
From Default and Autoepistemic Logics to Disjunctive
Answer Set Programs via the Logic of GK

Jianmin Ji1 and Hannes Strass2

Abstract. The logic of knowledge and justified assumptions, also
known as logic of grounded knowledge (GK), was proposed by Lin
and Shoham as a general logic for nonmonotonic reasoning. To date,
it has been used to embed in it default logic (propositional case), au-
toepistemic logic, Turner’s logic of universal causation, and general
logic programming under stable model semantics. Besides showing
the generality of GK as a logic for nonmonotonic reasoning, these
embeddings shed light on the relationships among these other logics.
In this paper, for the first time, we show how the logic of GK can be
embedded into disjunctive logic programming in a polynomial but
non-modular translation with new variables. The result can then be
used to compute the extension/expansion semantics of default logic,
autoepistemic logic and Turner’s logic of universal causation by dis-
junctive ASP solvers such as claspD(-2), DLV, GNT and cmodels.

1 Introduction
Lin and Shoham [21] proposed a logic with two modal operators K
and A, standing for knowledge and assumption, respectively. The
idea is that one starts with a set of assumptions (those true under
the modal operator A), computes the minimal knowledge under this
set of assumptions, and then checks to see if the assumptions were
justified in that they agree with the resulting minimal knowledge. For
instance, consider the GK formula Ap ⊃ Kp. If we assume p, then
we can conclude that we know p, thus the assumption that p holds is
justified, and we get a GK model where both Ap and Kp are true.
(There is another GK model where we do not assume p and hence do
not know p.) However, there is no GK model of¬Ap ⊃ Kp: if we do
not assume p, we are forced to conclude Kp, but then knowledge and
assumptions do not coincide; if we do assume p, we cannot conclude
that we know p and thus assuming p was not justified.

To date, there have been embeddings from default logic [30] and
autoepistemic logic [27] to the logic of GK [21], from Turner’s logic
of universal causation [36] to the logic of GK [14], as well as from
general logic programs [9] to the logic of GK [22]. Among other
things, these embeddings shed new light on nonmonotonic reasoning,
and have led to an interesting characterization of strong equivalence
in logic programming [20, 22], and helped relate logic programming
to circumscription [21] as the semantics of GK is just a minimization
together with an identity checking after the minimization.

In this paper, for the first time, we consider computing models of
GK theories by disjunctive logic programs. We shall propose a poly-
nomial translation from a (pure) GK theory to a disjunctive logic
program such that there is a one-to-one correspondence between GK

1 School of Computer Science and Technology, University of Science and
Technology of China, Hefei, China

2 Computer Science Institute, Leipzig University, Leipzig, Germany

models of the GK theory and answer sets of the resulting disjunctive
logic program. The result can then be used to compute the exten-
sion/expansion semantics of default logic, autoepistemic logic and
Turner’s logic of universal causation by disjunctive ASP solvers such
as claspD [7], claspD-2 [10], DLV [18], GNT [12] and cmodels [11].
To substantiate this claim, we have implemented the translation and
report on some experiments that we conducted on the special case
of computing extensions for Reiter’s default logic [30]. The imple-
mentation, called gk2dlp, is available for download from the second
author’s home page at http://informatik.uni-leipzig.
de/˜strass/gk2dlp/.

Providing implementations for theoretical formalisms has a long
tradition in nonmonotonic reasoning, for an overview see [6]. In fact,
nonmonotonic reasoning itself originated from a desire to more ac-
curately model the way humans reason, and was since its conception
driven by applications in commonsense reasoning [25, 26]. Today,
thanks to extensive research efforts, we know how closely interre-
lated the different formalisms for nonmonotonic reasoning are, and
can use this knowledge to improve the scope of implementations.

This paper is organized as follows. Section 2 reviews logic pro-
grams, the logic of GK and default and autoepistemic logics. Sec-
tion 3 presents our main result, the mapping from GK to disjunctive
logic programming; due to space constraints, we could however not
include any of the proofs. Section 4 presents our prototypical imple-
mentation, several experiments we conducted to analyze the transla-
tion, possible applications for it as well as a comparison with previ-
ous and related work. Section 5 concludes with ideas for future work.

2 Preliminaries

We assume a propositional language with two zero-place logical con-
nectives > for tautology and ⊥ for contradiction. We denote by
Atom the set of atoms, the signature of our language, and Lit the
set of literals: Lit = Atom ∪ {¬p | p ∈ Atom}. A set I of literals
is called complete if for each atom p, exactly one of {p,¬p} is in I .

In this paper, we identify an interpretation with a complete set of
literals. If I is a complete set of literals, we use it as an interpretation
when we say that it is a model of a formula, and we use it as a set of
literals when we say that it entails a formula. In particular, we denote
by Th(I) the logical closure of I (considered to be a set of literals).

2.1 Logic Programming

A nested expression is built from literals using the 0-place connec-
tives > and ⊥, the unary connective “not” and the binary connec-
tives “,” and “;” for conjunction and disjunction. A logic program
with nested expressions is a finite set of rules of the form F ← G,
where F and G are nested expressions. The answer set of a logic

http://informatik.uni-leipzig.de/~strass/gk2dlp/
http://informatik.uni-leipzig.de/~strass/gk2dlp/

program with nested expressions is defined as in [19]. Given a nested
expression F and a set S of literals, we define when S satisfies F ,
written S |= F below, recursively as follows (l is a literal):

• S |= l if l ∈ S,
• S |= > and S 6|= ⊥,
• S |= not F if S 6|= F ,
• S |= F,G if S |= F and S |= G, and
• S |= F ;G if S |= F or S |= G.

S satisfies a rule F ← G if S |= F whenever S |= G. S satisfies a
logic program P , written S |= P , if S satisfies all rules in P .

The reduct PS of P related to S is the result of replacing ev-
ery maximal subexpression of P that has the form not F with ⊥ if
S |= F , and with > otherwise. For a logic program P without not,
the answer set ofP is any minimal consistent subset S ofLit that sat-
isfies P . We use ΓP (S) to denote the set of answer sets of PS . Now
a consistent set S of literals is an answer set of P iff S ∈ ΓP (S). Ev-
ery logic program with nested expressions can be equivalently trans-
lated to disjunctive logic programs with disjunctive rules of the form

l1; · · · ; lk ←lk+1, . . . , lt, not lt+1, . . . , not lm,

not not lm+1, . . . , not not ln

where n ≥ m ≥ t ≥ k ≥ 0 and l1, . . . , ln are propositional literals.

2.2 Default Logic
Default logic [30] is for closing gaps in incomplete knowledge bases.
This is done by defaults, that allow to express rules of thumb such
as “birds usually fly” and “tools usually work.” For a given logical
language, a default is any expression of the form φ : ψ1, . . . , ψn/ϕ
where φ, ψ1, . . . , ψn, ϕ are formulas of the underlying language. A
default theory is a pair (W,D), whereW is a set of formulas andD is
a set of defaults. The meaning of default theories is given through the
notion of extensions. An extension of a default theory (W,D) is “in-
terpreted as an acceptable set of beliefs that one may hold about the
incompletely specified world W ” [30]. For a default theory (W,D)
and any set S of formulas let Γ(S) be the smallest set satisfying (1)
W ⊆ Γ(S), (2) Th(Γ(S)) = Γ(S), (3) If φ : ψ1, . . . , ψn/ϕ ∈ D,
φ ∈ Γ(S) and ¬ψ1, . . . ,¬ψn /∈ S, then ϕ ∈ Γ(S). A set E of
formulas is called an extension for (W,D) iff Γ(E) = E.

2.3 Autoepistemic Logic
Moore [27] strives to formalize an ideally rational agent reasoning
about its own beliefs. He uses a belief modalityL to explicitly refer to
the agent’s belief within the language. Given a setA of formulas (the
initial beliefs), a set T is an expansion of A if it coincides with the
deductive closure of the set A ∪ {Lϕ | ϕ ∈ T} ∪ {¬Lϕ | ϕ /∈ T}.
In words, T is an expansion if it equals what can be derived using the
initial beliefs A and positive and negative introspection with respect
to T itself. It was later discovered that this definition of expansions
allows unfounded, self-justifying beliefs. Such beliefs are however
not always desirable when representing the knowledge of agents.

2.4 The Logic of GK
The language of GK proposed by Lin and Shoham [21] is a modal
propositional language with two modal operators, K, for knowledge,
and A, for assumption. GK formulas are propositional formulas with
K and A. A GK theory is a set of GK formulas.

GK is a nonmonotonic logic, and its semantics is defined using the
standard Kripke possible world interpretations. Informally speaking,

a GK model is a Kripke interpretation where what is true under K is
minimal and exactly the same as what is true under A. The intuition
here is that given a GK formula, one first makes some assumptions
(those true under A), then one minimizes the knowledge thus en-
tailed, and finally checks to make sure that the initial assumption is
justified in the sense that the minimal knowledge is the same as the
initial assumption.

Formally, a Kripke interpretationM is a tuple 〈W,π,RK , RA, s〉,
where W is a nonempty set of possible worlds, π a function
that maps a possible world to an interpretation, RK and RA bi-
nary relations over W representing the accessibility relations for
K and A, respectively, and s ∈W , called the actual world of M .
The satisfaction relation |= between a Kripke interpretation M =
〈W,π,RK , RA, s〉 and a GK formula F is defined in a standard way:

• M 6|= ⊥,
• M |= p iff p ∈ π(s), where p is an atom,
• M |= ¬F iff M 6|= F ,
• M |= F ∧G iff M |= F and M |= G,
• M |= F ∨G iff M |= F or M |= G,
• M |= KF iff 〈W,π,RK , RA, ω〉 |= F for any ω ∈W , such that

(s, ω) ∈ RK ,
• M |= AF iff 〈W,π,RK , RA, ω〉 |= F for any ω ∈W , such that

(s, ω) ∈ RA.

Note that for any ω ∈ W , π(ω) is an interpretation. We say that a
Kripke interpretationM is a model of a GK formula F ifM satisfies
F , M is a model of a GK theory T if M satisfies every GK formula
in T . In the following, given a Kripke interpretation M , we let

K(M) = {φ | φ is a propositional formula and M |= Kφ },
A(M) = {φ | φ is a propositional formula and M |= Aφ }.

Notice that K(M) and A(M) are always closed under classical log-
ical entailment, that is, they are propositional theories.

Given a GK formula T , a Kripke interpretation M is a minimal
model of T if M is a model of T and there does not exist another
model M1 of T such that A(M1) = A(M) and K(M1) (K(M).
We say that M is a GK model of T if M is a minimal model of T
and K(M) = A(M).

In this paper, we consider only GK formulas that do not contain
nested occurrences of modal operators. Specifically, an A-atom is
a formula of the form Aφ and a K-atom is a formula of the form
Kφ, where φ is a propositional formula. A GK formula is called a
pure GK formula if it is formed from A-atoms, K-atoms and propo-
sitional connectives. Similarly, a pure GK theory is a set of pure GK
formulas. Given a pure GK formula F , we denote

AtomK(F) = {φ | Kφ is a K-atom occurring in F },
AtomA(F) = {φ | Aφ is an A-atom occurring in F }.

For a pure GK theory T , we use AtomK(T) =
⋃
F∈T AtomK(F)

and AtomA(T) =
⋃
F∈T AtomA(F) to denote their modal atoms.

So far, the applications of the logic of GK only ever use pure GK
formulas. We now present some embeddings of well-known non-
monotonic knowledge representation languages into the logic of GK.

Default logic A (propositional) default theory ∆ = (W,D) (under
extension semantics) is translated into pure GK formulas in the fol-
lowing way: (1) Translate each φ ∈W to Kφ; (2) translate each (φ :
ψ1, . . . , ψn/ϕ) ∈ D to Kφ ∧ ¬A¬ψ1 ∧ · · · ∧ ¬A¬ψn ⊃ Kϕ.
For the weak extension semantics, a default (φ : ψ1, . . . , ψn/ϕ) ∈
D is translated to Aφ ∧ ¬A¬ψ1 ∧ · · · ∧ ¬A¬ψn ⊃ Kϕ.

2

Autoepistemic logic An L-sentence of autoepistemic logic that
is in normal form [16], that is, a disjunction of the form
¬Lφ ∨ Lψ1 ∨ · · · ∨ Lψn ∨ ϕ, is (under expansion semantics) ex-
pressed as Aφ ∧ ¬Aψ1 ∧ · · · ∧ ¬Aψn ⊃ Kϕ. For strong expan-
sion semantics, it becomes Kφ ∧ ¬Aψ1 ∧ · · · ∧ ¬Aψn ⊃ Kϕ.

Notice that the translation of default and autoepistemic theories
into the logic of GK is compatible with Konolige’s translation from
default logic into autoepistemic logic [16]. Indeed, Konolige’s trans-
lation perfectly aligns the weak extension semantics of default logic
with expansion semantics for autoepistemic logic, and likewise for
extension and strong expansion semantics.

Logic of universal causation A UCL formula F is translated to the
pure logic of GK by replacing every occurrence of C by K, adding
A before each atom which is not in the range of C in F , and adding
Ap∨A¬p for each atom p. For example, if F is (p∧¬q) ⊃ C(p∧
¬q) and Atom = {p, q}, then the corresponding pure GK formula
is ((Ap ∧ ¬Aq) ⊃ K(p ∧ ¬q)) ∧ (Ap ∨A¬p) ∧ (Aq ∨A¬q).

Disjunctive logic programs Similarly, a disjunctive LP rule

p1 ∨ · · · ∨ pk ← pk+1, . . . , pl, not pl+1, . . . , not pm,

where p’s are atoms, corresponds to the following pure GK formula:

Kpk+1 ∧ · · · ∧Kpl ∧¬Apl+1 ∧ · · · ∧ ¬Apm ⊃ Kp1 ∨ · · · ∨Kpk

3 Main Result: From Pure GK to Disjunctive ASP
Before presenting the translation, we introduce some notations. Let
F be a pure GK formula, we use trp(F) to denote the propositional
formula obtained from F by replacing each occurrence of a K-atom
Kφ by kφ and each occurrence of an A-atom Aψ by aψ , where kφ
and aψ are new atoms with respect to φ and ψ respectively. For a
pure GK theory T , we define trp(T) =

∧
F∈T trp(F). To illustrate

these and the definitions that follow, we use a running example.

Example 1 (Normal Reiter default) Consider the pure GK theory
{F} with F = ¬A¬p ⊃ Kp corresponding to the default > : p/p.
Then trp({F}) = ¬a¬p ⊃ kp, where a¬p and kp are new atoms.

Here we introduce a set of new atoms kφ and aψ for each formula
φ ∈ AtomK(T) and ψ ∈ AtomA(T). Intuitively, the new atom kφ
(resp. aφ) will be used to encode containment of the formula φ in
K(M) (resp. A(M)) of a GK model M for T .

Given a propositional formula φ and an atom a, we use φa to de-
note the propositional formula obtained from φ by replacing each
occurrence of an atom p with a new atom pa with respect to a. These
formulas and new atoms will later be used in our main translation to
perform the minimality check of the logic of GK’s semantics.

We now stepwise work our way towards the main result. We start
out with a result that relates a pure GK theory to a propositional
formula that will later reappear in our main translation.

Proposition 1 Let T be a pure GK theory. A Kripke interpretation
M is a model of T if and only if there exists a model I∗ of the propo-
sitional formula ΦT = trp(T) ∧ ϕsnd ∧ ϕK

wit ∧ ϕA
wit with

ϕsnd =
∧

φ∈AtomK(T)

(kφ ⊃ φk) ∧
∧

φ∈AtomA(T)

(aφ ⊃ φa)

ϕK
wit =

∧
ψ∈AtomK(T)

¬kψ ⊃
¬ψkψ ∧ ∧

φ∈AtomK(T)

(kφ ⊃ φkψ)

ϕA

wit =
∧

ψ∈AtomA(T)

¬aψ ⊃
¬ψaψ ∧ ∧

φ∈AtomA(T)

(aφ ⊃ φaψ)

such that

• K(M) ∩ AtomK(T) = {φ | φ ∈ AtomK(T) and I∗ |= kφ};
• A(M) ∩ AtomA(T) = {φ | φ ∈ AtomA(T) and I∗ |= aφ}.

The proposition examines the relationship between models of
a pure GK theory and particular models of the propositional for-
mula ΦT . The first conjunct trp(T) of the formula ΦT indicates
that the k-atoms and a-atoms in it can be interpreted in accordance
with K(M) and A(M) such that I∗ |= trp(T) iff M is a model
of T . The soundness formula ϕsnd achieves that the sets {φ | φ ∈
AtomK(T) and I∗ |= kφ} and {φ | φ ∈ AtomA(T) and I∗ |= aφ}
are consistent. The witness formulas ϕwit indicate that, if I∗ |= ¬kψ
for some ψ ∈ AtomK(T) (resp. ψ ∈ AtomA(T)) then there exists a
model I ′ of K(M) (resp. A(M)) such that I ′ |= ¬ψ, where I ′ is ex-
plicitly indicated by newly introduced pkψ (resp. paψ) atoms. So in-
tuitively, if a formula is not known (or not assumed), then there must
be a witness for that. This condition is necessary: for instance, the set
{kp, kq,¬kp∧q} satisfies the formula (kp∧q ⊃ kp) ∧ (kp∧q ⊃ kq),
however, since K(M) is a theory there does not exist a Kripke inter-
pretation M such that p ∈ K(M), q ∈ K(M) and p ∧ q /∈ K(M).

Example 1 (Continued) Formula Φ{F} is given by:

trp(F) = ¬a¬p ⊃ kp
ϕsnd = (kp ⊃ pk) ∧ (a¬p ⊃ ¬pa)

ϕK
wit = ¬kp ⊃ (¬pkp ∧ (kp ⊃ pkp))

ϕA
wit = ¬a¬p ⊃ (¬¬pa¬p ∧ (a¬p ⊃ ¬pa¬p))

While Proposition 1 aligns Krikpe models and propositional mod-
els of the translation, there is yet no mention of GK’s typical mini-
mization step. This is the task of the next result, which extends the
above relationship to GK models.

Proposition 2 Let T be a pure GK theory. A Kripke interpretation
M is a GK model of T if and only if there exists a model I∗ of the
propositional formula ΦT such that

• K(M) = A(M) = Th ({φ | φ ∈ AtomK(T) and I∗ |= kφ});
• for each ψ ∈ AtomA(T),

I∗ |= aψ iff ψ ∈ Th({φ | φ ∈ AtomK(T) and I∗ |= kφ})

• there does not exist another model I∗′ such that

– I∗′∩{aφ | φ ∈ AtomA(T)} = I∗∩{aφ | φ ∈ AtomA(T)},
– I∗′∩{kφ | φ ∈ AtomK(T)} (I∗∩{kφ | φ ∈ AtomK(T)}.

Example 1 (Continued) Clearly the intended reading of our run-
ning example is that there is no reason to assume that p is false, and
the default lets us conclude that we know p. This is testified by the
partial interpretation I∗ = {¬a¬p, kp, pk , pa¬p} where the remain-
ing atoms are not relevant. It is easy to verify that I∗ is a model
for Φ{F} and there is no model I∗′ with the properties above. Now
kp ∈ I∗ shows that p is known in the corresponding GK model.

In Proposition 2, we only need to consider a Kripke interpretation
M such that A(M) ∪K(M) is consistent. This means that formula
ΦT can be modified to ΨT = trp(T) ∧ ϕ′snd ∧ ϕ′wit with

ϕ′snd =
∧

φ∈AtomK(T)

(kφ ⊃ φ) ∧
∧

φ∈AtomA(T)

(aφ ⊃ φ)

ϕ′wit =
∧

ψ∈AtomK(T)

(
¬kψ ⊃ ΦK

ψ

)
∧

∧
ψ∈AtomA(T)

(
¬aψ ⊃ ΦA

ψ

)

3

ΦK
ψ = ¬ψkψ ∧

∧
φ∈AtomK(T)

(kφ ⊃ φkψ) ∧
∧

φ∈AtomA(T)

(aφ ⊃ φkψ)

ΦA
ψ = ¬ψaψ ∧

∧
φ∈AtomK(T)

(kφ ⊃ φaψ) ∧
∧

φ∈AtomA(T)

(aφ ⊃ φaψ)

So the soundness formula ϕ′snd actually becomes easier, since
soundness of knowledge and assumptions is enforced for one and the
same vocabulary (the one from the original theory). The witness for-
mulas become somewhat more complicated, as the witnesses have to
respect both the knowledge as well as the assumptions of the theory.
This is best explained by consulting our running example again.

Example 1 (Continued) While F ’s propositionalization trp({F})
stays the same, the soundness and witness formulas change in the
step from formula Φ{F} to formula Ψ{F}. We only show the first
conjunct of the witness formula ϕ′wit , which is given by

¬kp ⊃
(
¬pkp ∧

(
kp ⊃ pkp

)
∧
(
a¬p ⊃ ¬pkp

))
Intuitively, the formula expresses that whenever p is not known, then
there must be a witness, that is, an interpretation where p is false.
Since the witnessing interpretations could in principle be distinct for
each K-atom, they have to be indexed by the respective K-atom they
refer to, as in pkp . Of course, the witnesses have to obey all that is
known and assumed, which is guaranteed in the last two conjuncts.

Using this new formula, the result of Proposition 2 can be restated.

Proposition 3 Let T be a pure GK theory. A Kripke interpretation
M is a GK model of T if and only if there exists a model I∗ of the
propositional formula ΨT such that

• K(M) = A(M) = Th ({φ | φ ∈ AtomK(T) and I∗ |= kφ});
• for each ψ ∈ AtomA(T),

if I∗ |= aψ then ψ ∈ Th({φ | φ ∈ AtomK(T) and I∗ |= kφ})

• there does not exist another model I∗′ of ΦT such that

– I∗′∩{aφ | φ ∈ AtomA(T)} = I∗∩{aφ | φ ∈ AtomA(T)},
– I∗′∩{kφ | φ ∈ AtomK(T)} (I∗∩{kφ | φ ∈ AtomK(T)}.

We are now ready for our main result, translating a pure GK theory
to a disjunctive logic program. First, we introduce some notations.
Let T be a pure GK theory, we use trne(T) to denote the nested ex-
pression obtained from ΨT by first converting it to negation normal
form3, then replacing “∧” by “,” and “∨” by “;”. A propositional
formula φ can be equivalently translated to conjunctive normal form
(involving at most linear blowup)

(p1 ∨ · · · ∨ pt ∨ ¬pt+1 ∨ · · · ∨ ¬pm) ∧ . . .
∧ (q1 ∨ · · · ∨ qk ∨ ¬qk+1 ∨ · · · ∨ ¬qn)

where p’s and q’s are atoms; we use trc(φ) to denote the set of rules

p1; . . . ; pt ← pt+1, . . . , pm . . . q1; . . . ; qk ← qk+1, . . . , qn

We use φ̂ to denote the propositional formula obtained from φ by
replacing each occurrence of an atom p by a new atom p̂.

3 A propositional formula is in Negation Normal Form (NNF) if negation
occurs only immediately above atoms, and {⊥,>,¬,∧,∨} are the only
allowed connectives.

We use T ∗ to denote the propositional formula obtained from the
formula ΦT by replacing each occurrence of an atom p (except atoms
in {aφ | φ ∈ AtomA(T)}) by a new atom p∗. Intuitively, each atom
that is not an a-atom is replaced by a new atom.

Notice that trne(T) is obtained from ΨT while T ∗ is obtained
from ΦT . Intuitively, by Proposition 3, trne(T) is used to restrict in-
terpretations for introduced k-atoms and a-atoms so that these inter-
pretations serve as candidates for GK models, and by Proposition 1,
T ∗ constructs possible models of the GK theory which are later used
to test whether these models prevent the candidate to be a GK model.

Inspired by the linear translation from parallel circumscription into
disjunctive logic programs in [13], we have the following theorem.

Theorem 1 Let T be a pure GK theory. A Kripke interpretation M
is a GK model of T if and only if there exists an answer set S of the
logic program tr lp(T):

(1) ⊥ ← not trne(T)

(2) p′;¬p′ ← > (for each atom p′ occurring in trne(T))

(3) u;A← B (for each rule A← B in trc(T
∗))

(4) u; cφ1 ; · · ·; cφm ← > ({φ1, . . . , φm} = AtomK(T))

(5) u← cφ, not kφ (for each φ ∈ AtomK(T))

(6) u← k∗φ, not kφ (for each φ ∈ AtomK(T))

(7) u← cφ, k
∗
φ, not¬kφ (for each φ ∈ AtomK(T))

(8) u; cφ; k∗φ ← not¬kφ (for each φ ∈ AtomK(T))

(9) p∗ ← u (for each new atom p∗ in trc(T
∗))

(10) cφ ← u (for each φ ∈ AtomK(T))

(11) ⊥ ← not u

(12) v;A← B

(for each rule A← B in the trc(·) translation of∧
φ∈AtomK(T)

(kφ ⊃ φ̂) ∧ ¬
∧

φ∈AtomA(T)

(aφ ⊃ φ̂))

(13) p̂← v

(for each atom p̂ except k-atoms and a-atoms in trc(·) of∧
φ∈AtomK(T)

(kφ ⊃ φ̂) ∧ ¬
∧

φ∈AtomA(T)

(aφ ⊃ φ̂))

(14) ⊥ ← not v

where u, v, and cφ (for each φ ∈ AtomK(T)) are new atoms, such
that K(M) = A(M) = Th({φ | φ ∈ AtomK(T) and kφ ∈ S}).

The intuition behind the construction is as follows:

• (1) and (2) in tr lp(T): I∗ is a model of the formula ΨT .
• (3) to (8): if there exists a model I∗′ of the formula ΦT with

– I∗ ∩ {aφ | φ ∈ AtomA(T)} = I∗′ ∩ {aφ | φ ∈ AtomA(T)}
– I∗′∩{kφ | φ ∈ AtomK(T)} (I∗∩{kφ | φ ∈ AtomK(T)},
then there exists a set S∗ constructed from new atoms in trc(T

∗)
(which is a copy of the formula ΦT with same aφ for each
φ ∈ AtomA(T)) and cφ for some φ ∈ AtomK(T) such that
S∗ satisfies rules (3) to (8) and u /∈ S∗.

• (9) and (10): if there is such a set S∗ then it is the least set con-
taining u, all p∗’s and c-atoms.

• (11): such a set S∗ should not exist. (See item 3 in Proposition 3.)
• (12) and (13): if there exists a model of the propositional formula∧

φ∈AtomK(T)(kφ ⊃ φ̂) ∧ ¬
∧
φ∈AtomA(T)(aφ ⊃ φ̂), then v

should not occur in the minimal model of the program.

4

• (14):
∧
φ∈AtomK(T)(kφ ⊃ φ̂)∧¬

∧
φ∈AtomA(T)(aφ ⊃ φ̂) should

not be consistent. (This is necessary by item 2 in Proposition 3.)

Example 1 (Continued) For our running example theory {F} with
F = ¬A¬p ⊃ Kp, we find that the logic program translation
tr lp({F}) has a single answer set S with kp ∈ S. Thus by The-
orem 1 we can conclude that the GK theory {F} has a single GK
model M in which K(M) = Th({p}).

Computational complexity We have seen in Section 2.4 that dis-
junctive logic programs can be modularly and equivalently translated
into pure formulas of the logic of GK. Conversely, Theorem 1 shows
that pure GK formulas can be equivalently translated into disjunc-
tive logic programs. Eiter and Gottlob showed that the problem of
deciding whether a disjunctive logic program has an answer set is
ΣP2 -complete [8]. In combination, these results yield the following
straightforward complexity result for the satisfiability of pure GK.

Proposition 4 Let T be a pure GK theory. The problem of deciding
whether T has a GK model is ΣP2 -complete.

4 Implementation
We have implemented the translation of Theorem 1 into a working
prototype gk2dlp. The program is written in Prolog and uses the
disjunctive ASP solver claspD-2 [10], which was ranked first place
in the 2013 ASP competition (http://www.mat.unical.it/
ianni/storage/aspcomp-2013-lpnmrtalk.pdf). When
computing answer sets of the translated logic programs, we use
claspD-2’s “--project” option to project out all atoms but K-
atoms, since these suffice to reconstruct GK models.

Our prototype is the first implementation of the (pure) logic of
GK to date. The restriction to pure formulas seems harmless since
all known applications of the logic of GK use only pure formulas.
We remark that gk2dlp implements default and autoepistemic logics
such that input and target language are of the same complexity.

Evaluation To have a scalable problem domain and inspired by
dl2asp [4], we chose the fair division problem [2] for experimental
evaluation. An instance of the fair division problem consists of a set
of agents, a set of goods, and for each agent a set of constraints that
intuitively express which sets of goods the agent is willing to accept.
A solution is then an assignment of goods to agents that is a partition
of all goods and satisfies all agents’ constraints. Bouveret & Lang [2]
showed that the problem can be naturally encoded in default logic.

We created random instances of the fair division problem with in-
creasing numbers of agents and goods. We then applied the trans-
lation of [2], furthermore the translation from default logic into the
logic of GK, then invoked gk2dlp to produce logic programs and
finally used gringo 3.0.3 and claspD version 2 (revision 6814) to
compute all answer sets of these programs, thus all extensions of the
original default theory corresponding to all solutions of the problem
instance. The experiments were conducted on a Lenovo laptop with
an Intel Core i3 processor with 4 cores and 4GB of RAM running
Ubuntu 12.04. We recorded the size of the default theory, the size
of the translated logic program, the translation time and the solving
time, as well as the number of solutions obtained. We started out
with 2 agents and 2 goods, and stepwise increased these numbers to-
wards 6. For each combination in (a, g) ∈ {2, . . . , 6} × {2, . . . , 6},
we tested 20 randomly generated instances. Random generation here
means that we create agents’ preferences by iteratively drawing ran-
dom subsets of goods to add to an agent’s acceptable subsets with
probability P , where P is initialized with 1 and discounted by the
factor g−1

g
for each subset that has been drawn.

Below we show two scatter plots, where each point represents a
single problem instance. The first plot depicts the size increase of the
translation of this paper. The size of the GK formula of a given de-
fault theory is roughly the same as that of the default theory. As the
plot shows, the increase in size from default theory to logic program
is polynomial, albeit with a low exponent. The second plot shows
the solving time in relation to the size of the default theory, where
the time axis is logarithmic. We can see that the runtime behav-
ior of gk2dlp is satisfactory, although not competitive with that of
dl2asp [4]. However, a direct comparison of the two systems is prob-
lematic since [4] do not describe how they create random instances of
the fair division problem, and more importantly dl2asp is especially
engineered for default logic, while gk2dlp is a more general system.

0

100000

200000

300000

400000

500000

600000

700000

800000

0 500 1000 1500 2000 2500

lo
gi

c
pr

og
ra

m
si

ze

default theory size

Figure 1. Size increase from default theory to disjunctive logic program.
The size of a default theory is the sum of sizes of all formulas occurring
in the default theory; the size of a formula is the number of atoms plus the
number of connectives. The size of a logic program is the sum of sizes of all
rules; the size of a rule is the number of literals in it.

0.1

1

10

100

1000

0 500 1000 1500 2000 2500

so
lv

in
g

tim
e

(s
ec

on
ds

)

default theory size

Figure 2. Solving time (log scale) with respect to default theory size.

Applications We see immediate applicability of the translation of
the present paper to several areas. Reiter [31] provided a theory
of diagnosis from first principles, and showed how default logic
can be used as an implementation device. Cadoli, Eiter and Got-
tlob [3] proposed to use default logic as an expressive query lan-
guage on top of relational databases, and gave an example of achiev-
ing strategic behavior in an economic setting. In reasoning about
actions, Thielscher [35] used default logic to solve the qualifica-
tion problem of dealing with unexpected action failures. Martin and
Thielscher [24] later provided an implementation of that approach
where extensions are enumerated in Prolog. Recently, Baumann et

5

http://www.mat.unical.it/ianni/storage/aspcomp-2013-lpnmrtalk.pdf
http://www.mat.unical.it/ianni/storage/aspcomp-2013-lpnmrtalk.pdf

al. [1] introduced a method for default reasoning in action theories,
that is, an approach to the question what normally holds in a dynamic
domain. Our translation yields an implementation of their approach,
something that they stated as future work and later achieved to a lim-
ited extent (for a restricted sublanguage of their framework [34]).

Related work There are few approaches that implement as broad a
range of propositional nonmonotonic knowledge representation lan-
guages as gk2dlp. Two notable exceptions are the works of Junker
and Konolige [15], who implemented both autoepistemic and de-
fault logics by translating them to truth maintenance systems; and
Niemelä [29], who provides a decision procedure for autoepistemic
logic which also incorporates extension semantics for default log-
ics. Other approaches are restricted to specific languages. For de-
fault logic, the recent system dl2asp [4] translates default theories
to normal (non-disjunctive) logic programs; the translation figures
out all implication relations between formulas occurring in the de-
fault theory, just as [15] did. The authors of dl2asp [4] already ob-
served that default logic and disjunctive logic programs are of the
same complexity; they even stated the search for a polynomial trans-
lation from the former to the latter (that we achieved in this paper)
as future work. Gadel [28] uses a genetic algorithm to compute ex-
tensions of a default theory; likewise the system DeReS [5] is not
translation-based but directly searches for extensions; similarly the
XRay system [33] natively implements local query-answering in de-
fault logics. Risch and Schwind [32] describe a tableaux-based algo-
rithm for computing all extensions of general default theories, but do
not report runtimes for their Prolog-based implementation. For au-
toepistemic logic, Marek and Truszczyński [23] investigate sceptical
reasoning with respect to Moore’s expansion semantics.

5 Discussion

We have presented the first translation of pure formulas of the logic of
GK to disjunctive answer set programming. Among other things, this
directly leads to implementations of Turner’s logic of universal cau-
sation as well as implementations of default and autoepistemic logics
under different semantics. We have prototypically implemented the
translation and experimentally analysed its performance, which we
found to be satisfactory given the system’s generality.

In the future, we plan to integrate further nonmonotonic reasoning
formalisms. This is more or less straightforward due to the generality
of this work: to implement a language, it suffices to provide a trans-
lation into pure formulas of GK, then Theorem 1 of this paper does
the rest. A particular formalism we want to look at is Lakemeyer and
Levesque’s logic of only-knowing [17]. We also plan to study the ap-
proaches mentioned as applications in the previous section to try out
our translation and implementation on agent-oriented AI problems.

References
[1] Ringo Baumann, Gerhard Brewka, Hannes Strass, Michael Thielscher,

and Vadim Zaslawski, ‘State Defaults and Ramifications in the Unify-
ing Action Calculus’, in KR, pp. 435–444, (2010).

[2] Sylvain Bouveret and Jérôme Lang, ‘Efficiency and envy-freeness in
fair division of indivisible goods: Logical representation and complex-
ity.’, JAIR, 32, 525–564, (2008).

[3] Marco Cadoli, Thomas Eiter, and Georg Gottlob, ‘Default logic as a
query language’, in KR, pp. 99–108, (1994).

[4] Yin Chen, Hai Wan, Yan Zhang, and Yi Zhou, ‘dl2asp: Implementing
Default Logic via Answer Set Programming’, in JELIA, volume 6341,
pp. 104–116, (2010).

[5] Pawel Cholewiński, Victor W. Marek, Miroslaw Truszczyński, and Ar-
tur Mikitiuk, ‘Computing with default logic’, AIJ, 112(1), 105–146,
(1999).

[6] Jürgen Dix, Ulrich Furbach, and Ilkka Niemelä, ‘Nonmonotonic rea-
soning: Towards efficient calculi and implementations’, Handbook of
Automated Reasoning, 2(18), 1121–1234, (2001).

[7] Christian Drescher, Martin Gebser, Torsten Grote, Benjamin Kauf-
mann, Arne König, Max Ostrowski, and Torsten Schaub, ‘Conflict-
Driven Disjunctive Answer Set Solving’, in KR, pp. 422–432, (2008).

[8] Thomas Eiter and Georg Gottlob, ‘On the computational cost of dis-
junctive logic programming: Propositional case’, AMAI, 15(3–4), 289–
323, (1995).

[9] Paolo Ferraris, ‘Answer sets for propositional theories’, in LPNMR, pp.
119–131, (2005).

[10] Martin Gebser, Benjamin Kaufmann, and Torsten Schaub, ‘Advanced
conflict-driven disjunctive answer set solving’, in IJCAI, (2013).

[11] Enrico Giunchiglia, Yuliya Lierler, and Marco Maratea, ‘Answer Set
Programming Based on Propositional Satisfiability’, J. Autom. Reason-
ing, 36(4), 345–377, (2006).

[12] Tomi Janhunen and Ilkka Niemelä, ‘GnT – A Solver for Disjunctive
Logic Programs’, in LPNMR, pp. 331–335, Berlin, Heidelberg, (2004).

[13] Tomi Janhunen and Emilia Oikarinen, ‘Capturing parallel circumscrip-
tion with disjunctive logic programs’, in Logics in Artificial Intelli-
gence, 134–146, (2004).

[14] Jianmin Ji and Fangzhen Lin, ‘From Turner’s Logic of Universal Cau-
sation to the Logic of GK’, in Correct Reasoning, volume 7265, pp.
380–385, (2012).

[15] Ulrich Junker and Kurt Konolige, ‘Computing the Extensions of Au-
toepistemic and Default Logics with a Truth Maintenance System’, in
AAAI, pp. 278–283, (1990).

[16] Kurt Konolige, ‘On the Relation Between Default and Autoepistemic
Logic’, AIJ, 35(3), 343–382, (1988).

[17] Gerhard Lakemeyer and Hector J. Levesque, ‘Only-knowing: Taking it
beyond autoepistemic reasoning’, in AAAI, pp. 633–638, (2005).

[18] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg
Gottlob, Simona Perri, and Francesco Scarcello, ‘The DLV system for
knowledge representation and reasoning’, ACM Transactions on Com-
putational Logic, 7(3), 499–562, (2006).

[19] Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner, ‘Nested ex-
pressions in logic programs’, AMAI, 25(3-4), 369–389, (1999).

[20] Fangzhen Lin, ‘Reducing strong equivalence of logic programs to en-
tailment in classical propositional logic’, in KR, pp. 170–176, (2002).

[21] Fangzhen Lin and Yoav Shoham, ‘A logic of knowledge and justified
assumptions’, AIJ, 57(2-3), 271–289, (1992).

[22] Fangzhen Lin and Yi Zhou, ‘From answer set logic programming to
circumscription via logic of GK’, AIJ, 175(1), 264–277, (2011).

[23] V. Wiktor Marek and Miroslaw Truszczyński, ‘Computing intersection
of autoepistemic expansions’, in LPNMR, pp. 37–50, (1991).

[24] Yves Martin and Michael Thielscher, ‘Addressing the Qualification
Problem in FLUX’, in KI/ÖGAI, pp. 290–304, (2001).

[25] John McCarthy, ‘Circumscription – a form of non-monotonic reason-
ing’, AIJ, 13, 295–323, (1980).

[26] John McCarthy, ‘Applications of circumscription to formalizing com-
monsense knowledge’, AIJ, 28, 89–118, (1986).

[27] Robert Moore, ‘Semantical considerations on nonmonotonic logic’,
AIJ, 25(1), 75–94, (1985).

[28] Pascal Nicolas, Frédéric Saubion, and Igor Stéphan, ‘Gadel: a genetic
algorithm to compute default logic extensions’, in ECAI, pp. 484–490,
(2000).

[29] Ilkka Niemelä, ‘A decision method for nonmonotonic reasoning based
on autoepistemic reasoning’, J. Autom. Reasoning, 14(1), 3–42, (1995).

[30] Raymond Reiter, ‘A logic for default reasoning’, AIJ, 13(1-2), 81–132,
(1980).

[31] Raymond Reiter, ‘A theory of diagnosis from first principles’, AIJ,
32(1), 57–95, (1987).

[32] Vincent Risch and Camilla Schwind, ‘Tableaux-based characterization
and theorem proving for default logic’, J. Autom. Reasoning, 13(2),
223–242, (1994).

[33] Torsten Schaub and Pascal Nicolas, ‘An implementation platform for
query-answering in default logics: The XRay system, its implementa-
tion and evaluation’, in LPNMR, 441–452, (1997).

[34] Hannes Strass, ‘The draculasp system: Default reasoning about actions
and change using logic and answer set programming’, in NMR, (2012).

[35] Michael Thielscher, ‘Causality and the Qualification Problem’, in KR,
pp. 51–62, (1996).

[36] Hudson Turner, ‘Logic of universal causation’, AIJ, 113(1), 87–123,
(1999).

6

	Introduction
	Preliminaries
	Logic Programming
	Default Logic
	Autoepistemic Logic
	The Logic of GK

	Main Result: From Pure GK to Disjunctive ASP
	Implementation
	Discussion

