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Abstract. In this paper, we apply Fangzhen Lin’s methodology of com-
puter aided theorem discovery to discover classes of strongly equivalent
logic programs with negation as failure in the head. Specifically, with the
help of computers, we discover exact conditions that capture the strong
equivalence between small sets of rules, which have potential applications
in the theory and practice of logic programming. In the experiment, we
extend the previous approach to semi-automatically generate plausible
conjectures. We also show that it is possible to divide the original prob-
lem in simpler cases and combine their solutions in order to obtain the
solution of the original problem.

1 Introduction
Fangzhen Lin introduced a methodology, called computer-aided theorem dis-
covery [2], to discover some theorems using computers in a given theory. The
methodology has been successfully applied to discover classes of strongly equiv-
alent logic programs in the theory of logic programming [3].

In this paper, we report on another successful experiment of the methodology
for logic programs with negation as failure in the head [1] and make three con-
tributions. First, we extend Lin and Chen’s approach [3] to semi-automatically
generate candidates of theorems that need to be discovered in the experiment.
Second, we show that when the methodology cannot be directly applied, since it
would be computationally unfeasible, it is possible to divide the original problem
in simpler cases and combine their solutions in order to obtain the solution of
the original problem. Third, we discover the new and non-trivial conditions that
capture certain classes of strongly equivalent logic programs, which contribute
to the theory and practice of logic programming.

2 Logic programs with negation as failure in the head
Logic programming with answer set semantics has been considered as one of the
most popular nonmonotonic rule-based formalisms [1]. In this paper, we consider
only fully grounded finite logic programs.

Let L be a propositional language, i.e., a set of atoms. An extended logic
program (ELP) is a finite set of (extended) rules of the form

a1 ∨ · · · ∨ ak ∨not ak+1 ∨ · · · ∨ not ah ← ah+1, . . . , am, not am+1, . . . , not an, (1)
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where n ≥ m ≥ h ≥ k ≥ 0, n ≥ 1 and a1, . . . , an are atoms in L. If h = k, it
is a disjunctive rule; if h = k and m = n, it is a positive rule. In particular, a
disjunctive logic program (DLP) is a finite set of disjunctive rules and a positive
program is a finite set of positive rules. An ELP is also called a logic program
with negation as failure in the head [1]. Note that, generally it is impossible to
translate an ELP to a DLP without adding new atoms.

We will also write rule r of form (1) as head(r)← body(r), where head(r) =
head+(r) ∨ head−(r), body(r) = body+(r) ∧ body−(r), head+(r) is a1 ∨ · · · ∨ ak,
head−(r) is ¬ak+1 ∨ · · · ∨ ¬ah, body+(r) is ah+1 ∧ · · · ∧ am, and body−(r) is
¬am+1 ∧ · · · ∧ ¬an. In the following, we identify head+(r), head−(r), body+(r),
body−(r) with their corresponding sets of atoms.

Two ELPs P1 and P2 are strongly equivalent, if for any ELP P ′, programs
P1 ∪P ′ and P2 ∪P ′ have the same set of answer sets. In general, checking if two
ELPs or DLPs are strongly equivalent is coNP-complete.There is a mapping from
logic programs to propositional theories and showed that two logic programs
are strongly equivalent iff their corresponding theories in propositional logic
are equivalent. This result provides the basis for applying Lin’s computer-aided
theory discovery.

3 Discovering Classes of Strongly Equivalent ELPs

In this paper, we extend Lin and Chen’s approach to discovering classes of
strongly equivalent ELPs. We focus on discovering necessary and sufficient condi-
tions for answering the k-m-n problem for ELPs, i.e., is an ELP {r1, . . . , rk, u1, . . . , um}
strongly equivalent to an ELP {r1, . . . , rk, v1, . . . , vn}?

Following Lin’s computer-aided theory discovery, we first construct a first-
order language FL based on the propositional language L of ELPs. In specific, FL

has equality, two unary predicates H1 and H2, and four unary predicates PHr,
NHr, PBr, and NBr for each rule r in L. An intended model of Fl is one whose
domain is L, and for each rule r ∈ L, the unary predicates PHr, NHr, PBr, and
NBr are interpreted by the sets of atoms head+(r), head−(r), body+(r), and
body−(r), respectively.

Theorem 1. P1 and P2 are strongly equivalent in L iff the following sentence

∀x(H1(x) ⊃ H2(x)) ⊃

( ∧
r∈P1

γ(r) ≡
∧

r∈P2

γ(r)

)
(2)

is true in all intended models of FL, where γ(r) is the conjunction of the following
two sentences:

[∀x(PBr(x) ⊃ H1(x)) ∧ ∀x(NBr(x) ⊃ ¬H2(x))] ⊃ [∃x(PHr(x) ∧H1(x)) ∨ ∃x(NBr(x) ∧ ¬H2(x))] ,

[∀x(PBr(x) ⊃ H2(x)) ∧ ∀x(NBr(x) ⊃ ¬H2(x))] ⊃ [∃x(PHr(x) ∧H2(x)) ∨ ∃x(NBr(x) ∧ ¬H2(x))] .

Given a k-m-n problem, i.e., P1 = {r1, . . . , rk, u1, . . . , um} and P2 = {r1, . . . , rk, v1, . . . , vn},
if a conjecture for answering the k-m-n problem is represented by the formula
∃x∀y Φ in FL, then verifying the conjecture is equivalent to verifying the formula
∃x∀y Φ ⊃ (2). Now we have the following theorem.
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Theorem 2. Given ELPs P1 = {r1, . . . , rk, u1, . . . , um} and P2 = {r1, . . . , rk, v1, . . . , vn}
in the propositional language L, if ∃x∀y Φ is a property about P1 and P2 in FL,
where x is a tuple of w variables, and Φ a quantifier-free, function-free, and
constant-free formula, then the following two assertions are equivalent:

1. If ∃x∀y Φ is true in FL, then P1 is strongly equivalent to P2.
2. For any ELPs P1 and P2 with at most w + 2(k + max{m,n}) atoms when

min{m,n} > 0 and max{w + 2k, 1} atoms when min{m,n} = 0, if ∃x∀y Φ
is true in an intended model of FL, then P1 is strongly equivalent to P2.

Then the correctness of the conjecture for the k-m-n problem can be verified
by considering corresponding ELPs with a small size of atoms.

4 The Theorems

4.1 The 0-1-0 problem
This problem asks if a rule can always be deleted from any program. With the
help of computers1, we get the following experimental result:

Lemma 1. If a rule r mentions three distinct atoms, then {r} is strongly equiv-
alent to ∅ iff (head+(r)∪ body−(r))∩ body+(r) 6= ∅ or head−(r)∩ body−(r) 6= ∅.

Lemma 2. If there is a rule r such that {r} and ∅ are strongly equivalent, but
the condition in Lemma 1 does not hold, then there is a such rule that mention
at most three atoms.

Theorem 3 (The 0-1-0 problem). Lemma 1 holds in the general case, with-
out any restriction on the number of atoms in r.

4.2 The 1-1-0 and the 0-1-1 problems
With the help of computers, we get the following result for the 1-1-0 problem:

Lemma 3. For any two rules r1 and r2 that mention four atoms, {r1, r2} and
{r1} are strongly equivalent iff one of the following three conditions is true:

1. {r2} is strongly equivalent to ∅.
2. head+(r1) ⊆ head+(r2) ∪ body−(r2), head−(r1) ⊆ head−(r2) ∪ body+(r2),

body+(r1) ⊆ body+(r2), and body−(r1) ⊆ body−(r2).
3. head+(r1) ⊆ body−(r2), head−(r1) ⊆ head−(r2) ∪ body+(r2), body+(r1) ⊆

head−(r2) ∪ body+(r2), and body−(r1) ⊆ body−(r2).

Lemma 4. If there are two rules r1 and r2 such that {r1, r2} and {r1} are
strongly equivalent, but none of the three conditions in Lemma 3 hold, then there
are two such rules that mention at most four atoms.

Theorem 4 (The 1-1-0 problem). Lemma 3 holds in the general case, with-
out any restriction on the number of atoms in r1 and r2.

1 Source codes of computer programs for verifying conjectures can be downloaded
from http://staff.ustc.edu.cn/%7ejianmin/discover/code.zip.
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Theorem 5 (The 0-1-1 problem). For any two rules r1 and r2, {r1} and
{r2} are strongly equivalent iff one of the following three conditions is true:

1. {r1} and {r2} are both strongly equivalent to ∅.
2. body+(r1) = body+(r2), body−(r1) = body−(r2), head−(r1) ∪ body+(r1) =

head−(r2)∪body+(r2), and head+(r1)∪body−(r1) = head+(r2)∪body−(r2).
3. head+(r1) ⊆ body−(r1), head+(r2) ⊆ body−(r2), body−(r1) = body−(r2),

and head−(r1) ∪ body+(r1) = head−(r2) ∪ body+(r2).

4.3 The 2-1-0, 0-2-1, and 0-2-2 problems
As the 2-1-0 problem is too hard to be solved directly, we need to first divide
the problem into simpler cases.

Property 1. For any rules ri and r3, {ri, r3} and {ri} are not strongly equivalent
iff {r3} is not strongly equivalent to ∅ and one of the five conditions is true:

1. There is an atom p such that: p ∈ body−(ri) and p 6∈ body−(r3).
2. There is an atom p such that: p ∈ head−(ri) and p 6∈ head−(r3)∪ body+(r3).
3. There is an atom p such that: p ∈ body+(ri) and p 6∈ head−(r3)∪ body+(r3).
4. There is an atom p such that: p ∈ head+(ri) and p 6∈ head+(r3)∪ body−(r3).
5. There are two atoms p, q such that: p ∈ body+(ri), p 6∈ body+(r3), p ∈
head−(r3), q ∈ head+(ri), q 6∈ body−(r3) and q ∈ head+(r3).

Property 2. For any rules r1, r2 and r3, one of the four conditions is true:

1. {r3} is strongly equivalent to ∅.
2. {ri, r3} is strongly equivalent to {ri}, for i = 1, 2.
3. {r3} is not strongly equivalent to ∅, one of the conditions from (1) - (4) of

Property 1 is true, and the condition (5) of Property 1 is not true, where
i = 1 or 2.

4. {r3} is not strongly equivalent to ∅, {r1, r3} is not strongly equivalent to
{r1}, {r2, r3} is not strongly equivalent to {r2}, and the condition (5) of
Property 1 is true, where i = 1 or 2.

Lemma 5. For any three rules r1, r2 and r3 that make the condition (3) of
Property 2 true and mention at most five atoms, {r1, r2, r3} and {r1, r2} are
strongly equivalent if there is an atom p such that:

1. p ∈ (head−(r1) ∪ body+(r1)) ∩ (body−(r2) ∪ head+(r2)),
2. {r∗i , r3} is strongly equivalent to {r∗i }, for i = 1, 2,
3. If p ∈ body+(r1) ∩ body−(r2), then head+(r1) ⊆ body−(r3),
4. If p ∈ body+(r1) ∩ head+(r2), then head+(r1) ⊆ body−(r3) or body+(r2) ⊆

body+(r3),

where r∗1 is a new rule obtained from r1 by deleting p from head−(r1) and
body+(r1), and r∗2 is obtained from r2 by deleting p from body−(r2) and head+(r2).

Lemma 6. For any three rules r1, r2 and r3 that make the condition (3) of
Property 2 true and mention at most five atoms, {r1, r2, r3} and {r1, r2} are
strongly equivalent if there is an atom p such that:
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1. p ∈ (body−(r1) ∪ head+(r1)) ∩ (head−(r2) ∪ body+(r2)),
2. {r∗i , r3} is strongly equivalent to {r∗i }, for i = 1, 2,
3. If p ∈ body−(r1) ∩ body+(r2), then head+(r2) ⊆ body−(r3),
4. If p ∈ head+(r1) ∩ body+(r2), then head+(r2) ⊆ body−(r3) or body+(r1) ⊆

body+(r3),

where r∗1 is a new rule obtained from r1 by deleting p from body−(r1) and
head+(r1), and r∗2 is obtained from r2 by deleting p from head−(r2) and body+(r2).

Lemma 7. For any three rules r1, r2 and r3 that make the condition (3) of
Property 2 true and mention at most five atoms, {r1, r2, r3} and {r1, r2} are
strongly equivalent iff the condition in Lemma 5 or Lemma 6 is true.

Lemma 8. If there are three rules r1, r2 and r3 such that the condition (3)
of Property 2 is true, {r1, r2, r3} and {r1, r2} are strongly equivalent, but the
condition in Lemma 7 does not hold, then there are three such rules that mention
at most five atoms.

Theorem 6. Lemma 7 holds in the general case, without any restriction on the
number of atoms in r1, r2 and r3.

Lemma 9. For any three rules r1, r2 and r3 that make the condition (4) of
Property 2 true and mention at most six atoms, {r1, r2, r3} and {r1, r2} are
strongly equivalent if there are two atoms p and q such that:

1. p ∈ head−(r1) ∩ head+(r2) ∩ head+(r3), p 6∈ body+(r1) and p 6∈ body−(r2),
2. q ∈ head+(r1) and q ∈ body+(r2),
3. {r∗i , r3} is strongly equivalent to {r∗i }, for i = 1, 2,
4. body+(r2) \ {q} ⊆ body+(r3), and body+(r1) ⊆ body+(r3),

where r∗1 is a new rule obtained from r1 by deleting p from head−(r1) and deleting
q from head+(r1), and r∗2 is obtained from r2 by deleting p from head+(r2).

Lemma 10. For any three rules r1, r2 and r3 that make the condition (4) of
Property 2 true and mention at most six atoms, {r1, r2, r3} and {r1, r2} are
strongly equivalent if there are two atoms p and q such that:

1. p ∈ head+(r1) ∩ head−(r2) ∩ head+(r3), p 6∈ body−(r1) and p 6∈ body+(r2),
2. q ∈ body+(r1) and q ∈ head+(r2),
3. {r∗i , r3} is strongly equivalent to {r∗i }, for i = 1, 2,
4. body+(r1) \ {q} ⊆ body+(r3), and body+(r2) ⊆ body+(r3),

where r∗1 is a new rule obtained from r1 by deleting p from head+(r1), and r∗2 is
obtained from r2 by deleting p from head−(r2) and deleting q from head+(r2).

Lemma 11. For any three rules r1, r2 and r3 that make the condition (4) of
Property 2 true and mention at most six atoms, {r1, r2, r3} and {r1, r2} are
strongly equivalent iff the condition in Lemma 7, Lemma 9 or Lemma 10 is true.
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Lemma 12. If there are three rules r1, r2 and r3 such that the condition (4)
of Property 2 is true, {r1, r2, r3} and {r1, r2} are strongly equivalent, but the
condition in Lemma 11 does not hold, then there are three such rules that mention
at most six atoms.

Theorem 7. Lemma 11 holds in the general case, without any restriction on
the number of atoms in r1, r2 and r3.

Theorem 8. For any three rules r1, r2 and r3, {r1, r2, r3} and {r1, r2} are
strongly equivalent iff one of the following three conditions is true:

1. {r3} is strongly equivalent to ∅.
2. {ri, r3} is strongly equivalent to {ri}, where i = 1 or 2.
3. the condition in Lemma 5, 6, 6, or 10 is true.

Theorem 9 (The 0-2-1 problem). For any three rules r1, r2 and r3, {r1, r2}
and {r3} are strongly equivalent iff the following two conditions are true:

1. {r1, r2, r3} and {r1, r2} are strongly equivalent, and
2. {ri, r3} and {r3} are strongly equivalent, for i = 1, 2.

Theorem 10 (The 0-2-2 problem). For any rules r1, r2, r3 and r4, {r1, r2}
and {r3, r4} are strongly equivalent iff the following two conditions are true:

1. {r1, r2, ri} and {r1, r2} are strongly equivalent, for i = 3, 4, and
2. {r3, r4, ri} and {r3, r4} are strongly equivalent, for i = 1, 2.

5 Conclusion
In this paper, we report on another successful experiment of Lin’s computer-
aided theory discovery for discovering classes of strongly equivalent extended
logic programs. The paper makes three contributions. First, we extend Lin and
Chen’s approach to semi-automatically generate plausible conjectures. Second,
we show that when the methodology cannot be directly applied, since it would
be computationally unfeasible, it is possible to divide the original problem in
simpler cases and combine their solutions in order to obtain the solution of the
original problem. Third, we discover the new and non-trivial conditions that
capture certain classes of strongly equivalent extended logic programs, which
contribute to the theory and practice of logic programming.
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