosen randomly just before the test begins. These tasks
involve a set of behaviors (e.g., following a person, finding a person, grasping and
delivering objects), a set of portable objects (e.g., cans, cups and bottles) and a
set of locations in a house. Moreover, concepts (e.g., “drink”), which represent
classes of objects, are allowed to describe tasks. For simplicity, we identify any
concept c with the class of objects it represents by abuse of notation. Any object
in class c is called a c-object. When a concept c appears in the description of a
task, it refers to any c-object. Therefore, tasks may be partially specified. For
instance, the task give me a drink is understood as “give me anything to drink”,
without specifying which particular drink (an individual object) or its position
in the environment. Moreover, tasks from one task set may be related to one
another in a sense we will explain below.
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We implemented a real robot KeJia [5, 6]. In the case-study, three meta-level
scheduling strategies were realized in one and the same high-layer subsystem
of KeJia, called sub-KeJia. It only contains object-level and meta-level func-
tions needed for the experiments, such as an object-level planner and a missing-
information detector that detects what information is missing from the descrip-
tion of a task. The planner can generate a plan (a course of atomic actions) that
achieves a task, only if the task is fully specified and there exists such a plan. For
simplicity, the experiments were conducted on a software test-bed that simulates
the domain, eGPSR, and KeJia’s ground-level functions needed.

The strategies are evaluated with following criteria, which in turn reflect
some prevalent requirements for HRI:

1. Cost of execution. A plan is of smaller cost of execution than another one
for the same set of tasks, if the former contains the less number of atomic
actions.

2. Efficiency of planning. Planning is time-consuming and service robots are
required to provide real-time responses to its users, which depends on the
efficiency of planning to a large extent.

3. Performance of asking. Previous experiments indicate that users would not
like to be asked too many questions [14]. Asking more also makes a robot
less autonomous. So ceteris paribus, asking less is better.

4. Completeness of resource-bounded deliberation. A resource-bounded metar-
easoner is complete, if it can solve all problems that can be solved under no
resource limitation.

The meta-level scheduling strategies tested in this case-study are described
informally below:

Eager-to-Ask strategy: For all input tasks, detect what information is missing;
generate questions about the missing information; ask these questions of the
users and complete the description of all the partially specified tasks with the
information from the answers. Fulfill the completed tasks one by one in the input
order by generating a plan for each completed task and executing the plan.

Lazy-to-Ask strategy: Fulfill the input tasks one by one in the input order.
For each task, detect what information is missing; generate questions about the
missing information if any; ask these questions of the users and complete the
description of current task with the information from the answers; generate a
plan for the current task; execute the plan.

Relevance-based-Ask strategy: Divide the set of input tasks into subsets, so
that they are not related one another. Fulfill the subsets one by one using Lazy-
to-Ask strategy, with each subset of tasks being taken as a (complex) task.

Each of these strategies contains operations at three levels. For instance,
“generate a plan” is at object level and “execute a plan” ground level. Formal
specification of such strategies demands a formal language with level tags of
operators. Meanwhile, each strategy involves three loops. Asking is in dialogue
loop, and extracting information to complete original tasks belongs to learning
loop. So a meta-level scheduling strategy coordinates the three loops to achieve
tasks. We illustrate how sub-KeJia works under Lazy-To-Ask Strategy with a
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small task set T = { give Allen some drink; give Bill a bottle of coke}. Assume
there are only one bottle of coke and one cup of coffee in the environment and
the robot knows the facts but does not know the location of each drink in the
beginning. Suppose after the first task is analyzed by the missing-information
detector, KeJia allocates the cup of coffee to the concept “drink” (perhaps the
robot should confirm this with question “how about coffee?” in real services.
But we omit this here). Then it generates a question about the location of the
coffee. After KeJia gets the missing information from user, it generates a plan
of four atomic actions for the completed task with its object-level planner. Then
KeJia executes the plan in the ground-level: move to the location of coffee, grasp
coffee, move to Allen and give the cup of coffee to Allen. Assume the robot get
the missing information of the second task, the location of coke, through its
sensors during it executes above actions. Thus the knowledge of the second task
is completed and the object-level planner generates a plan of it.

The main deference between the first two strategies is the time point when
the robot asks questions of users. With Eager-to-Ask strategy, the robot asks
questions before it plans for any task. It starts to plan only after it obtains
all missing information in original tasks. This is the common strategy used in
most of previous work [1]. One problem with it is that it fails to make use
of concurrency of a robot’s hardware and software components, as shown in
above example. Lazy-to-Ask strategy improves in this aspect and thus got better
performance of asking in the experiments (Section 4).

The first two strategies do little metareasoning except scheduling over lower-
level operations. In particular, they do not consider the relevance among tasks
and just try to fulfill them one by one in the input order. Consequently, the
completeness is violated—some tasks cannot be achieved just due to the over-
simplified meta-level strategies. Relevance-based-Ask strategy solves this prob-
lem with more metareasoning, mainly on the relevance among tasks.

The notion of “relevance” is technically complicated and defined as follows.
Without loss of generality, we assume that planning problems are specified in
PDDL [10] and each of them contains an initial state, a goal description (tasks),
and a domain description which includes specifications of effects and precondi-
tions of actions and other background knowledge.

Definition 1. Given a domain description, an initial state, and two tasks t1
and t2. We say that t2 is related to t1 if there exists a plan P1 that achieves t1
and there does not exist a plan P2 such that P1 appended with P2 could achieve
both t1 and t2.

If a task t2 is related to another one t1, then the tasks in the set {t1, t2} should
not be planned and executed separately in the order 〈t1, t2〉. As the robot may
choose a plan P1 to achieve t1, but after the execution of P1, t2 can no longer
be achieved without ruining t1. For example, suppose a robot as a bar tender is
given two tasks,

t1: give Jim some drink; t2: give Bob a can of Coke.
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Assume there is only one can of Coke in the environment. Then t2 is related
to t1, as after giving Jim the Coke, t2 can no longer be achieved. On the other
hand, if t2 is not related to t1, then a robot can solve {t1, t2} separately in the
order 〈t1, t2〉. The notion of relevance between two tasks can be generalized to
between two sets of tasks.

Definition 2. Given a domain description, an initial state, and two sets of tasks
T1 and T2. We say that T2 is related to T1 if there exists a plan P1 that achieves
all tasks in T1 and there does not exist a plan P2 such that P1 appended with P2

achieve all tasks in both T1 and T2.

Proposition 1. Given a domain description, an initial state, and a set of tasks
T = {t1, . . . , tn}. If for each 1 < i ≤ n, {ti} is not related to {t1, . . . , ti−1},
then T can be achieved if and only if each task in the sequence 〈t1, . . . , tn〉 can
be achieved one after another.

Proposition 2. Given a domain description, an initial state, and a set of tasks
T = T1 ∪ · · · ∪Tn. If for each 1 < i ≤ n, Ti is not related to T1 ∪ · · · ∪Ti−1, then
T can be achieved if and only if each set of tasks in the sequence 〈T1, . . . , Tn〉
can be achieved one after another.

Deciding whether a set of tasks is related to another is generally harder than
deciding whether a set of tasks can be achieved by a plan. However, the problem
can be greatly simplified in many domains, e.g., eGPSR. The relevance between
tasks in this domain only results from “the limitation of resources”.

Let c ⊂ c′ denote that c is a proper subset of c′. The set of all concepts
appeared in eGPSR is denoted by C and the set of all portable objects in C by
O. Then C under ⊂ forms a hierarchy (C,⊂). We assume that for any c and
c′ ⊂ C, if c and c′ do not disjoint, then it holds that c ⊂ c′ or c′ ⊂ c. We also
assume that the size of every concept c ∈ C, denoted by |c|, is fixed and known
by the robot.

Given a task set T , we use C(T ) to denote the set of concepts appeared
in T , n(c, T ) the number of occurrences of c in T (we do not consider any
other requirements on resource in this paper). C(T ) can be created from T in
linear time. In order to achieve all tasks in T , the planner must allocate to each
concept c ∈ C(T ) a c-object; in other words, each occurrence of c in T demands
an “occupation” of a c-object. A least efficient way of resource allocation for T1
is to “run on” objects required by T2. That is, when there are concepts c ∈ C(T2)
and c′ ∈ C(T1) such that c ⊂ c′, the robot allocates only c-objects to every c′ in
T1, such that the c-objects may be used up unnecessarily for tasks in T1, causing
T2 unsolvable. This is possible since a robot cannot consider the requirements
by T2 when it plans for T1 before for T2.

The basic idea of our heuristic algorithm (Algorithm 1) is to test if this
least efficient way would cause T2 unsolvable. In the algorithm, o(c) records
the number of c-objects occupied so far in the estimate process. The algorithm
terminates in time O(n2), where n is the length of C(T1 ∪ T2).
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Algorithm 1

1: For each c ∈ C(T1 ∪ T2), o(c) := 0;
2: For each c ∈ C(T1) //occupation by T1//
3: o(c) := o(c) + n(c, T1);
4: For each c′ ∈ C(T1)
5: If c ⊂ c′ then o(c′) := o(c′) + n(c, T1);
6: If o(c) > |c| then return false; //T1 is unsolvable//
7: For each c ∈ C(T2) //occupation by T1 ∪ T2//
8: o(c) := o(c) + n(c, T2);
9: For each c′ ∈ C(T1 ∪ T2)

10: If c ⊂ c′ then o(c′) := o(c′) + n(c, T2);
11: For each c ∈ C(T2) //run on objects by T1//
12: For each c′ ∈ C(T1)
13: If c ⊂ c′ and o(c) + n(c′, T1) > |c| then return true;
14: Return false.

Formally, an allocation of objects for a task set T is an assignment of objects
to concepts in T , i.e., a mapping δ: C(T ) → O. Let |c|δ denote the number of
c-objects occupied by δ, for every c ∈ C. An assignment δ is called feasible, if |c|δ
≤ |c| for all c ∈ C. A domain is called resource-determined if for any task set T ,
there is a feasible assignment for T implies there is a plan for T . For example,
eGPSR is a resource-determined domain. We have the following proposition.

Proposition 3. Given any task sets T1 and T2 in a resource-determined do-
main. T2 is not related to T1 if Algorithm 1 returns ‘false’.

4 Experimental Results

The size of the environment is set as 10m× 10m and there are about 20 objects
including portable ones and furniture. Since a real robot’s perception ability is
limited, we simulate this feature approximately with “observation radius” (OR)
in our test-bed. We assume the robot can perceive the information of all objects
within the OR and no information of any object outside. The greater the OR is,
the more (missing) information may be perceived.

We conducted two tests with OR taken as 1m and 2m, respectively. Each
test consists of three groups and each group 20 task sets. All task sets in one
group contain the same number of tasks: there are 6 (8, 10) tasks in every task
set in group 1 (2, 3, respectively). The tasks in any task set are chosen randomly
under an additional restriction described later.

Table 1 shows the experimental results of test 1, where the observation radius
is set as 1m. Relevance-based-Ask strategy achieved all the tasks in each task
set, while the other two do not since they cannot deal with relevance between
tasks in the same task set. In particular, when two or more tasks in the same
task set are related, both strategies may fail to generate plans for and thus fail
to achieve some of these tasks, although they are not unsolvable in themselves.
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Table 1. The results of test 1

OR=1m Planning Time(s) #Ask #Atomic Actions #Task Achieved

Group 1: 6 tasks in each task set

Eager 1.01 8.70 22.55 5.55

Lazy 0.88 5.65 21.40 5.15

Relevance 1.21 5.70 23.50 6.00

Group 2: 8 tasks in each task set

Eager 1.16 11.00 29.95 7.40

Lazy 1.01 5.90 29.15 7.10

Relevance 1.38 6.35 31.15 8.00

Group 3: 10 tasks in each task set

Eager 1.68 13.45 37.40 9.25

Lazy 1.40 6.90 37.05 9.10

Relevance 1.82 7.45 38.55 10.00

The efficiency of planning among three strategies is of little difference in this
test. The first two strategies produced on average 2 fewer atomic actions than the
third strategy, because they achieved fewer tasks in some task sets. An obvious
deference is that Eager-to-ask strategy always asks notably more number of
questions than the other strategies, just because it obtains missing information
only through asking questions, while the other two obtain some through the
robot’s sensors. Relevance-based-ask strategy asks a little more than lazy-to-ask
strategy, as a tiny price for its completeness.

As the observation radius increases to 2m, we can see from Table 2 that the
ask times decreases about 40% with the second and the third strategy. The reason
is that the robot can perceive more missing information without any additional
effort or cost. This indicates that meta-level control affects the performance of
asking remarkably when robots possess powerful perception.

Table 2. The results of test 2

OR=2m Planning Time(s) #Ask #Atomic Actions #Task Achieved

Group 1: 6 tasks in each task set

Eager 0.96 8.70 22.85 5.65

Lazy 0.88 2.80 22.30 5.45

Relevance 1.38 3.90 23.75 6.00

Group 2: 8 tasks in each task set

Eager 1.16 11.00 30.10 7.45

Lazy 1.06 3.05 29.30 7.15

Relevance 1.55 3.90 31.25 8.00

Group 3: 10 tasks in each task set

Eager 1.58 13.45 37.25 9.20

Lazy 1.41 4.05 37.15 9.15

Relevance 1.94 4.90 38.65 10.00
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In above tests, a task set may be divided into several sub-sets under the
relevance-based strategy, where all tasks in each of these sub-sets are planned to-
gether. The additional restriction for selection of tasks is that any subset contains
no more than two (related) tasks. It is well-known that the computation time of
(object-level) planning will increase exponentially in the size of tasks (here the
subsets of tasks) if all the tasks are planned together, no matter whether or not
they are related. We did an additional test on planning for larger task sets with
the same sub-KeJia. It showed that planning for a 6-task set frequently needs
more than 1 hour. This provides strong evidence that it is necessary to reduce
the size of subsets of tasks using some meta-level control techniques, such as
relevance-based scheduling we used in the case-study.

5 Discussion and Conclusion

We draw following observations from this work, especially the case-study.
(1) Metareasoning provides an effective approach to HRI, particularly, the

coordination of basic abilities of a service robot. This coordination is of most
importance to HRI and reflected in our model as the coordination of planning,
learning, and dialogue loop. This is the reason why we focus on the coordination
in this paper while previous work on metareasoning focuses on internal process
of individual loops.

(2) The model MM-HRI supplies a framework with which one can advance
the performances of HRI by building meta-level functions on top of existing, well-
developed ground/object level components. We implemented meta-level schedul-
ing directly on previously developed low-level components and got new functions
and better performances. Particularly, meta-level control suggests a new oppor-
tunity to speed up planning while preserving completeness with reasonable price
for some application domains, without any change to the object level planner.

(3) The case-study shows that meta-level control affects the performances of
HRI remarkably in at least three aspects: planning time, performance of asking,
and completeness of resource-bounded deliberation. Compared to the common
strategy in previous work, the two strategies we proposed in this paper got higher
evaluation in the experiments. One important reason is that meta-level control
can make better use of concurrency of a robot’s hardware/software components.

One can draw more observations, e.g., asking is more desirable to acquire
knowledge or information that cannot be perceived easily through robots’ sen-
sors. These observations suggest a lot of future work along this line of research.
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