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Abstract: For the purpose of allowing an autonomous robot to use task instructions for task planning, we present a for-
malization for specifying structured task instructions and provide an approach for integrating these instructions
with robot’s built-in knowledge to compute plans for open-ended tasks. We have implemented a prototype of
the system. We also report a case study of the effectiveness of the approach.

1 INTRODUCTION

To perform everyday manipulation tasks in house-
holds, a service robot needs to automatically gener-
ate sequences of primary actions adapted to the en-
vironment and tasks, which is commonly done us-
ing AI task planning methods (McDermott, 1992),
like Causal Theories (McCain and Turner, 1997),
FLUX (Thielscher, 2005), or various planning sys-
tems based on PDDL (Ghallab et al., 1998). Origi-
nally, these approaches heavily rely on having a com-
plete and certain description of the situation that the
robot is faced with, which normally oversimplifies
its real counterpart when the robot performs in the
daily world (McDermott, 1992): Actions might have
stochastic effects, the current state of the world might
not be fully known, and action sequences are not ex-
pressive enough to specify competent robot manipu-
lation behaviors. To overcome these challenges, Con-
tinual Planning (Brenner and Nebel, 2009) is pro-
posed such that robots perform a continuous loop be-
tween planning, plan execution, and execution mon-
itoring, where “classical” planning can be used for
the most likely situations while the discrepancies be-
tween “physical reality” and “mental reality” can later
be recovered during the execution monitoring phase.
AI planning methods can also be integrated with com-
puter simulations to enable robots to realistically pre-
dict real-world behaviors (Johnston and Williams,
2008).

On the other hand, everyday manipulation tasks
are often open-ended, which requires the robot to in-
fer by itself how to accomplish these tasks properly.
One way to meet this requirement is to provide robots

with the ability to understand and follow the task in-
structions that are defined by human users (Burgard
et al., 1999; Rybski et al., 2007; Tenorth et al., 2010;
Cantrell et al., 2012). A robot can find and extract
knowledge of these instructions from human-robot di-
alogue, as well as web sources such as open knowl-
edge bases like Cyc1 and Open Mind Indoor Com-
mon Sense (OMICS)2. Then, after necessary conver-
sions, the structured task instructions are represented
in the robot and made use of to accomplish open-
ended tasks.

Continuing both lines of research, we consider
how to compute a robot executable plan for a task in
an AI planning system following structured task in-
structions. In particular, we present a formalization
for specifying structured instructions in a robot and
provide an approach for integrating instructions with
robot’s built-in knowledge to compute plans for tasks.

In the authors’ observation, for task planning,
user-defined task instructions separate themselves
from high-level task specifications written by de-
signers in two major aspects. Firstly, two differ-
ent types of knowledge, named functional and pro-
cedural knowledge, for task accomplishment are ar-
bitrarily introduced in user-defined instructions and
the robot may need to integrate both types of knowl-
edge to compute plans for some tasks. Specifically,
functional knowledge specifies the expected effects
of a task. Given functional knowledge, the robot
could consider these expected effects as goals and use
AI planning approaches to compute a plan (Galindo
et al., 2008). Procedural knowledge specifies a plan

1http://www.cyc.com/
2http://commons.media.mit.edu/en/



skeleton of how to accomplish a task. Given proce-
dural knowledge, the robot needs to find out a possi-
ble sequence of actions which meets the restrictions
of the plan skeleton to accomplish the task (Burgard
et al., 1999; Tenorth et al., 2010). Normally, both
knowledge are arbitrarily introduced in user-defined
task instructions. For example, the task “heat food
in microwave” can be instructed to take the follow-
ing three steps: “place the food in microwave”, “turn
on microwave oven for two minutes”, “take the food
out”. Note that, this instruction denotes some pro-
cedural knowledge, while the first and the third step
denotes some functional knowledge, whose expected
effects are “the food is placed inside the microwave”
and “the food is placed outside the microwave” sepa-
rately.

Secondly, user-defined task instructions may miss
some details that are indispensable for robots’ execu-
tion. For example, in OMICS, there is an instruction
specifying how to “get food from refrigerator” in five
steps. The last two steps were specified as “pick food
up” and “close door”. However, if the robot has only
one arm, it must put the food somewhere before clos-
ing the door. This action is missing from the instruc-
tion.

We address these two aspects in this paper. We
present an internal representation of both functional
and procedural knowledge of task instructions and
propose a unified framework to integrate the both with
robot’s built-in knowledge to compute plans for open-
ended tasks. The planning program could also au-
tomatically detect the missing details, and add some
proper actions to make the computed plan executable.
A prototype of the system has been implemented
based on Answer Set Programming (ASP), a logic
programming language with Prolog-like syntax un-
der stable model semantics (Baral, 2003). We choose
ASP to implement the system because it can be use to
specify causal theories easily and it has many efficient
solvers. We also report a case study of the effective-
ness of the approach.

A number of works in task planning have tackled
the challenge of understanding and utilizing task in-
structions. (Gupta and Hennacy, 2005) presents a sys-
tem which can fill-in missing information from task
instructions using commonsense reasoning. (Kress-
Gazit et al., 2007) specifies how to translate robot
behaviors from a description in structured English to
actual robot controllers via Linear Temporal Logic.
(Cantrell et al., 2012) demonstrates a robot planner
that can utilize natural language commands from un-
trained users. However, in these works, the internal
representations of task instructions could not handle
both functional and procedural knowledge, and the

planning system could not fill-in missing steps be-
tween two successive operations in the instruction.
Other related work (Tellex et al., 2011; Chen and
Mooney, 2011; MacMahon et al., 2006; Tenbrink
et al., 2010) focus on benefiting route instructions for
robot navigation. Golog and its variants (Levesque
et al., 1997; Beetz et al., 2010; Son et al., 2001) can
represent and reason with both functional and proce-
dural knowledge. However, they cannot reason about
missing details that are indispensable for robots’ exe-
cution.

The rest of the paper is organized as follows. Sec-
tion 2 reviews a formalization of a task planning sys-
tem. Section 3 reports a formalization for repre-
senting functional and procedural knowledge of task
instructions. Section 4 provides an unified frame-
work to integrate both knowledge with robot’s built-in
knowledge to compute plans, and describes an imple-
mentation of the system. At last, a case study is re-
ported in Section 5 and conclusions are given in Sec-
tion 6.

2 A TASK PLANNING SYSTEM
BASED ON CAUSAL THEORIES

Without loss of generality, we choose the planning
approach based on McCain and Turner’s causal theo-
ries (McCain and Turner, 1997) for robot task plan-
ning. The idea is to specify the action domain and the
planning problem in causal theories such that a causal
model corresponds to a planning solution, then use so-
phisticated AI tools or solvers to compute robot plans
for tasks. In the following, we briefly review the def-
inition of causal theories, describe how to specify the
action domain and the planning problem in causal the-
ories, and sketch an implementation of the task plan-
ning system.

Firstly, the underlying propositional signature is
consisted with three pairwise-disjoint sets: a set of
action names, a nonempty set of fluent names, and a
nonempty set of time names. The action-atoms are
expressions of the form at and the fluent-atoms are
expressions of the form ft , where a, f , and t are ac-
tion, fluent, and time names, respectively. Atoms of
the language are either action-atoms or fluent-atoms.
Specially, ⊥ denotes contradiction. Intuitively, at
is true iff the action a occurs at time t, and ft is
true iff the fluent f holds at time t. For example,
grasp(bottle)1 is an action-atom stands that the action
“grasp bottle” occurs at time 1 and holding(bottle)2
is a fluent-atom stands that the fluent “holding bottle”
is true at time 2. A literal is either an atom a or the
negation ¬a. Formulas are formed from atoms using



propositional connectives, while fluent-formulas are
formed from fluent-atoms.

A causal theory is a set of causal rules of the
form: φ⇒ ϕ, where φ and ϕ are formulas. Intuitively,
the causal rule reads as “ϕ is caused if φ is true”. As a
syntax sugar, a causal rule with variables is viewed as
shorthand for the set of its ground instances, that is,
for the result of substituting corresponding variable-
free terms for variables in all possible ways.

An interpretation I is a set of literals such that
for each atom a in the language, either a ∈ I or
¬a ∈ I but not both. Given a causal theory T
and an interpretation I, the reduction T I = {ϕ |
for some φ⇒ ϕ ∈ T and I |= φ}. T I is a propositional
theory. We say that I is a causal model of T if I is the
unique model of T I .

An action domain contains the knowledge of ac-
tions of the robot and changes of the environment,
which is an essential part of robots’ built-in knowl-
edge. A causal theory for an action domain will typi-
cally contain rules specifying the initial state and how
fluents are changed as the result of performing an ac-
tion. We take the action grasp and corresponding flu-
ents for instance.

• grasp(X): the action of griping the object X and
picking it up.

• holding(X): the fluent that the object X is held in
the grip of the robot.

• on(X ,Y ): the fluent that the object X is on the
object Y .

In addition, σ is a meta-variable ranging over
{on(X ,Y ),¬on(X ,Y ),holding(X),¬holding(X)}.

The effect of executing the action grasp(X) is de-
scribed as follows:

grasp(X)t ⇒ holding(X)t+1 (1)
grasp(X)t ∧on(X ,Y )t ⇒¬on(X ,Y )t+1 (2)

The precondition of grasping requires the grip holds
nothing:

grasp(X)t ∧holding(Y )t ⇒⊥ (3)

The occurrence of the action is exogenous to the
causal theory:

grasp(X)t ⇒ grasp(X)t (4)
¬grasp(X)t ⇒¬grasp(X)t (5)

The initial state (at time 0) can be arbitrary:

σ0⇒ σ0 (6)

The frame problem is overcome by the following “in-
ertia” rules:

σt ∧σt+1⇒ σt+1 (7)

We define a state s for time t as a set of fluent-
atoms with the time name t. Intuitively, s denotes
a world specified by the fluents that are true at a
time step. Given a causal theory with time names
{0,1, . . . ,n}, we can define a trajectory as a sequence
〈s0,α0,s1, . . . ,αn−1,sn〉, where si is a state for time i
(0 ≤ i ≤ n), and α j is an action-atom (0 ≤ j < n).
Note that, a causal model of such a causal theory
contains exactly a trajectory of the above form, i.e.,
s0∪{α0}∪· · ·∪{αn−1}∪sn is a causal model of such
a causal theory. We also call it a trajectory of the
causal theory.

Given a description of the goals to be completed,
we could use a fluent-formula ϕn formed by fluent-
atoms with the last time name n to specify the re-
quirements of the goal states. Then the task planning
problem is reduced to the causal theory for the action
domain by adding the causal rule ¬ϕn⇒⊥. Clearly,
a causal model or a trajectory of the causal theory cor-
responds to a solution of the planning problem.

A task planning system based on causal theories
has been implemented on our service robot (Chen
et al., 2010; Chen et al., 2012). A logic pro-
gramming language named Answer Set Program-
ming (ASP) (Baral, 2003) is chosen for the calcu-
lation of causal theories and an efficient ASP solver
iclingo (Gebser et al., 2008) is used for computing
task plans. More details can be found in our robot’s
description paper3.

3 A FORMALIZATION FOR
STRUCTURED TASK
INSTRUCTIONS

Both functional and procedural knowledge are
commonly used in everyday task instructions. For
example, an instruction written by web users can be
found in OMICS:

Heat bread in microwave involves the steps:

1. place the bread in the microwave;
2. turn on microwave oven for two minutes;
3. check temperature;
4. repeat till desired temperature is achieved.

Some steps, like “turn on microwave oven for two
minutes”, could be directly mapped to primitive ac-
tions which denote operating routines of the robot.
Others may denote sub-tasks whose instructions
could be specified by other functional or procedural

3http://ai.ustc.edu.cn/en/robocup/atHome/
files/WEHome2013TDP.pdf



knowledge. For instance, “place the bread in the mi-
crowave” is also a task, whose expected effect is “the
bread is placed in the microwave”.

There has been some work on translating natural
language sentences into logical representations (Baral
et al., 2011) and handling the symbol grounding prob-
lem (Vogt, 2006). Our previous work (Xie et al.,
2012; Chen et al., 2012) also provided an approach on
converting semi-structured natural language instruc-
tions to structured representations. Here we focus
on how to represent both functional and procedural
knowledge of structured task instructions.

Firstly, the underlying signature is consisted with
three pairwise-disjoint sets: a set of action names,
a set of fluent names, and a set of task names. A
fluent-specification is formed from fluent names us-
ing propositional connectives. A procedure is defined
recursively as follows:

• an action name a is a procedure,

• a fluent-specification F is a procedure,

• a task name T is a procedure,

• if Pi (1≤ i≤ m) are procedures then P1; . . . ;Pm is
a procedure,

• if Pi (1≤ i≤ m) are procedures then P1| · · · |Pm is
a procedure,

• if P1 and P2 are procedures and F is a fluent-
specification then if F then P1 else P2 is a proce-
dure,

• if P is a procedure and F is a fluent-specification
then while F do P is a procedure.

Intuitively, a fluent-specification represents a situa-
tion of the world and a procedure represents a skele-
ton of an execution program. For example, P1; . . . ;Pm
represents a procedure executed from P1 to Pm step
by step and P1| · · · |Pm represents a nondeterministic
choice from P1, . . . ,Pm.

A piece of functional knowledge is a pair (T,F)
where T is a task name and F is a fluent-specification
and a piece of procedural knowledge is a pair (T,P)
where P is a procedure. At last, we formalize a struc-
tured task instruction as a pair (F ,P ), where F is a
set of functional knowledge and P is a set of proce-
dural knowledge.

Continuing the example in the beginning of the
section, a structured task instruction (F ,P )4 could be
extracted from the steps as

F = {(Place(bread,micro), in(bread,micro))},
P = {(Heat(bread,micro),P)},

4The meaning of action, fluent, task names would be
explained in Section 5.

where P is the procedure:

Place(bread,micro); turnon(micro);check(bread);
while¬isok(bread)

do (Place(bread,micro); turnon(micro);check(bread)) ,

Heat(bread,micro) and Place(bread,micro) are task
names as they intimated, in(bread,micro) and
isok(bread) are fluent names, and others are action
names.

Given a robot, the structured task instruction col-
lects its both functional and procedural knowledge of
how to accomplish tasks. Intuitively, a piece of func-
tional knowledge (T,F) means the task T would be
accomplished when the fluent-specification F is satis-
fied at some time point, a piece of procedural knowl-
edge (T,P) means that T would be accomplished
when the robot has performed the procedure P. Now
we make it precise in the task planning system based
on causal theories.

Let Π be a causal theory specifying the action
model of the robot and τ = 〈s0,α0,s1, . . . ,αn−1,sn〉
be a trajectory of Π, we define τ satisfies a fluent-
specification F if for some 0 ≤ i ≤ n, si |= Fi where
Fi is the fluent-formula obtained from F by replacing
each occurred fluent name f by the fluent-atom fi. τ

satisfies a procedure P is defined recursively as fol-
lows:

• If P = a, where a is an action name, then a is the
action name occurred in the action-atom α0;

• If P = F , where F is a fluent-specification, then
s0 |= F0;

• If P = T , where T is a task name, then τ satis-
fies some procedural knowledge P′ of T or some
functional knowledge F ′ of T ;

• If P = P1; . . . ;Pm, where Pi (1 ≤ i ≤ m) are pro-
cedures, then there exists 0 ≤ n1 ≤ n2 ≤ ·· · ≤
nm−1 ≤ n such that:

– the trajectory 〈s0,α0, . . . ,sn1〉 satisfies P1;
– the trajectory 〈sn1 ,αn1 , . . . ,sn2〉 satisfies P2;
· · ·

– the trajectory 〈snm−1 ,αnm−1 , . . . ,sn〉 satisfies Pn;

• If P = P1| · · · |Pm, where Pi (1≤ i≤ m) are proce-
dures, then τ satisfies Pj for some 1≤ j ≤ m;

• If P = if F then P1 else P2, where P1 and P2 are
procedures and F is a fluent-specification, then τ

satisfies F implies τ satisfies P1 otherwise τ satis-
fies P2.

• If P = while F do P1, where P1 is a procedure and
F is a fluent-specification, then τ does not satisfy
F or there exists 0≤ n1 ≤ n such that:



– the trajectory 〈s0,α0, . . . ,sn1〉 satisfies P1, and
– the trajectory 〈sn1 ,αn1 , . . . ,sn〉 satisfies P.

Intuitively, τ satisfies a if the action a is executed at
time 0; τ satisfies F if the situation condition F is true
at the initial state; τ satisfies P1; . . . ;Pm if τ satisfies
the sequence of procedures P1, . . . ,Pm continuously; τ

satisfies P1| · · · |Pm if τ stochastically satisfies a proce-
dure Pi (1≤ i≤m); and τ satisfies the conditional and
the loop procedures are explained as usual.

At last, given a piece of functional knowledge
(T,F) and a piece of procedural knowledge (T,P), let
Π be a causal theory for the action model of the robot,
if there exists a trajectory τ of Π such that τ satisfies
F or P, then the task T would be accomplished if the
robot performed the trace specified by τ.

4 INTEGRATING STRUCTURED
TASK INSTRUCTIONS FOR
PLANNING

In this section, we consider how to compute a
robot plan for tasks with the help of structured task
instructions. Following the notions used in previ-
ous sections, an extended task planning problem ∆

is a tuple (Π,T ,F ,P ), where Π is the causal the-
ory for the action domain, T is a set of task names
that need to be accomplished, and (F ,P ) is a struc-
tured task instruction. A sequence of action names
〈a1, . . . ,am〉 is a plan of ∆, if there exists a trajectory
τ = 〈s0,α1,s1, . . . ,αm,sm〉 of Π such that
• the action name ai occurs in the action-atom αi for

each 1≤ i≤ m and

• for each task T ∈ T , either of following two con-
ditions is true

– there exists a pair (T,F) ∈ F such that τ satis-
fies F ; or

– there exists a pair (T,P)∈P such that τ satisfies
P.

Clearly, the robot could execute a plan in its action
domain and accomplish the required tasks after the
execution.

Now we provide an approach for computing plans
of extended task planning problems by converting
structured task instructions into causal rules.

For each pair (T,F)∈F of an extended task plan-
ning problem ∆= (Π,T ,F ,P ), we use tr(T,F) to de-
note the set of the causal rule:

Ft ⇒ Tt

where t is a meta-variable ranging over time names of
Π. For each pair (T,P) ∈ P of ∆, we use tr∗(P) to

denote the set of causal rules: ¬pt ⇒¬pt where p is
a new task name for the procedure P and
• If P = a where a is an action name, then

at ⇒ pt

• If P = F where F is a fluent-specification, then

Ft ⇒ pt

• If P = T ′ where T ′ is a task name, then

T ′t ⇒ pt

• If P = P1; . . .Pm where Pi (1 ≤ i ≤ m) are proce-
dures, then tr∗(Pi) for each 1≤ i≤ m and

p1
t1 ∧·· ·∧ pm

tm ⇒ pt

where pi is the new task name for the procedure
Pi for each 1 ≤ i ≤ m, t1, . . . , tm are also meta-
variables for time names such that t1 ≤ ·· · ≤ tm ≤
t.
• If P = P1| · · · |Pm where Pi (1 ≤ i ≤ m) are proce-

dures, then for each 1≤ i≤ m, tr∗(Pi) and

pi
t ⇒ pt

• If P = if F then P1 else P2 where P1 and P2 are
procedures and F is a fluent-specification, then
tr∗(F ;P1), tr∗(¬F ;P2), and

ρ
1
t ⇒ pt

ρ
2
t ⇒ pt

where ρ1 is the new task name for the procedure
F ;P1 and ρ2 is the new task name for the proce-
dure ¬F ;P2.
• If P = while F do P1, where P1 is a procedure and

F is a fluent-specification, then tr∗(F), tr∗(P1),
and

¬ρt ⇒ pt

p1
t1 ∧ pt ⇒ pt

where ρ is the new task name for the procedure F ,
p1 is the new task name for the procedure P1, and
t1 is the meta-variable for time names such that
t1 ≤ t.

In fact, the above conversion directly explains the se-
mantics of a procedure in causal rules. Then we use
tr(T,P) to denote the set of causal rules: tr∗(P) and

pt ⇒ Tt

At last, with a slight abuse of the symbol, we use tr(∆)
to denote the set of causal rules combined with:

Π

tr(T,F) for each (T,F) ∈ F
tr(T,P) for each (T,P) ∈ P
¬T0∧·· ·∧¬Tn⇒⊥ for each T ∈ T



where time names of Π are 0, . . . ,n.
The following proposition shows that a causal

model of tr(∆) corresponds to a plan of ∆.

Proposition 1. Given a causal theory of an action do-
main with time names {0, . . . ,n}, a sequence of action
names 〈a1, . . . ,an〉 is a plan of an extended task plan-
ning problem ∆ w.r.t. the action domain, if and only
if, there exists a causal model S of tr(∆) such that for
each 1≤ i≤ n, the action-atom ai

i−1 occurs in S.

As discussed in Introduction, there are mainly two
difficulties in applying structured task instructions for
planning: Functional and procedural knowledge need
to be integrated in a uniform framework for com-
puting task plans, and indispensable details might
be missing between two successive steps in a proce-
dure. In our approach, both functional and procedural
knowledge are converted to causal rules, then they are
used in the uniform reasoning mechanism of causal
theories and worked together to compute plans for re-
quired tasks. On the other hand, if an action cannot be
executed in a procedure, then based on the formaliza-
tion of the action domain, some proper actions would
be automatically added to achieve preconditions of
the action and make the computed plan executable.

We have implemented a prototype of the sys-
tem for computing plans of extended task planning
problems and run experiments on many instructions5.
Again, ASP is used for computing causal models of
causal theories. (Ferraris, 2007) specified a polyno-
mial cost conversion from a causal theory to an ASP
program such that a causal model corresponds to an
answer set. In the prototype, an extended task plan-
ning problem ∆ is firstly converted to the causal the-
ory tr(∆), then tr(∆) is converted to its corresponding
ASP program whose answer sets are computed by a
sophisticated ASP solver iclingo. At last, plans of ∆

are extracted from these computed answer sets.

5 A CASE STUDY

In this section, we illustrate our approach of inte-
grating structured task instructions for planning on the
running example “Heat bread in microwave”. Given
the structured task instruction (F ,P ) described in
Section 3, we could create an extended task planning
∆ = (Π,{Heat(bread,micro)},F ,P ) where Π is the
causal theory for the action domain of the robot. In
particular, Π6 is a causal theory with action names:

5http://ai.ustc.edu.cn/en/robocup/atHome/
aspcontrol/

6A complete specification can be found at
http://ai.ustc.edu.cn/en/robocup/atHome/

• move(L): move to the location L.
• grasp(bread): grip the bread and picking it up.
• putdown(bread): put bread down.
• open(micro): open the door of the microwave.
• close(micro): close the door of micro.
• turnon(micro): turn on micro for two minutes.
• putin(bread,micro): put bread in micro.
• takeout(bread,micro): take bread out of micro.
• check(bread): check the temperature of bread.
• wait: wait for two minutes.

fluent names (some of them):
• location(X ,L): the object X is located at L.
• in(bread,micro): bread is in micro.
• isok(bread): temperature of bread is acceptable.

task names:
• Heat(bread,micro): heat bread in micro.
• Place(bread,micro): place bread in micro.

Initially, the robot, bread and microwave are lo-
cated at different places, i.e., location(robot,1),
location(bread,2), location(micro,3). The door of
micro is closed and bread needs to be heated three
times in micro to reach the required temperature.

As proposed in the previous section, the extended
task planning problem ∆ can be converted to a causal
theory tr(∆):

Π ∪ tr(Place(bread,micro), in(bread,micro))∪
tr(Heat(bread,micro), P)∪

{Heat(bread,micro)0∧·· ·∧Heat(bread,micro)n⇒⊥}
In particular, tr(Place(bread,micro), in(bread,micro))
contains the causal rule:

in(bread,micro)t ⇒ Place(bread,micro)t

where t is a meta-variable ranging over time names of
Π. tr(Heat(bread,micro), P) contains causal rules7:

¬p∗t ⇒¬p∗t
¬pw

t ⇒¬pw
t

¬pt ⇒¬pt

Place(bread,micro)t1 ∧ turnon(micro)t2

∧ check(bread)t3 ⇒ p∗t
isok(bread)t ⇒ pw

t

p∗t1 ∧ pw
t ⇒ pw

t

Place(bread,micro)t1 ∧ turnon(micro)t2

∧ check(bread)t3 ∧ pw
t4 ⇒ pt

aspcontrol/example.html.
7Due to the limit of space, these causal rules are slightly

simplified.



where p∗, pw, p are the new task names for cor-
responding procedures, and t1, t2, t3, t4 are meta-
variables for time names such that t1≤ t2≤ t3≤ t4≤ t.

Time names of Π are 0, . . . ,n. In practice, the last
time n is tested one by one from 1,2, . . . until tr(∆)
has a causal model. In the example, n = 27 and a
computed plan of ∆ is:

move(2), grasp(bread), move(3),
putdown(bread), open(micro), grasp(bread),

putin(bread,micro), close(micro), turnon(micro),
wait, open(micro), takeout(bread,micro), check(bread),

putin(bread,micro), close(micro), turnon(micro),
wait, open(micro), takeout(bread,micro), check(bread),

putin(bread,micro), close(micro), turnon(micro),
wait, open(micro), takeout(bread,micro), check(bread).

At the beginning, the procedure P requires the fluent
in(bread,micro) to be true, then based on the action
domain, the system computes a sub-plan to fulfill the
requirement:

move(2), grasp(bread), move(3), putdown(bread),
open(micro), grasp(bread), putin(bread,micro).

After that, the procedure turnon(micro);check(bread)
needs to be performed. However, both actions can-
not be executed directly as their preconditions are not
satisfied at the moment. Then the system fills the
missing details by respectively performing the action
close(micro) and the sequence of actions:

wait, open(micro), takeout(bread,micro).

In the loop procedure, as the environment has been
changed, the action putin(bread,micro) could be ex-
ecuted to accomplish the task Place(bread,micro).
Then the process continues until bread has been
heated in micro for three times. The above process
has been converted to the reasoning process of the
causal theory tr(∆) and executable plans of ∆ can be
extracted from corresponding causal models.

6 CONCLUSION

We present a formalization for structured task in-
structions which represents both functional and pro-
cedural knowledge of how to accomplish a task and
provide an approach for integrating these structured
instructions with robot’s built-in knowledge to com-
pute plans for tasks. The approach provides a basis
for allowing a robot to fulfill open-ended tasks using
knowledge obtained from web sources and/or through

natural human-robot communication. We have imple-
mented a prototype of the system and a case study is
reported on the effectiveness of the approach.

In our approach, both functional and procedural
knowledge are converted to causal rules, then they are
used in the uniform reasoning mechanism of causal
theories and worked together to compute plans for re-
quired tasks. Moreover, the approach could compute
executable plans when task instructions miss some in-
dispensable steps between two procedures. In par-
ticular, if an action cannot be executed in the pro-
cedure, the system would automatically add some
proper actions to satisfy preconditions of the action
which make the computed plan executable. Further-
more, the robot could add new knowledge during
the running process and use new knowledge to ful-
fill tasks without changing its decision-making algo-
rithm.
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