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Abstract

We concern ourselves in this paper with formal-
ization of conditional preferences based on modal
logic. We indicate four basic requirements for the
task and show that meeting them jointly presents a
challenge to existing dyadic modal logics of pref-
erences. As an alternative, we introduce a mini-
mal system, MCP, of triadic modal logic, which is
consistent and also frame sound and frame com-
plete with respect to its neighborhood semantics. A
simple yet powerful mechanism of preference op-
timization is also developed on the basis of MCP,
which embodies the criteria of maximal partial sat-
isfaction, specificity, and positive utility. Our inves-
tigation in the paper shows that this formalization
meets all of the requirements to a certain extent.

1 Introduction
Investigations into desires and preferences draw increasingly
attention in recent years [Boutilier, 1994; Tan and Pearl,
1994; Brafman and Tennenholtz, 1997; Lang et al., 2003;
Eiter et al., 2003; Doyle, 2004; Brewka et al., 2004]. There
are two basic issues in the investigation with which we con-
cern ourselves in this paper:

(1) The combination of preferences. Suppose a set of “prim-
itive” preferences are given by the user. What are the
“compound” preferences induced by the primitive ones
and how can they be derived?

(2) The optimization of preferences. Given a set of prefer-
ences. How to derive the most preferred options or de-
sires according to the preference premise?

The first issue is by and large independent of the realization
of representing and reasoning about preferences, as pointed
in [Delgrande et al., 2004]. The second one can also be in-
vestigated in a way independent of realization. In this paper
we will introduce a novel modal logic to formalize preference
combination of some kind and, on top of it, establish a mech-
anism for the optimization of preferences.
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In the literature there are lots of works on dyadic modal
logics of desires and preferences [Boutilier, 1994; Tan and
Pearl, 1994; Brafman and Tennenholtz, 1997; Doyle and
Thomason, 1999; Weydert and van der Torre, 1998; Dastani
et al., 2001; Lang et al., 2003]. It turns out, however, that al-
most all proper axioms of these logics result in some counter-
intuitive consequences. The thesis of the paper is that dyadic
modal logic is unable to support adequate formalization of
conditional preferences (eg., “if A then I prefer B to C”), al-
though they work well for that of conditional desires (eg., “if
A then I desire B”) and that of relative preferences (eg., “I
prefer A to B”). Some researchers noticed the issue of condi-
tional preferences (eg., [Tan and Pearl, 1994]). Recently, the
necessity of representing conditional preferences explicitly in
ternary relations is accepted in the literature [Boutilier et al.,
2004; Brewka et al., 2004]. However, there are no existing
modal logic systems embodying the realization as far as the
authors know.

In this paper we propose introducing triadic modal logic as
a new tool for the task. In section 2 we propose four require-
ments for an adequate formalization of conditional prefer-
ences and analyze the reason why dyadic modal logics cannot
meet them. In section 3 we introduce a triadic modal logic,
TML, with neighborhood semantics and a minimal TML sys-
tem, MCP, for conditional preferences. On the basis of MCP
we establish in section 4 a mechanism for preference opti-
mization, by which one can derive the most preferred options.
We also compare our approach with previous ones whenever
convenient through the development of the paper.

2 Analysis
Existing modal logics of desires/preferences are generally es-
tablished in accordance with two semantic principles, (PRP)
and (PCD), respectively. Let→ denote the dyadic modal op-
erator, |A| the set of worlds satisfying the proposition A, and
<P a binary relation over propositions. The two principles
can be described as follows.

PCD A→ B is true if |A ∧ ¬B| <P |A ∧B|;

PRP A→ B is true if |A| <P |B|.

According to (PCD), the intuitive meaning of a conditional
A→ B is that within all A-worlds, any B-world is preferred
to any ¬B-world. Therefore, asserting a conditional A→ B



means establishing a conditional desire connecting a condi-
tion (or a context) A and a potential goal B. On the other
hand, the intuitive meaning of A→ B under (PRP) is that B
is preferred to A without conditions; thus to put down a con-
ditional A→ B is to establish an unconditional relative pref-
erence between A and B. Most of the existing theories are
based on (PCD) [Wellman and Doyle, 1991; Boutilier, 1994;
Tan and Pearl, 1994; Weydert and van der Torre, 1998;
Dastani et al., 2001; Lang et al., 2003], calling them logics
of conditional desires and those based on (PRP) logics of rel-
ative preferences.

On the other hand, we can list four requirements for ade-
quate modal logic of conditional preferences.
Context-dependence The preferences over options should

be dependent on the context; ie., generally any prefer-
ence order <X is a function of context X . In particular,
if both A <X B and B <X∧Y A hold, then the former
should be defeated by the latter in context X ∧ Y .

Transitivity if A <X B and B <X C hold for any X , it
should be derived that A <X C.

Composition Under some conditions preferences under dif-
ferent contexts X and Y can be combined to form a new
one under context X ∧ Y . This is a real challenge to the
formalization of conditional preferences.

Conflict tolerance It is well known that desires and pref-
erences can conflict with one another in some sense.
Hence adequate formalization should be tolerant of these
conflicts, ie., be able to represent them consistently.

We believe that all of these requirements are necessary, al-
though there are some conflicts among them. A basic obser-
vation is that dyadic modal logics, whether based on (PCD)
or (PRP), do not meet these requirements jointly. Consider
the logics of conditional desires. Since the law of transitiv-
ity does not hold in these logics, one has to employ that of
restricted transitivity instead:
RT (A→ B) ∧ (A ∧B → C) ⊃ (A→ C)

However, this would damage context-dependence seriously.

Example 2.1 (Physicist) Suppose Γ consists of
(1) p→ w

(2) p→ ¬s

(3) p ∧ w → s

where p, w and s represent to be a physicist, to win a No-
bel Prize and to study AI, respectively. Then a consequence,
p→ s, can be deduced from (1) and (3) by RT in these log-
ics, with only exception of [Lang et al., 2003]. This is in-
tuitively irrational. Clearly, an agent with the desires in Γ
wants to study AI only after he/she has won a Nobel Prize,
but the application of RT destroys the dependence of s on its
true context p ∧ w and fakes unnecessarily a contradiction
between s and ¬s under the context p. Of course this defect
can be avoided by expressing the preferences in a temporal
language. But that is unnecessarily complicated for many
applications.

In the logics of conditional desires, the only way to repre-
sent transitivity is to employ the axiom

DT (B ∨ C → B) ∧ (C ∨D → C) ⊃ (B ∨D → B)

in its variant form

(A ∧ (B ∨ C)→ A ∧B) ∧ (A ∧ (C ∨D)→ A ∧ C)

⊃ (A ∧ (B ∨D)→ A ∧B)

with A representing the context. However, this simple strat-
egy suffers from some serious shortcomings. A fatal and
obvious drawback is that it will inevitably cause confu-
sion between X ∧A < X ∧B and A <X B. For exam-
ple, suppose a user prefers richness and reputation to rich-
ness and health, while preferring health to reputation in
the context of richness. Then the two preferences should
be expressed as richness∧health<richness∧reputation and
richness∧reputation<richness∧health, respectively, accord-
ing to the strategy. Therefore, similar to the case of Example
2.1, there will be a faked conflict between the two prefer-
ences.

Another serious shortcoming of previous modal logics of
desires and preferences is their insufficient expressive ability.
It is well accepted that desires and preferences can be conflict
with one another in some sense, such as that one in Example
2.2. Therefore, these preferences should be expressed as con-
sistent sets in preference logics so that they can be handled in
the logics [Bacchus and Grove, 1996]. However, even some
common and intuitively tractable conflicts like that in Exam-
ple 2.2 cannot be dealt with satisfactorily in a self-contained
formalism so far developed.

Example 2.2 (Airplane ticket, [Lang et al., 2003])
Suppose someone is planning for his/her travel during
Christmas vacation. He/She wants to have a ticket to Roman
or a ticket to Amsterdam, but not both.

As for composition, the situation is even worse. In dyadic
logics of conditional desires, the major rule of composition is
CC (A→ B) ∧ (A→ C) ⊃ (A→ B ∧ C)

Clearly, it is too weak for our purpose—it cannot deal with
the composition of contexts in any case. On the other hand,
sometimes it will derive irrational consequences. We will dis-
cuss this in detail in section 3.

Similar argument applies to the previous logics of relative
preferences. Therefore, we think that dyadic modal logic is
unable to support adequate formalization of conditional pref-
erences. In fact, if only a dyadic modal operator is expected
to represent conditional preference, it will be inevitably over-
loaded with a twofold function: it has to stand both for a con-
nection between a context and a potential goal and for prefer-
ence over outcomes. The analysis above reveals that dyadic
conditionals cannot afford to take on both of the roles jointly
while satisfying all of the four requirements.

Therefore, we propose introducing triadic modal logic as
a new tool for the formalization of conditional preferences.
The outline of our proposal is described as follows. First,
we establish a triadic modal logic with neighborhood seman-
tics, TML, and a minimal TML system for conditional prefer-
ences, MCP. A triadic conditional A⇒ BC is thought of as
representing “if A then C is preferred to B”. MCP contains
only two proper axioms, general conjunction and transitivity
of consequents. They prescribe that the operations in MCP



are carried out along two dimensions, Boolean and of prefer-
ence order. Then the most preferred propositions under any
context can be derived in the system with some additional
machinery or control strategy. This mechanism of optimiza-
tion embodies three criteria: that of maximal partial satisfac-
tion, specificity, and positive utility. We investigate the per-
formance of and clarify the intuition behind the mechanism
by a series of examples.

3 The logic
We will establish TML on the basis of classical proposition
logic, denoted by CL, with connectives ¬, ∧, ∨, ⊃, and ≡.
We introduce a triadic modal operator ⇒. The formula of
the form A⇒ BC is called a triadic conditional, or condi-
tional for short, which can be informally interpreted as “C
is preferred to B if A”, where A, B, and C are called an-
tecedent, first consequent, and second consequent of the con-
ditional. The formulae of TML are defined as usual. Some-
times we use the expression of the form A⇒ B · C instead
of A⇒ BC, especially when B or C is not a literal. The
entailment in a logic S, say CL or MCP etc., is denoted by
`S . The symbol > and ⊥ are taken to be some tautology and
contradiction, respectively. In this paper we concentrate on a
minimal TML system of conditional preferences, MCP.

Definition 3.1 (MCP) The axioms and rules of MCP are as
follows:

PT all propositional tautologies;

GC (A1 ⇒ B1C1) ∧ (A2 ⇒ B2C2) ⊃ (A1 ∧A2 ⇒
B1 ∧B2 · C1 ∧ C2);

CT (A⇒ BC) ∧ (A⇒ CD) ⊃ (A⇒ BD);

MP A, A ⊃ B / B;

RAE A1 ≡ A2 / (A1 ⇒ BC) ≡ (A2 ⇒ BC);

RFCE B1 ≡ B2 / (A⇒ B1C) ≡ (A⇒ B2C);

RSCE C1 ≡ C2 / (A⇒ BC1) ≡ (A⇒ BC2).

GC generates and strengthens CC of traditional condi-
tional logics, which prescribes the law of general conjunction.
CT describes the law of transitivity of consequents.

The entailment of MCP is defined as usual.

Theorem 3.1 (Consistency) The system MCP is consistent;
ie., there is no TML-formula A such that `MCP A and
`MCP ¬A.

Definition 3.2 (TML frames and models) F = 〈W,N〉 is
a TML-frame, if W is a non-empty set of possible worlds and
N is a mapping from W to P (P (W )× P (W )× P (W )),
where P (W ) is the power set of W . M = 〈W,N, V 〉 is
a TML-model, if 〈W,N〉 is a TML-frame and V is a map-
ping from the set of TML-formulae to P (W ) such that for all
w ∈W :

1. w ∈ V (¬A) iff w 6∈ V (A);

2. w ∈ V (A ∧B) iff w ∈ V (A) and w ∈ V (B);

3. w ∈ V (A⇒ BC) iff 〈V (A), V (B), V (C)〉 ∈ N(w).

For convenience we will not distinguish V (A) from A
hereafter. The mapping N in the semantics associates with
each possible world w a ternary relation B <A C, asserting
informally that according to w proposition C is preferred to
B under context A. A feature of our logic is that the ternary
relation is not defined over worlds, but sets of worlds. We
argue that an agent with bounded rationality can only have
preferences at best in this coarse level.

Definition 3.3 (MCP frames and models) F = 〈W,N〉 is
a MCP-frame, if for all w ∈W and subsets of W , X , Y ,
Z, U , with or without subscripts:

(gc) if 〈X1, Y1, Z1〉 ∈ N(w) and 〈X2, Y2, Z2〉 ∈ N(w),
then 〈X1 ∩X2, Y1 ∩ Y2, Z1 ∩ Z2〉 ∈ N(w);

(ct) if 〈U,X, Y 〉 ∈ N(w) and 〈U, Y, Z〉 ∈ N(w), then
〈U,X,Z〉 ∈ N(w).

M = 〈W,N, V 〉 is a MCP-model, if 〈W,N〉 is a MCP-frame.

Intuitively, the ternary relation B <A C can be taken to be
the qualitative and order-preserving representation of some
utility function µA defined over possible outcomes and pa-
rameterized in A. The only constraints on the relation in any
MCP frame are (gc) and (ct). The latter specifies that the or-
der B <A C is transitive for any parameter A and the former
that the order is closed under intersections over its parameter
A and two variables, B and C. While (ct) reflects directly
the corresponding characteristic of classical utility functions,
the synthesis of (ct) and (gc) constitutes the truly unique as-
sumption of our approach that the preferential order is closed
under transitivity and the intersection described above, de-
noted as (ATI) hereafter. This assumption is rather strong
indeed and not necessarily true of all situations. However, it
is not stronger or less rational than the corresponding rule,
CC/And, in traditional conditional logics of desires and pref-
erences. More importantly, we will discover later that (ATI)
provides a solid foundation for an appropriate formalism of
preference optimization.

Any TML-formula A is valid in a MCP-model
M = 〈W,N, V 〉, denoted by M |= A, if V (A) =W .
A is valid in a MCP-frame F = 〈W,N〉, denoted by F |= A,
if M |= A for any M = 〈W,N, V 〉. A is valid in fr(MCP),
denoted by fr(MCP) |= A, if F |= A for any F ∈ fr(MCP),
where fr(MCP) denotes the class of all MCP-frames.

Theorem 3.2 (Frame soundness) The system MCP is sound
in fr(MCP); ie., for any TML-formula A, if `MCP A then
fr(MCP) |= A.

Theorem 3.3 (Frame completeness) The system MCP is
complete with respect to fr(MCP); ie., for any TML-formula
A, if fr(MCP) |= A then `MCP A.

Obviously, the logic is rather simple. But one can see that
it is very powerful with respect to our purpose. Consider the
“puzzle of airplane ticket” mentioned above.

Example 3.1 (Airplane ticket, continued) In our logic
these conditional preferences can be expressed as
Γ = {> ⇒ ¬rr,> ⇒ ¬aa,> ⇒ r ∧ a · ¬(r ∧ a)}, where
r and a stand for having an airplane ticket to Roman



and having an airplane ticket to Amsterdam, respec-
tively. Then one can derive in our logic following conse-
quences: > ⇒ ¬r ∧ ¬a · r ∧ a, > ⇒ r ∧ a · ¬r ∧ a and
> ⇒ r ∧ a · r ∧ ¬a.

At first glance, it seems that the first consequence does not
completely adhere to our intuitive understanding of Γ. This
may be controversial. We give some justification as follows.
(1) In our logic r ∧ a is not the most preferred option in the
example. In fact, one can derive in our logic that most pre-
ferred options are ¬r ∧ a and r ∧ ¬a. Clearly, this conforms
to our intuition completely. (2) Even the first consequence is
certainly more rational in intuition than that derived by CC in
existing conditional logics, where the desires of the planner
are expressed as Γ∗ = {> → r,> → a,¬(> → r ∧ a)}. By
CC from the first two conditionals one can derive> → r∧a.
This causes two serious problems. Firstly, Γ∗ is inconsistent
and thus cannot be represented in these logics. And the situa-
tion would be the same if the third conditional was expressed
as > → ¬(r ∧ a). Secondly, according to (PCD), > → r ∧ a
means that r ∧ a is preferred to ¬(r ∧ a); in other words, any
r ∧ a-world is preferred to any ¬r-world or ¬a-world. But
this is absolutely irrational, because the most preferred in this
example should be ¬r ∧ a-worlds or r ∧ ¬a-worlds.

(ATI) needs to be further justified when one of consequents
of a conditional is a contradiction. Suppose both A⇒ BC
and A⇒ B¬C are given as an agent’s conditional prefer-
ences. Then one can derive in our logic a consequence
A⇒ B · ¬C ∧ C. Since ¬C ∧ C is interpreted in our se-
mantics as an empty set of possible worlds, it corresponds
to zero utility. Then the consequence can be interpreted as
specifying that B corresponds to some minus utility. This
conforms completely to our intuition to the case: if an agent
prefers both C and ¬ C to B under the same context, then
he/she will reject B under the context. Correspondingly, our
machinery for the optimization of preferences will reject all
of the options with minus utilities. This is the criterion of
positive utility. Therefore, non-positive utility provides a sim-
ple and flexible conceptual tool for coping with contradictory
options. More significantly, the discussion above also reveals
that the essence of (ATI) is the assumption that the derivation
of MCP will preserve the order of utilities of comparative op-
tions.

In order to compare MCP with previous conditional logics
of desires and preferences, consider following theorems.

Proposition 3.1
RTC (A⇒ BC) ∧ (A⇒ B ∧ C ·D) ∧ (A⇒ BB) ⊃

(A⇒ BD);
ACC (A⇒ B · C ∧D) ∧ (A⇒ CD) ∧ (A⇒ DD) ⊃

(A⇒ B ∧ C ·D);
LCC (A⇒ B ∧ C ·D) ∧ (A⇒ BC) ∧ (A⇒ BB) ⊃

(A⇒ B · C ∧D).

RTC, ACC, and LCC are the corresponding form of RT,
AC, and the conjunction rule of Lang et al. [Lang et al.,
2003], respectively. Note that all antecedents of the con-
ditionals appeared in each theorem are fixed. This feature
makes them free from those deficiencies of their traditional
counterparts described in section 2.

Example 3.2 (Physicist, continued) Now the desires are
re-expressed in MCP as Γ′ = {p⇒ ¬ww, p⇒ s¬s,
p ∧ w ⇒ ¬ss}. Then following consequences can be
derived, among which there is no counterintuitive case:
p⇒ ¬w ∧ s · w ∧ ¬s, p ∧ w ⇒ ¬w ∧ ¬s · w ∧ s, and
p ∧ w ⇒ ⊥⊥. Consequently, w ∧ ¬s is most preferred under
context p and w ∧ s under p ∧ w.

A second feature of RTC, ACC and LCC is that they all
need additional conditions in the form of A⇒ BB. In fact,
since our logic is neutral to reflexivity/irreflexivity, any for-
mula in this form means more than identity in our logic. Ba-
sically, it means that B is not unacceptable as a most pref-
erential desire or “goal”. For example, according to our
definitions of goals in the next section, B is a goal under
〈{A⇒ BB}, A〉, while there is none under 〈Ø, A〉.

We do not believe that MCP can be weaken while still meet
the four requirements to the least extent. On the other hand,
one can add more axioms such as reflexivity or irreflexivity
into our logic. In this sense MCP is a minimal TML system
of conditional preferences.

4 Optimization of preferences
Suppose Γ is a set of TML-formulae consisting of triadic
conditionals and static domain knowledge expressed in CL-
formulae, and θ is a CL-formula representing the belief about
the current situation. In order to find the most preferential op-
tions, called goals hereafter, with respect to Γ and θ one needs
some machinery for optimization of preferences. Generally,
this machinery can be regarded as a meta-level control strat-
egy of some preference logic, by which a goal can be deduced
as a consequence from the premises under some restrictions.
In this section, we specify these restrictions for the optimiza-
tion of preferences in MCP. We clarify the intuition behind
the definitions through a series of examples.

Example 4.1 (Raining and taking umbrella) Let Γ1 =
{r ⇒ ud, r ⇒ du}, where r, d and u stand for raining, driv-
ing a car and taking umbrella, respectively. Are the prefer-
ences in Γ1 conflict with each other?

One can give two answers to the question. First, Γ1 can
be understood as specifying that the preference between u
and d is the same. This means that there is no conflict be-
tween them. Hence both u and d are the maxima of Γ1 under
<r. Generally, let B <A,Γ C denote Γ `MCP A⇒ BC and
B ≤A,Γ C denote B <A,Γ C or `CL B ≡ C. We often omit
the subscript Γ for short.

Definition 4.1 (Weak <A-maxima) The set of weak
<A-maxima of Γ is defined as

WMax(Γ, <A) =df {x 6≤A ⊥ | there is y such that y <A x
and for all z, z <A x if x <A z }.

Therefore, we have that WMax(Γ1, <r) = {u, d, u ∧ d}.
The restriction x 6≤A ⊥ implies that any <A-maximum can-
not have minus utility. We will take <A-maximum as a nec-
essary condition of weak goals, which excludes any proposi-
tion with minus utility from being a weak goal. This is the
so-called criterion of positive utility.



The second answer to the question in Example 4.1 is that
the preferences between u and d in Γ1 conflict with each other
and thus both are invalid. This notion of goal leads to the
definition of strong <A-maxima.
Definition 4.2 (Strong <A-maxima) The set of strong
<A-maxima of Γ is defined as
SMax(Γ, <A) =df {x ∈ WMax(Γ, <A) | there is no

y ∈ WMax(Γ, <A) such that x <A y and 6`CL x ≡ y }.

Hence SMax(Γ1, <A) = {u ∧ d}. Generally, we have that
SMax(Γ, <A) ⊆WMax(Γ, <A). Typically Γ contains con-
ditionals with different strength of antecedents. This implies
that Γ can specify multiple preference orders over proposi-
tions parameterized in different conditions.
Example 4.2 (Raining and taking umbrella, continued)
Suppose Γ2 = Γ1 ∪ {r ∧ h⇒ u ∨ d · ¬(u ∨ d)}, where h
stands for staying home. Then we have that SMax(Γ2, <r∧h)
= {¬(u ∨ d)} 6= {u ∧ d} = SMax(Γ2, <r).

Intuitively, goals under given Γ and θ should satisfy two
conditions. Firstly, they should be <-maxima with respect
to Γ and θ; secondly, the antecedents of their corresponding
conditionals should be activated by θ. The first condition in-
volves the criterion of specificity. Assume θ = r ∧ h. Then
the strong <r∧h-maximum in Example 4.2 should override
strong <r-maxima and be selected as the strong goal under
Γ and θ. The situation is similar to weak goals. For any
CL-formulae θ, A and B, A is called θ-stronger than B if
that θ `CL A ⊃ B and properly θ-stronger than B if A is
θ-stronger than B and B is not θ-stronger than A.
Definition 4.3 (Weak and strong goals) Given any Γ and θ.
The sets of weak and strong goals of Γ under θ, respectively,
are defined as
WG(Γ, θ) =df {x ∈ WMax(Γ, <A) | θ `CL A and for all

A′ properly θ-stronger than A, WMax(Γ, <A′) = Ø or
θ 6`CL A′ };

SG(Γ, θ) =df {x ∈ SMax(Γ, <A) | θ `CL A and for all
A′ properly θ-stronger than A, SMax(Γ, <A′) = Ø or
θ 6`CL A′ }.

For instance, WG(Γ1, r) = {u, d, u ∧ d}, SG(Γ1, r) =
{u ∧ d}, WG(Γ2, r ∧ h) = SG(Γ2, r ∧ h) = {¬(u ∨ d)}.

The mechanism of preference optimization defined so far
is very simple. However, it is not powerful enough to deal
with some complicated cases.
Example 4.3 (Airplane ticket, continued) Reconsidering
Γ3 = {> ⇒ ¬rr,> ⇒ ¬aa,> ⇒ r ∧ a · ¬(r ∧ a)}. Then
we have that WMax(Γ3, <>) = SMax(Γ3, <>) =
{r, a, ¬(a ∧ r), r ∧ ¬a, a ∧ ¬r} = WG(Γ3, <>) =
SG(Γ3, <>). Intuitively, it is perfect to select r ∧ ¬a and
a ∧ ¬r as goals, although r and a are also acceptable.

For this purpose we introduce the concept of supporting
sets of strong goals. Informally, a supporting set of a strong
goal C is the minimal subset of Γ which contains C as one of
its strong goals.
Definition 4.4 (Supporting sets) Given any x ∈ SG(Γ, θ).
∆ ⊆ Γ is a supporting set of x, if x ∈ SG(∆, θ) and
x 6∈ SG(∆′, θ) for any proper subset ∆′ of ∆.

In Example 4.3, for instance, {> ⇒ ¬rr} and {> ⇒ ¬rr,
> ⇒ r ∧ a · ¬(r ∧ a)} are supporting sets of r and r ∧ ¬a,
respectively, and the latter covers the former. Intuitively, a
supporting set of a strong goal C reflects the partial desire
specified by Γ that C must satisfy at least. And thus the larger
supporting sets of a strong goal are, the more desires of Γ the
goal satisfies. Based on this observation, r, a and ¬(a ∧ r)
should be defeated by r ∧ ¬a or a ∧ ¬r according to a more
strict goal definition conforming to the criterion of maximal
partial satisfaction. However, only considering subset rela-
tion between supporting sets is not sufficient for our purpose,
although it is for this example. Note that this example is very
difficult to be treated in previous work [Lang et al., 2003], but
we want to solve it together with more complicated cases like
following one by means of the same mechanism.

Example 4.4 (Airplane ticket, complicated) Suppose θ =
d ∧ s and Γ4 = {d⇒ ¬vv, s⇒ ¬ff, d ∧ s⇒ v ∨ f · b,
¬(v ∧ b) ∧ ¬(f ∧ b)}, where d and s stand for travelling
with daughter and travelling with son, respectively, and v,
f and b for visiting Venice, Florence and Beijing, respec-
tively. Then both v ∧ f and b are strong goals with supporting
sets {d⇒ ¬vv, s⇒ ¬ff} and {d ∧ s⇒ v ∨ f · b}, respec-
tively; but these two supporting sets cannot be distinguished
from each other by set inclusion. However, it is easy to see
that the former should be defeated by the latter since the an-
tecedent of the third conditional, which belongs to the latter’s
supporting set, is properly closer to θ than that of the first
and the second ones, which constitute the supporting set of
the former.

It follows that one supporting set can be overridden by an-
other according to the conditionals they contain. Now we de-
fine covering of supporting sets to capture the overriding be-
tween supporting sets and then define superior goals as those
strong ones with strongest supporting sets.

Definition 4.5 (Covering) Given any Γ, θ and ∆1,∆2 ⊆ Γ.
∆1 covers ∆2, if (1) ∆2 ⊆ ∆1; or (2) there is a conditional
in∆1 such that its antecedent is properly θ-stronger than that
of some conditional in ∆2 and there is no conditional in ∆2

such that its antecedent is properly θ-stronger than that of
any conditional in ∆1.

Definition 4.6 (Superior goals) Given any Γ and θ. The set
of superior goals under Γ and θ is defined as
UG(Γ, θ) =df {x ∈ SG(Γ, θ) | any supporting set of x is not

covered by any supporting set of y for any y ∈ SG(Γ, θ) }.

It is easy to verify that UG(Γ3,>) = {r ∧ ¬a, a ∧ ¬r} and
UG(Γ4, d ∧ s) = {b}, both of which completely conform to
our intuition and the principles we prescribed for reasoning
with conditional preferences.

Property 4.1 Weak, strong and superior goals are not mono-
tonic, ie., Γ ⊆ Γ′ does not implies XG(Γ, θ) ⊆ XG(Γ′, θ),
where XG stands for WG, SG or UG.

5 Conclusions
The main contributions of the paper include three aspects.
First, we show that dyadic modal logic is unable to be an ad-
equate logical tool for the formalization of conditional pref-



erences, because it does not meet four basic requirements de-
manded by the task and causes a lot of confusions and mud-
dles. Second, we introduce triadic modal logic as an alter-
native and establish a minimal TML system, MCP, for con-
ditional preferences. The design of the system is based on
a novel point of view on the relation between the qualitative
representation and its quantitative counterpart: regarding de-
sire/preference conflicts as non-positive utilities. As a result,
one of the most difficult and crucial issues in previous work,
conflict resolving, becomes much easier to be treated in our
theory. Third, a very simple yet powerful mechanism of pref-
erence optimization is established on the basis of MCP, which
embodies the criteria of maximal partial satisfaction, speci-
ficity, and positive utility. In summary, our formalization of
conditional preferences, as a self-contained theory, meets all
of the requirements we prescribe for the task to a certain ex-
tent.

As far as the authors know, the only theory in the previ-
ous work that can also direct represent conditional prefer-
ences is LPOD [Brewka et al., 2004]. However, there are
some significant differences between theirs and ours. First, in
LPOD the user’s preferences are actually expressed in terms
of their “disappointment degrees”. For instance, if there is a
rule A × B ← C, then A and B have disappointment de-
grees 1 and 2, respectively, no matter whether there are any
other rules with the same body in the program. Therefore,
each “complete preferential chain” A1 > · · · > An in some
context C must be specified with a rule A1 × · · · ×An ← C.
While in our logic the same “chain” can be represented with
several conditionals such as C ⇒ A1A2, C ⇒ A2A3, etc.
Thus users can easily revise and maintain their conditional
preferences in our logic. Secondly, LPOD employs not and
corresponding machinery to explicitly represent the abnormal
conditions of rules and thus realize the principle of specificity
with respect to contexts, while our logic does not. With help
of this machinery, the computation of LPOD will be more
efficient. On the other hand, there seems no obstacle to pre-
vent one from employing the similar machinery to realize the
computation of MCP.

This work is only a first step toward adequate formaliza-
tion of conditional preferences in triadic modal logic. There
is a lot of work to do in the future. For example, besides what
mentioned above, it is needed to investigate the performance
of our theory in more complicated situations. Also, the mini-
mal system MCP should be expanded to become more power-
ful. Most importantly, we should clarify the whole principle
governing the composition of contexts in reasoning with con-
ditional preferences.
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