
Under consideration for publication in Theory and Practice of Logic Programming 1

Computing Loops with at Most One External Support
Rule for Basic Logic Programs with Arbitrary

Constraint Atoms

Jianmin Ji
University of Science and Technology of China, Hefei, China

jianmin@ustc.edu.cn

Fangzhen Lin
Hong Kong University of Science and Technology, Hong Kong

flin@cs.ust.hk

Jia-Huai You
University of Alberta, Edmonton, Canada

you@cs.ualberta.ca

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

The well-founded semantics of logic programs is not only an important semantics but also serves as an
essential tool for program simplification in answer set computations. Recently, it has been shown that for
normal and disjunctive programs, the well-founded models can be computed by unit propagation on pro-
gram completion and loop formulas of loops with no external support. An attractive feature of this approach
is that when loop formulas of loops with exactly one external support are added, consequences beyond the
well-founded model can be computed, which sometimes can significantly speed up answer set computation.
In this paper, we extend this approach to basic logic programs with abstract constraint atoms. We define pro-
gram completion and loop formulas and show how to capture the well-founded semantics that approximate
answer sets of basic logic programs. We show that by adding the loop formulas of loops with one external
support, consequences beyond well-founded models can be computed. Our experiments show that for cer-
tain logic programs with constraints accepted by lparse, the consequences computed by our algorithms can
speed up current ASP solvers smodels and clasp.

KEYWORDS: logic programs with abstract constraint atoms, loop formulas, well-founded semantics

1 Introduction

The well-founded semantics (Van Gelder et al. 1991) and answer set semantics (Gelfond and
Lifschitz 1988) are two most prominent semantics in logic programming. To date, the well-
founded semantics has been extended to disjunctive logic programs (Wang and Zhou 2005),
logic programs with aggregates (or, aggregate programs) (Pelov et al. 2007), dl-programs (Eiter
et al. 2011; You et al. 2012), and basic logic programs with abstract constraint atoms (c-atoms)
(Wang et al. 2012). In the literature, most definitions of the well-founded semantics are in terms
of unfounded sets or as the least fixpoint of a 3-valued immediate consequence operator. In recent
papers, (Chen et al. 2008; Chen et al. 2009; Chen et al. 2013) showed that the well-founded model

2 Jianmin Ji, Fangzhen Lin and Jiahuai You

of a normal logic program or a disjunctive logic program according to (Wang and Zhou 2005)
can be computed from its completion and loop formulas of loops with no external support rules
by unit propagation. In this paper, our focus is on basic logic programs with c-atoms.

In (Son et al. 2007), two different types of answer sets for logic programs with c-atoms are
proposed, called answer set by reduct (or r-answer set) and answer set by complement (or c-
answer set) (Son et al. 2007). These semantics differ from each other in the treatment of negation-
as-failure literals. In the literature, different well-founded semantics have been formulated that
approximate r-answer sets (Wang et al. 2012) and c-answer sets (Pelov et al. 2007), respectively.
In this paper, we show that the well-founded semantics proposed in (Wang et al. 2012) can
be computed by unit propagation on program completion and loop formulas of loops with no
external support rules. Since every c-answer set is also an r-answer set, this result can be applied
to the computation of c-answer sets. In fact, we show that our definitions naturally lead to a
well-founded semantics that approximates c-answer sets directly.

In (Chen et al. 2013), the authors also showed that, for normal and disjunctive logic program-
s, loop formulas of loops with only one external support rule are equivalent to sets of binary
clauses, thus can be used effectively by unit propagation. However, this is not the case for basic
logic programs with c-atoms. In this paper, we identify a certain kind of loops with only one
external support rule whose loop formulas are equivalent to sets of binary clauses. Again, we
show that, using the loop formulas of loops with at most one external support rule, along with
completion, unit propagation can compute more consequences than well-founded semantics and
these extra consequences can help ASP solvers. This is supported experimentally. For certain
logic programs, the computed consequences can speed up clasp (Gebser et al. 2007) and smod-
els (Simons et al. 2002). Thus we believe that this work opens the window for more efficient
computations of answer sets.

In the rest of this paper, we first review the results on which our work is based. We then show
the main result that the well-founded semantics of (Wang et al. 2012) can be computed by unit
propagation on completion and loop formulas of loops with no external support. We identify a
certain kind of loops whose loop formulas are equivalent to sets of binary clauses, and formulate
an algorithm to compute these loops, which is followed by some experiments. The paper is
concluded with final remarks.

2 Preliminaries

We assume an underlying propositional language with a set A of atoms. A literal is either an
atom or an expression of the form ¬a, where a is an atom. Lit is the set of all possible literals
in the language. Given a set of literals I, we use I+ to denote the set of atoms in I, and I− =

{a | ¬a ∈ I}; I is said to be consistent if I+ ∩ I− = /0. A partial interpretation I is a consistent
set of literals; it is total if I+ ∪ I− = A . Let M be a set of atoms. We denote by C(M) the total
interpretation M∪{¬a | a /∈ M}, and denote by ¬.M the set {¬a | a ∈ M}. For a set of literals
I, we denote by I the set {a | ¬a ∈ I}∪{¬a | a ∈ I}. For convenience, here we identify a set I
of literals with the propositional formula

∧
l∈I l. Let I be a set of literals and F a propositional

formula. That I satisfies F , denoted I |= F , is defined as usual. A set of atoms M is a model of F
if C(M) |= F .

An abstract constraint atom (c-atom) is an expression of the form (D,C), where D is a finite
set of atoms and C ⊆ 2D. In the following, given a c-atom A = (D,C), we use Ad and Ac to refer
to its first and second components, respectively. The complement of a c-atom A, written Â, is then

Computing Loops for Basic Logic Programs 3

a c-atom such that Âd = Ad and Âc = 2Ad \Ac. A c-atom is said to be elementary if it is of the
form ({a},{{a}}), where a is an atom. In the following, an elementary c-atom of the above form
will be identified with ordinary atom a.

A logic program with c-atoms (logic program or program) is a finite set of rules of the form

A← A1, . . . ,Ak,not Ak+1, . . . ,not An (1)

where A and Ai’s are c-atoms. Given a rule r of the form (1), we define head(r) = A, body(r) =
pos(r)∪ not neg(r) where pos(r) = {A1, . . . ,Ak}, neg(r) = {Ak+1, . . . ,An} and not S = {not A |
A ∈ S} for a set S of c-atoms. A rule of the form (1) is basic (resp. positive) if A is elementary
(resp. k = n). A logic program P is basic (resp. positive) if every rule in P is basic (resp. positive).

A set of atoms M ⊆A satisfies a c-atom A, denoted M |= A, if Ad ∩M ∈ Ac. M satisfies not A,
denoted M |= not A, if Ad ∩M /∈ Ac. M satisfies the body of a rule r of the form (1), denoted
M |= body(r), if M |= Ai (1 ≤ i ≤ k) and M |= not A j (k+ 1 ≤ j ≤ n). M satisfies a rule r if it
satisfies head(r) or if it does not satisfy body(r). M is a model of a program P if M satisfies every
rule of P. A rule is normal if every c-atom in it is elementary. A logic program P is normal if
every rule in it is normal.

Here we briefly review the definitions of answer sets for basic logic programs (Son et al. 2007).
Let M and S be two sets of atoms. The set S conditionally satisfies a c-atom A w.r.t. M, denoted

S |=M A, iff S |= A and I belongs to Ac for every I with S∩Ad ⊆ I and I ⊆M∩Ad .
Let P be a positive basic program and M a model of P. We define the operator T(P,M) as follows:

T(P,M)(S) = {head(r) | r ∈ P such that S |=M body(r)}.

The operator T(P,M) is monotonic in that S1 ⊆ S2 ⊆M implies T(P,M)(S1)⊆ T(P,M)(S2)⊆M. Thus
for any model M of P, the least fixpoint of T(P,M) exists, written l fp(T(P,M)), which can be it-
eratively evaluated as follows: T 0

(P,M) = /0, and T i+1
(P,M)

= T(P,M)(T i
(P,M)), where i ≥ 0. A model

M of a positive basic program P is an answer set of P if M is the least fixpoint of T(P,M), i.e.,
M = l fp(T(P,M)). There are two different answer set semantics for basic logic programs. One is
defined by reduct, and the other is by complement. Let P be a basic logic program and M ⊆A ,
the reduct of P w.r.t. M, written PM , is the positive program obtained from P by

• eliminating each rule r if M |= B for some B ∈ neg(r);
• eliminating any negative literal not B from the remaining rules.

The complement of a basic logic program P, written P̂, is the positive program obtained from
P by replacing each not B with its complement B̂. It is clear that both PM and P̂ are positive and
basic. For a basic logic program P and a set M of atoms, we say that M is a c-answer set (resp.
r-answer set) of P iff M is an answer set of P̂ (resp. PM). It is known that every c-answer set
of a basic program is an r-answer set, but not vice versa (Son et al. 2007), and both semantics
generalize the stable model semantics for normal logic programs.

Unit propagation is an inference rule on clauses. It can be defined through a procedure that
simplifies a set of clauses. The procedure is based on unit clauses, i.e. clauses that are composed
of a single literal. If a set of clauses contains the unit clause l, the other clauses are simplified by
the application of the two following rules:

1. every clause (other than the unit clause itself) containing l is removed;
2. in every clause that contains l this literal is deleted.

The procedure continues until neither of these two rules can be applied. It leads to a new set of

4 Jianmin Ji, Fangzhen Lin and Jiahuai You

clauses that is equivalent to the old one. Let Γ be a set of clauses, below, we use UP(Γ) to denote
the set of literals (unit clauses) contained in the result of applying the procedure on Γ.

3 Well-Founded Semantics and Loop Formulas

We review the well-founded semantics of basic programs (Wang et al. 2012), followed by defi-
nitions of completion and loop formulas extended from (Liu and Truszczynski 2006) and (You
and Liu 2008). Next, we show that the well-founded semantics in (Wang et al. 2012) can be com-
puted by unit propagation on completion and loop formulas. This result lays the foundation for
computing more consequences using loop formulas of loops with at most one external support.
We then extend it to define a well-founded semantics that approximate c-answer sets directly.

3.1 Well-Founded Semantics by Reduct and Loop Formulas for Basic Programs

The well-founded semantics for basic logic programs in (Wang et al. 2012) relies on a compact
representation of c-atoms proposed in (Shen et al. 2009).

Let S and J be two disjoint sets of atoms, by S]J we denote the set {S′ | S⊆ S′ and S′ ⊆ S∪J}
called the S-prefixed powerset of J. Let A be a c-atom, S and J two subsets of Ad . The S-prefixed
powerset of J is maximal in A if S]J ⊆ Ac and there is no other sets S′ and J′ s.t. S′]J′ ⊆ Ac and
S]J ⊂ S′]J′. By A∗c we denote the set of all maximal S-prefixed powerset of J in A for any two
sets S and J. From Theorem 3.2 in (Shen et al. 2009), A∗c is unique. The abstract representation
of a c-atom A is denoted by A∗ = (Ad ,A∗c), which relates to a propositional formula.

Theorem 3.1 (Theorem 4.2 (Shen et al. 2009))
Let A be a c-atom and M be a set of atoms. M |= A if and only if C(M) satisfies∨

S]J∈A∗c

S∧¬(Ad \ (S∪ J)). (2)

Let A be a c-atom and I a partial interpretation. We say that I satisfies A, denoted I |=Lit A, iff
for some S] J ∈ A∗c , S ⊆ I+ and Ad \ (S∪ J) ⊆ I−; I falsifies A, denoted I Lit A, iff S∩ I− 6= /0
or (Ad \ (S∪ J))∩ I+ 6= /0 for any S] J ∈ A∗c . I satisfies (resp. falsifies) not A iff I falsifies (resp.
satisfies) A. Given a set L of c-atoms or not A where A is a c-atom, I satisfies (resp. falsifies) L,
denoted I |=Lit L (resp. I Lit L), if I satisfies (resp. falsifies) each formula in L.

Let P be a basic program and I a partial interpretation. A set of atoms U is an unfounded set
of P w.r.t. I iff for any a ∈U and r ∈ P with head(r) = a, one of the following conditions is true:

• I Lit not neg(r);
• there exists A ∈ pos(r) s.t. for any S]J ∈ A∗c either U ∩S 6= /0 or I |= ¬(S∧¬(Ad \ (S∪J)).

We define the operators TP, UP and WP as follows.

TP(I) = {head(r) | r ∈ P and I |=Lit body(r)};
UP(I) = the greatest unfounded set of P w.r.t. I;
WP(I) = TP(I)∪¬.UP(I).

As TP, UP, and WP are all monotonic, the least fixpoint of WP, denoted by l fp(WP), always
exists and is called the well-founded model of P by reduct, written WFSr(P).

(You and Liu 2008) provided the notions of loops and loop formulas for positive basic pro-
grams which can be easily extended to general basic programs.

Computing Loops for Basic Logic Programs 5

Let P be a basic program, the dependency graph of P, denoted by GP = (V,E), is a directed
graph, where V = A and (u,v) is a directed edge from u to v in E if there is a rule r ∈ P such
that u = head(r) and v ∈ S, for some S] J ∈ A∗c and A ∈ body(r). A set L ⊆A is a loop in GP

if the subgraph of GP induced by L is strongly connected. We also say the L is a loop of P. Note
that, an atom a ∈A is always a loop of P, we call it a singleton.

Let A be a c-atom and L ⊆ A . The restriction of A to L, denoted by A|L, is (Ad ,A∗c|L), where
A∗c|L = {S]J ∈ A∗c | L∩S = /0}. We use σA to denote the formula

∨
S]J∈A∗c S∧¬(Ad \(S∪J)), and

πA(L) to denote the formula
∨

S]J∈A∗c|L
S∧¬(Ad \ (S∪J)). If there is a c-atom A such that A∗c = /0

(resp. A∗c|L = /0), then σA =⊥ (resp. πA(L) =⊥).
Let r be a basic rule of the form (1). We define the formula θL(r) = πA1(L)∧ ·· · ∧πAk(L)∧

¬σAk+1 ∧·· ·∧¬σAn .

Let P be a basic program and L a loop of P. A rule r ∈ P is an external support of L if
head(r) ∈ L and θL(r) 6≡ ⊥. Below, let R−(L) be the set of external support rules of L. The loop
formula for L of P, denoted LFP(L), is defined as∨

a∈L

a⊃
∨

r∈R−(L)

θL(r).

Note that if R−(L) = /0, then its loop formula LFP(L) is equivalent to ¬.L.
The completion of a basic program P, denoted by Comp(P), consists of the following formulas:

•
∧

A∈pos(r) σA∧
∧

A∈neg(r)¬σA ⊃ head(r), for each r ∈ P;

• a⊃
∨

r∈P,head(r)=a

(∧
A∈pos(r) σA∧

∧
A∈neg(r)¬σA

)
, for each a ∈A .

Let P be a basic logic program. We define LComp(P)=Comp(P)∪{LFP(L) |L is a loop of P}.

Theorem 3.2
Let P be a basic program. A set M ⊆A is an r-answer set of P iff M is a model of LComp(P).

3.2 Loops without External Support Rules

Now we define the notion of loops with no external support under a set of literals. Let P be a basic
program, L a loop of P, and X a set of literals. We say that a rule r ∈ R−(L) is an external support
of L under X if X∧θL(r) 6≡ ⊥. In the following, we denote by R−(L,X) the set of external support
rules of L under X . Similarly, if a loop L has no external support rules under X , then under X ,
LFP(L) is equivalent to ¬.L. Let

loop0(P,X) = {¬a | a ∈ L for a loop L of P such that R−(L,X) = /0}.

It is equivalent to the set of loop formulas of the loops with no external support under X .
As in (Chen et al. 2008; Chen et al. 2013), we can compute loop0(P,X) in polynomial time in

the size of P.

Function ML0(P,X ,S)

ML := /0; G := the S induced subgraph of GP;
For each strongly connected component L of G:

if R−(L,X) = /0 then add L to ML
else append
ML0(P,X ,L\{head(r) | r ∈ R−(L,X)}) to ML.

return ML.

6 Jianmin Ji, Fangzhen Lin and Jiahuai You

Proposition 3.1
Let P be a basic program, X ⊆ Lit, and S ⊆A . The function ML0(P,X ,S) returns the following
set of loops in O(n2) time, where n is the size of P:

{L |L⊆ S is a loop of P s.t. R−(L,X) = /0 and there does not exist any such loop L′ s.t. L⊂ L′}

Proposition 3.2
Let P be a basic program and X ⊆ Lit.

loop0(P,X) =
⋃

L∈ML0(P,X ,A)

¬.L.

3.3 Computing Consequences of a Basic Program

To apply unit propagation, we convert the completion to a set of clauses as follows. Let P be a
basic program, and comp(P) denote the following set of clauses:

1. for each a ∈A , if there is no rule in P with a as its head, then add ¬a;
2. for each c-atom A occurring in P such that A∗c = {S1] J1, . . . ,Sm] Jm}, introduce a new

variable αA and m new variables β1, . . . ,βm, and add the following clauses:

• ¬αA∨β1∨·· ·∨βm,
• αA∨¬βi, for each 1≤ i≤ m,
• βi∨

∨
a∈Si
¬a∨

∨
b∈Ad\(Si∪Ji)

b, for each 1≤ i≤ m,
• ¬βi∨ l, for each l ∈ Si∪{¬b | b ∈ Ad \ (Si∪ Ji)} and 1≤ i≤ m.

3. for each basic rule r ∈ P in the form of (1), add the following clause:

head(r)∨¬αA1 ∨·· ·∨¬αAk ∨αAk+1 ∨·· ·∨αAn .

4. if a is an atom and r1, . . . ,rt , t > 0, are all the rules in P with a as their head, then introduce
t new variables v1, . . . ,vt , and add the following clauses:

• ¬a∨ v1∨·· ·∨ vt ,
• vi∨

∨
A∈pos(ri)

¬αA∨
∨

A∈neg(ri)
αA, for each 1≤ i≤ t,

• ¬vi∨ l, for each l ∈ {αA | A ∈ pos(ri)}∪{¬αA | A ∈ neg(ri)} and 1≤ i≤ t.

Note that, if the size of A∗c for each c-atom A is less than a constant and the size of S∧¬(Ad \
(S∪ J)) for each S] J ∈ A∗c is also less than a constant, then the number of clauses in comp(P)
is polynomial in the size of P.

Using comp(P), loop0(P,X), and UP(C), we can provide a procedure as follows:

Y := comp(P)∪ loop0(P, /0); X := /0;
while X 6=UP(Y) do

X :=UP(Y); Y := Y ∪ loop0(P,X);

return X ∩Lit.

Note that, the procedure terminates in polynomial time w.r.t. the size of P.
Formally, the above procedure computes U(P), the least fixpoint of the following operator:

UP(X) =UP(comp(P)∪ loop0(P,X)∪X)∩Lit.

From Theorem 3.2, U(P) is true in every r-answer set of P.

Computing Loops for Basic Logic Programs 7

3.4 Main Results

Let P be a basic program and I ⊆ Lit. The function M(P, I) is the least fixpoint of the operator
MI

P defined as:

loopI
0(P,X) = {a | there is a loop L of P s.t. a ∈ L and for each r ∈ R−(L, I), there exists

A ∈ pos(r) s.t. for each S] J ∈ A∗c , X ∩S 6= /0 or I |= ¬(S∧¬(Ad \ (S∪ J)))},
MI

P(X) = X ∪ loopI
0(P,X).

Note that, for any X ⊆A , loop0(P, I)⊆ ¬.loopI
0(P,X)⊆ loop0(P, I∪X).

Let us extend Theorem 3.1 to partial interpretations.

Corollary 3.1
Let A be a c-atom and I a partial interpretation. I |=Lit A iff I |= σA and I Lit A iff I |= ¬σA.

Lemma 3.1
Let P be a basic program, I a partial interpretation, X an unfounded set of P, and L a loop of
P. If for each r ∈ R−(L, I), there exists A ∈ pos(r) such that for each S] J ∈ A∗c , X ∩ S 6= /0 or
I |= ¬(S∧¬(Ad \ (S∪ J))), then L∪X is an unfounded set of P w.r.t. I.

The following theorem shows that, the greatest unfounded set of a basic program P w.r.t. I can
be computed from the iteration of the operator MI

P.

Theorem 3.3
Let P be a basic program and I a partial interpretation. UP(I) = M(P, I).

Now we come to the main theorem - the well-founded semantics of a basic program P by
reduct can be computed by unit propagation on completion and loop formulas of loops with no
external support.

Theorem 3.4
Let P be a basic program. WFSr(P) =U(P).

3.5 Well-Founded Semantics by Complement

Given a basic program P, we can convert P to its complement P̂, and then define the well-
founded semantics of P based on P̂, which results in a well-founded semantics of basic programs
by complement. That is, we define the well-founded model of a basic program P by complement
to be WFSr(P̂), written by WFSc(P).

Example 3.1
Consider the following aggregate program P: p(0)← not COUNT({〈0 : p(0)〉,〈1 : p(1)〉}) 6= 1.

We can use a c-atom A to represent the aggregate above, i.e., A=(Ad ,{ /0,{p(0), p(1)}}) where
Ad = {p(0), p(1)}, and its complement is Â = (Ad ,{{p(0)},{p(1)}}). One can verify that P has
two r-answer sets, /0 and {p(0)}, and WFSr(P) = {¬p(1)}. On the other hand, P has only one
c-answer set, /0, and WFSc(P) = {¬p(1),¬p(0)}. In this example, WFSc(P) is more informative
than WFSr(P).

For a positive basic program P, we know that models of LComp(P) are c-answer sets of P
(You and Liu 2008). As loop formulas of loops without external support form a subset of all loop
formulas, by monotonicity of propositional logic, WFSc(P) approximates all c-answer sets of P.

8 Jianmin Ji, Fangzhen Lin and Jiahuai You

Proposition 3.3
Let P a basic program and M a c-answer set of P. Then, for any atom a, if a ∈WFSc(P) then
a ∈M and if ¬a ∈WFSc(P) then a 6∈M.

From Theorem 3.4 it is easy to see that, WFSc(P) can be computed from comp(P̂) and loop0(P̂,X)

using unit propagation for any basic program P.

Corollary 3.2
Let P be a basic program. WFSc(P) =U(P̂).

Finally, we can show a relation with the (ultimate) well-founded semantics of (Pelov et al.
2007), based on a translation, τa, which models an aggregate program as a basic program under
c-answer sets (Son et al. 2007).

Proposition 3.4
Let P be an aggregate program with only monotonic aggregate atoms. WFSc(τa(P)) coincides
with the (ultimate) well-founded semantics of P defined in (Pelov et al. 2007).

4 Loops with at Most One External Support

Unlike the case for normal and disjunctive programs, for positive basic programs, the loop formu-
las of loops that have exactly one external support rule are not always equivalent to sets of binary
clauses. However, there is a special case of these loops whose loop formulas are equivalent to sets
of binary clauses. In particular, let P be a positive basic program and L a loop of P, a rule r ∈ P
is a unary external support of L if head(r) ∈ L, and A∗c|L has and only has one element for each
A ∈ body(r). Let R−u (L) be the set of unary external support rules of L. Given a set X of literals,
we say that a rule r ∈ R−(L) is a unary external support of L under X if for each A ∈ body(r),
there is and only is one S]J ∈ A∗c|L such that X is consistent with S∪¬.(Ad \ (S∪J)). We denote
by R−u (L,X) the set of all these rules. For each r ∈ R−u (L,X), we denote by bodyL(r) the union
of S∪¬.(Ad \ (S∪ J)) for each A ∈ body(r), where S] J is the only element in A∗c|L that is con-
sistent with X . It is easy to see that, loop formulas of loops with one external support rule which
is also unary correspond to sets of binary clauses. Note that, if P is a normal logic program, then
R−u (L) = R−(L) and R−u (L,X) = R−(L,X).

We now consider the set of loop formulas of the loops that have exactly one unary external
support rule under a set X of literals:

loopu
1(P,X) = {¬a∨ l | a ∈ L, l ∈ bodyL(r), for some loop L and rule r s.t.

R−(L,X) = R−u (L,X) = {r}}.

Modified from ML0(P,X ,S), let us define the following procedure for computing loop0(P,X)∪
loopu

1(P,X).

Function ML1(P,X ,S)

ML := /0; G := the S induced subgraph of GP;
For each strongly connected component L of G:

Let V = {a ∈ L | there is and only is one rule r ∈ R−(L,X) such that r ∈ R−u (L,X) and
a = head(r)},

W = {head(r) | r ∈ R−(L,X)}\V .

Computing Loops for Basic Logic Programs 9

if R−(L,X) = /0 then add ¬.L to ML;
else if R−(L,X) = R−u (L,X) = {r}

then add {¬a∨ l | a ∈ L, l ∈ bodyL(r)} and append ML1(P,X ,L\{head(r)}) to ML ;
else if W 6= /0 then append ML1(P,X ,L\W) to ML;
else for each a ∈V append ML1(P,X ,(L\V)∪{a}) to ML.

return ML.

Proposition 4.1
Let P be a positive basic program, X ⊆ Lit, and S⊆A . The set of formulas returned from
ML1(P,X ,A) is equivalent to loop0(P,X)∪ loopu

1(P,X). The procedure terminates in O(n3),
where n is the size of P.

Now if we add loopu
1(P,X) to the procedure for computing U(P), a more powerful operator

can be defined:

T P(X) =UP(comp(P)∪ loop0(P,X)∪ loopu
1(P,X)∪X)∩Lit.

Denote by T (P) the least fixpoint of T P(X). From Theorem 3.2, for any positive basic program
P, T (P) is true in every c-answer set, as well as every r-answer set, of P.

We have implemented the algorithms in this paper in a prototype system that is available on
line1. For any program P that can be accepted by lparse, it first computes T (P) and then adds
{← not a | a ∈ T (P)}∪{← a | ¬a ∈ T (P)} to P. The resulting new program is then submitted
to an ASP solver. To test the effectiveness of our preprocessor, we use the familiar Hamiltonian
Circuit (HC) problem encoded with the following cardinality constraints:

← 2{dhc(X ,Y) : arc(X ,Y)}, vertex(Y).

← 2{dhc(X ,Y) : arc(X ,Y)}, vertex(X).

Our experiments2 showed that, for most programs, information from T (P) makes both smodels
and clasp run faster, when lookahead operators are turned off.

5 Final Remarks

We have proposed using unit propagation with program completion and loop formulas of loops
with at most one external support to capture and extend well-founded model of a basic logic
programs, continuing our work along this line for normal and disjunctive logic programs (Chen
et al. 2013). We believe that this work is of not only theoretical value but practical uses.

For logic programs with constraints, the size of a constraint is typically measured by the size
of the constraint’s domain. Measured this way, our procedures/algorithms given in this paper are
theoretically exponential. However, just like in the case of normal programs where researchers
have found practical benefits of using loop formulas even if there could be exponentially many
loops, we have shown that the loop formula approach for basic logic programs with c-atoms
can also benefit answer set computation. We have confirmed this by experiments using the HC
problem for graphs with a special structure to demonstrate this. The same should also hold for
logic programs whose dependency graphs have a similar structure.

1 http://staff.ustc.edu.cn/~jianmin/cloopC/
2 http://staff.ustc.edu.cn/~jianmin/cloopC/cloopC/experiment.html

10 Jianmin Ji, Fangzhen Lin and Jiahuai You

Acknowledgements

This work had been supported by the National Hi-Tech Project of China under grant 2008AA01Z150,
the Natural Science Foundation of China under grant 60745002 and 61175057, the USTC Key
Direction Project, the Fundamental Research Funds for the Central Universities, the Youth Inno-
vation Fund of USTC, and HK RGC GRF 616909.

References

CHEN, X., JI, J., AND LIN, F. 2008. Computing loops with at most one external support rule. In Proceed-
ings of the 11th International Conference on Principles of Knowledge Representation and Reasoning
(KR-08). 401–410.

CHEN, X., JI, J., AND LIN, F. 2009. Computing loops with at most one external support rule for disjunctive
logic programs. In Proceedings of the 25th International Conference on Logic Programming (ICLP-09).
130–144.

CHEN, X., JI, J., AND LIN, F. 2013. Computing loops with at most one external support rule. ACM
Transactions on Computational Logic (TOCL) 14, 1.

EITER, T., IANNI, G., LUKASIEWICZ, T., AND SCHINDLAUER, R. 2011. Well-founded semantics for de-
scription logic programs in the semantic web. ACM Transactions on Computational Logic (TOCL) 12, 2,
1–11.

GEBSER, M., KAUFMANN, B., NEUMANN, A., AND SCHAUB, T. 2007. Conflict-driven answer set solv-
ing. In Proceddings of the 20th International Joint Conference on Artificial Intelligence (IJCAI-07).
386–392.

GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming. In Proceed-
ings of the 5th International Conference on Logic programming (ICLP-88). 1070–1080.

LIU, L. AND TRUSZCZYNSKI, M. 2006. Properties and applications of programs with monotone and
convex constraints. Journal of Artificial Intelligence Research 27, 1, 299–334.

PELOV, N., DENECKER, M., AND BRUYNOOGHE, M. 2007. Well-founded and stable semantics of logic
programs with aggregates. Theory and Practice of Logic Programming 7, 3, 301–353.

SHEN, Y., YOU, J., AND YUAN, L. 2009. Characterizations of stable model semantics for logic programs
with arbitrary constraint atoms. Theory and Practice of Logic Programming 9, 4, 529–564.

SIMONS, P., NIEMELÄ, I., AND SOININEN, T. 2002. Extending and implementing the stable model se-
mantics. Artificial Intelligence 138, 1-2, 181–234.

SON, T., PONTELLI, E., AND TU, P. 2007. Answer sets for logic programs with arbitrary abstract constraint
atoms. Journal of Artificial Intelligence Research 29, 1, 353–389.

VAN GELDER, A., ROSS, K. A., AND SCHLIPF, J. S. 1991. The well-founded semantics for general logic
programs. Journal of the ACM 38, 3, 620–650.

WANG, K. AND ZHOU, L. 2005. Comparisons and computation of well-founded semantics for disjunctive
logic programs. ACM Trans. Comput. Logic 6, 2, 295–327.

WANG, Y., LIN, F., ZHANG, M., AND YOU, J. 2012. A well-founded semantics for basic logic program-
s with arbitrary abstract constraint atoms. In Proceedings of the 26th AAAI Conference on Artificial
Intelligence (AAAI-12).

YOU, J.-H. AND LIU, G. 2008. Loop formulas for logic programs with arbitrary constraint atoms. In
AAAI-08. 584–589.

YOU, J.-H., MORRIS, J., AND BI, Y. 2012. Reconciling well-founded semantics of dl-programs and
aggregate programs. In Proceedings of the 28th International Conference on Logic Programming (ICLP-
12). 235–246.

