
Turner’s Logic of Universal Causation,
Propositional Logic, and Logic Programming

Jianmin Ji1 and Fangzhen Lin2

1 School of Computer Science and Technology
University of Science and Technology of China, Hefei, China

jianmin@ustc.edu.cn
2 Department of Computer Science and Engineering

The Hong Kong University of Science and Technology, Hong Kong
flin@cs.ust.hk

Abstract. Turner’s logic of universal causation is a general logic for
nonmonotonic reasoning. It has its origin in McCain and Turner’s causal
action theories which have been translated to propositional logic and
logic programming with nested expressions. In this paper, we propose to
do the same for Turner’s logic, and show thatTurner’s logic can actually
be mapped to McCain and Turner’s causal theories. These results can
be used to construct a system for reasoning in Turner’s logic.

1 Introduction

Turner’s logic of universal causation [17], called UCL, is a nonmonotonic modal
logic that generalizes McCain and Turner’s causal action theories [15]. The idea
is to use the modal operator C to specify the statement that a proposition is
“caused”. For instance, ψ ⊃ Cφ says that φ is caused whenever ψ obtains.

McCain and Turner’s causal action theories have been the basis for the se-
mantics of several expressive action languages, such as C and C+ [11,5]. They
have been translated to propositional logic and logic programming. Ferraris [2]
provided a translation from causal theories to disjunctive logic programs. Lee [9]
proposed a conversion from causal theories to propositional logic. In this paper,
we consider UCL, and show that UCL theories can be converted to propositional
theories. We also show that they can be converted to logic programs with nested
expressions in polynomial size with polynomial number of new variables. This
result improves and generalizes Turner’s linear and modular translation from a
fragment of UCL to disjunctive logic programs [17]. Furthermore we show that
both Ferraris and Lee’s translations are special cases of our translations, just as
McCain and Turner’s causal theories are special theories in UCL. Our motiva-
tion for this work is to use the translations to implement a system for computing
UCL theories via SAT solvers or ASP solvers, like the system CCalc3 for causal
theories.

3 http://www.cs.utexas.edu/∼tag/ccalc/.

2 Jianmin Ji and Fangzhen Lin

This paper is organized as follows. Section 2 reviews UCL and logic pro-
gramming. Section 3 shows how Turner’s logic can be mapped to propositional
logic. Section 4 considers mapping UCL theories to logic programs with nested
expressions. Section 5 outlines how the translations here are related to Ferraris
and Lee’s translations. Finally, Section 6 concludes this paper.

2 Preliminaries

2.1 Propositional languages

We assume a propositional language with two zero-place logical connectives >
for tautology and ⊥ for contradiction. We denote by Atom the set of atoms,
the signature of our language, and Lit the set of literals: Lit = Atom ∪ {¬a |
a ∈ Atom}. A set I of literals is called complete if for each atom a, exactly one
of {a,¬a} is in I. Given a literal l, the complement of l, written l̄ below, is ¬a
if l is a and a if l is ¬a, where a is an atom. For a set L of literals, we let
L = { l̄ | l ∈ L }.

In this paper, we identify an interpretation with a complete set of literals. If
I is a complete set of literals, we use it as an interpretation when we say that
it is a model of a formula, and we use it as a set of literals when we say that it
entails a formula.

2.2 Turner’s logic of universal causation

The language of Turner’s logic of universal causation (UCL) [17] is a modal
propositional language with a modal operator C. UCL formulas are propositional
formulas with unary modal operator C. A UCL theory is a set of UCL formulas.

The semantics of UCL is defined through causally explained interpretations.
A UCL structure is a pair (I,S) such that I is an interpretation, and S is
a set of interpretations to which I belongs. The truth of a UCL sentence in
a UCL structure is defined by the standard recursions over the propositional
connectives, plus the following two conditions:

(I,S) |= a iff I |= a (for any atom a)

(I,S) |= Cφ iff for all I ′ ∈ S, (I ′,S) |= φ

Given a UCL theory T , we write (I,S) |= T to mean that (I,S) |= φ, for every
φ ∈ T . In this case, we say that (I,S) is a model of T . We also say that (I,S) is
an I-model of T , emphasizing the distinguished interpretation I.

Let T be a UCL theory. An interpretation I is causally explained by T
if (I, {I}) is the unique I-model of T .

Note that, if there is a nested occurrence of C, the C that occurs in the range
of another C can be equivalently4 removed [17]. In the paper, we only consider
UCL formulas with no nested occurrences of C. A formula of the form Cφ, where
φ is a propositional formula, is called a C-atom. Then these UCL formulas are
constructed from C-atoms, propositional atoms and connectives.

4 In the sense that, two formulas have the same set of UCL models.

UCL, Propositional Logic and Logic Programming 3

2.3 Logic Programming

A nested expression is built from literals using the 0-place connectives > and ⊥,
the unary connective “not” and the binary connective “,” and “;”.

A logic program with nested expressions is a finite set of rules of the form
F ← G, where F and G are nested expressions.

The answer set of a logic program with nested expressions is defined as in [12].
Given a nested expression F and a set S of literals, we define when S satisfies
F , written S |= F below, recursively as follows (l is a literal and G is a nested
expression):

– S |= l if l ∈ S,
– S |= > and S 6|= ⊥,
– S |= not F if S 6|= F ,
– S |= F,G if S |= F and S |= G, and
– S |= F ;G if S |= F or S |= G.

S satisfies a rule F ← G if S |= F whenever S |= G. S satisfies a logic program
P , written S |= P , if S satisfies all rules in P .

The reduct PS of P related to S is the result of replacing every maximal
subexpression of P that has the form not F with ⊥ if S |= F , and with >
otherwise.

Let P be a logic program without not, the answer set of P is any minimal
consistent subset S of Lit that satisfies P . We use ΓP (S) to denote the set
of answer sets of PS . Now a consistent set S of literals is an answer set of P
iff S ∈ ΓP (S).

Every logic program with nested expressions can be equivalently translated
to disjunctive logic programs with disjunctive rules of the form

l1 ∨ · · · ∨ lk ← lk+1, . . . , lt, not lt+1, . . . , not lm, not not lm+1, . . . , not not ln,

where n ≥ m ≥ t ≥ k ≥ 0 and l1, . . . , ln are propositional literals. A disjunctive
logic program can be computed by disjunctive ASP solvers such as claspD [1],
DLV [10], GNT [7] and cmodels [6].

3 From Turner’s Logic of Universal Causation to
Propositional Logic

Before presenting the translation, we provide some notations. Given a UCL
formula F , let AtomC(F) = {φ | Cφ is a C-atom occurring in F }. Given a
UCL theory T , we let AtomC(T) =

⋃
F∈T AtomC(F).

We use trp(F) to denote the propositional formula obtained from the UCL
formula F by replacing each occurrence of a C-atom Cφ by a new propositional
atom aφ w.r.t. φ.

Given two propositional formulas φ and ψ, we use φψ to denote the proposi-
tional formula obtained from φ by replacing each occurrence of an atom a with
a new atom aψ w.r.t. ψ.

4 Jianmin Ji and Fangzhen Lin

The following proposition provides a specification of the propositional for-
mula whose models are related to models of a UCL theory.

Proposition 1. Let T be a UCL theory. A UCL structure (I,S) is a model of
T if and only if there exists a model I∗ of the propositional formula∧

F∈T
trp(F) ∧

∧
φ∈AtomC(T)

(aφ ⊃ φ)

∧
∧

ψ∈AtomC(T)

(¬aψ ∧ ψ) ⊃

 ∧
φ∈AtomC(T)

(aφ ⊃ φψ) ∧ ¬ψψ
 , (1)

such that I∗ ∩ Lit = I and for each φ ∈ AtomC(T), aφ ∈ I∗ iff S |= φ.

Proof. “⇒” (I,S) is a model of T , then I ∈ S. If S 6|= ψ and I |= ψ, then there
exists another interpretation I ′ ∈ S such that I ′ |= ¬ψ. Thus, we can create an
interpretation I∗ such that

I∗ = I∪{aφ | φ ∈ AtomC(T) and S |= φ}∪{¬aφ | φ ∈ AtomC(T) and S 6|= φ}

∪
⋃

ψ∈AtomC(T),S|=ψ

{lψ | l ∈ I} ∪
⋃

ψ∈AtomC(T),S6|=ψ,∃I′.I′∈S,I′|=¬ψ

{lψ | l ∈ I ′}.

Clearly, I∗ |= (1).
“⇐” I∗ |= T . Let I = I∗∩Lit and S = {I ′ | if I∗ |= aφ for some φ ∈ AtomC(T),

then I ′ |= φ}. Note that, I∗ |=
∧
φ∈AtomC(T)(aφ ⊃ φ), then I ∈ S. For each

φ ∈ AtomC(T), if I∗ |= aφ, then S |= φ; from (1), if I∗ |= ¬aφ, then there exists
an interpretation I ′ such that I ′ |= ¬ψ and for each ψ ∈ AtomC(T), I∗ |= aψ
implies I ′ |= ψ, thus I ′ ∈ S and S 6|= φ. Clearly, (I,S) |= T .

Intuitively, the formula

∧
ψ∈AtomC(T)

(¬aψ ∧ ψ) ⊃

 ∧
φ∈AtomC(T)

(aφ ⊃ φψ) ∧ ¬ψψ

specifies that for each UCL structure (I,S), if I |= ψ and S |= ¬Cψ, then there
exists an interpretation I ′ ∈ S such that I ′ |= ¬ψ.

In the following, we construct propositional formulas whose models are re-
lated to causally explained interpretations. First, we consider how to specify the
unique model of a propositional formula.

Given a propositional formula φ and a nonempty consistent set K of literals,
we denote by φ|K→⊥ the result of replacing each occurrence of an atom a in φ
by ⊥ if a ∈ K and > if ¬a ∈ K.

Lemma 1. Let φ be a propositional formula, K a nonempty consistent set of
literals, and an interpretation I ⊇ K. I 6|=

∧
l∈K l ⊃ ¬φ|K→⊥ if and only if the

interpretation (I \K) ∪K |= φ.

UCL, Propositional Logic and Logic Programming 5

Proof. Let I ′ = (I \K) ∪K.
“⇒” I 6|=

∧
l∈K l ⊃ ¬φ|K→⊥, then I |= φ|K→⊥. Note that, atoms occurring

in K do not occur in φ|K→⊥, then I ′ |= φ|K→⊥, furthermore, I ′ |= K, thus
I ′ |= φ.

“⇐” I ′ |= φ and I ′ |= K, then I ′ |= φ|K→⊥, thus I |= φ|K→⊥. Note that
K ⊆ I, then I 6|=

∧
l∈K l ⊃ ¬φ|K→⊥.

To avoid influence of auxiliary atoms, we introduce the notion of forgetting
provided by Lin and Reiter [14].

Definition 1. Let φ be a propositional formula and S a set of atoms. forget(φ;S)
is the formula inductively defined as follows:

– forget(φ; ∅) = φ,
– forget(φ; {a}) = φ|{a}→⊥ ∨ φ|{¬a}→⊥,
– forget(φ; {a} ∪ S) = forget(forget(φ;S), {a}).

Lemma 2 (Theorem 4 in [14]). Let φ be a propositional formula and S a
set of atoms. An interpretation I |= forget(φ;S) if and only if there exists an
interpretation I ′ |= φ such that I \ S ∪ S = I ′ \ S ∪ S.

Directly from Lemma 1 and 2, we have the following lemma.

Lemma 3. Let φ be a propositional formula, K a nonempty consistent set
of literals, S a set of atoms, and an interpretation I ⊇ K. I 6|=

∧
l∈K l ⊃

¬forget(φ;S)|K→⊥ if and only if there exists an interpretation I ′ |= φ such that(
(I \ S ∪ S) \K

)
∪K = I ′ \ S ∪ S.

Given a propositional formula φ, we use φ̂ to denote the propositional formula
obtained from φ by replacing each occurrence of an atom a in φ by a new atom â.
For a set L of literals, we let L̂ = {l̂ | l ∈ L}. We use Lita to denote the set of
literals formed from new atoms of the form aφ and Atom∗ the set of atoms of
the form aψ w.r.t. ψ in (1).

Theorem 1. Let T be a UCL theory. An interpretation I is causally explained
by T if and only if there exists a model I∗ of the propositional formula

(1) ∧
∧

φ∈AtomC(T)

(aφ ⊃ φ̂)

∧
∧

A⊆Lita
A is nonempty and consistent

(∧
la∈A

la ⊃ ¬ forget
(
(1);Atom∗

)∣∣
A→⊥

)

∧
∧

K⊆Lit
K is nonempty and consistent

 ∧
l∈K

l̂ ⊃ ¬
∧

φ∈AtomC(T)

(aφ ⊃ φ̂)
∣∣∣
K̂→⊥

 , (2)

such that I∗ ∩ Lit = I.

6 Jianmin Ji and Fangzhen Lin

Proof. “⇒” I is causally explained by T , then (I, {I}) is the unique I-model of
T . We can create an interpretation I∗ such that

I∗ = I∪{aφ | φ ∈ AtomC(T) and I |= φ}∪{¬aφ | φ ∈ AtomC(T) and I 6|= φ}

∪
⋃

ψ∈AtomC(T)

{lψ | l ∈ I} ∪ {l̂ | l ∈ I}.

From Proposition 1, I∗ |= (1) ∧
∧
φ∈AtomC(T)(aφ ⊃ φ̂).

If I∗ 6|=
∧
la∈A la ⊃ ¬ forget

(
(1);Atom∗

)∣∣
A→⊥ for some nonempty consistent

set A ⊆ Lita, similar to the proof of Lemma 3, then these exists another inter-
pretation I∗′ such that ((I∗ \Atom∗ ∪Atom∗) \A) ∪A = I∗′ \Atom∗ ∪Atom∗
and I∗′ |= (1). From Proposition 1, there exists another set S ′ of interpretations
such that S ′ 6= {I}, I ∈ S ′ and (I,S ′) is an I-model of T , which conflicts to the
condition that (I, {I}) is the unique I-model of T .

If I∗ 6|=
∧
l∈K l̂ ⊃ ¬

∧
φ∈AtomC(T) (aφ ⊃ φ̂)

∣∣∣
K̂→⊥

for some nonempty consis-

tent setK ⊆ Lit, similar to the proof of Lemma 1, then there exists another inter-

pretation I∗′ such that I∗′ = (I∗\K̂)∪K̂ and I∗′ |= (1)∧
∧
φ∈AtomC(T)(aφ ⊃ φ̂).

From Proposition 1, there exists another interpretation I ′ such that (I, {I, I ′}) |=
T , which conflicts to the condition that (I, {I}) is the unique I-model of T , thus
I∗ |= (2).

“⇐” I∗ |= (2). Let I = I∗ ∩Lit, if there exists another UCL structure (I,S)
such that (I,S) |= T and S 6= {I}, then there are two cases: 1. there exists
φ ∈ AtomC(T) such that I |= φ and S 6|= φ; 2. for each φ ∈ AtomC(T), I |= φ if
and only if S |= φ.

For case 1, let A = {aφ | φ ∈ AtomC(T), I |= φ,S 6|= φ}, then I∗ |=
∧
la∈A la

and I∗ |= forget
(
(1);Atom∗

)∣∣
A→⊥, which conflicts to the condition that I∗ |=

(2), thus it is impossible.

For case 2, let I ′ ∈ S and I ′ 6= I, then for each φ ∈ AtomC(T), I∗ |= aφ
implies I ′ |= φ, thus there exists K = I \ I ′ such that I∗ |=

∧
l∈K l̂ and I∗ |=∧

φ∈AtomC(T) (aφ ⊃ φ̂)
∣∣∣
K̂→⊥

, which conflicts to the condition that I∗ |= (2). So I

is the only interpretation that satisfies {φ ∈ AtomC(T) | I∗ |= aφ}, then (I, {I})
is the unique I-model of T .

Note that, the size of formula (2) is exponential increased from T , as the
number of all possible nonempty consistent sets of literals is 3n, where n is the
number of atoms. In fact, we only need to consider a subset of these sets. Details
are proposed in Section 5.3.

As a simple example, given the UCL theory T = {C(p∨ q), Cp ⊃ Cq, Cq ⊃
Cp}, from the definition of (1), we obtain the following propositional formula:

ap∨q ∧ (ap ≡ aq) ∧ (p ∨ q) ∧ (ap ⊃ p) ∧ (aq ⊃ q)∧(
(¬ap ∧ p) ⊃ (¬p2 ∧ q2)

)
∧
(
(¬aq ∧ q) ⊃ (¬q3 ∧ p3)

)
(3)

UCL, Propositional Logic and Logic Programming 7

From the definition of (2), we obtain the following formula5

(3) ∧
(
ap∨q ⊃ (p̂ ∨ q̂)

)
∧ (ap ⊃ p̂) ∧ (aq ⊃ q̂)

∧
(
ap ⊃ ¬(¬aq)

)
∧
(
aq ⊃ ¬(¬ap)

)
∧
(
(ap ∧ aq) ⊃ ⊥

)
∧
(
¬ap ⊃ ¬(aq ∧ p ∧ q)

)
∧
(
¬aq ⊃ ¬(ap ∧ p ∧ q)

)
∧
(
¬ap ∧ ¬aq ⊃ ¬(p ∧ q)

)
∧
(
p̂ ⊃ ¬((ap∨q ⊃ q̂) ∧ ¬ap ∧ (aq ⊃ q̂))

)
∧
(
q̂ ⊃ ¬((ap∨q ⊃ p̂) ∧ (ap ⊃ p̂) ∧ ¬aq)

)
∧
(
¬p̂ ⊃ ¬(aq ⊃ q̂)

)
∧
(
¬q̂ ⊃ ¬(ap ⊃ p̂)

)
where p̂ and q̂ are new atoms. The formula implies that

ap∨q ∧ p̂ ∧ q̂ ∧ ap ∧ aq ∧ p ∧ q ∧ ((ap ∧ aq) ⊃ ⊥)

which is inconsistent. From Theorem 1, there does not exist an interpretation I
such that I is causally explained by the UCL theory T .

4 From Turner’s Logic of Universal Causation to Logic
Programming

Formula (2) in propositional logic is complex, as it needs to include constraints
to make it satisfied by a “unique model”. The problem becomes easier when
we consider logic programming. Based on the propositional formula (1), we can
translate a UCL theory T to a logic program with nested expressions.

Note that, every propositional formula φ can be equivalently translated to
CNF as

(l11 ∨ · · · ∨ l1n1) ∧ · · · ∧ (lm1 ∨ · · · ∨ lmnm), (4)

where l11, . . . , l
m
nm are literals.

For any propositional formula, we can convert it to the nested expression by
replacing each ∧ with a comma, each ∨ with a semicolon and ¬ with not.

Given a UCL theory T , we use trne(T) to denote the nested expression ob-
tained from (1). We use Atom′ to denote the set of atoms that occur in (1)
but not in Atom. Now we define trlp(T) to be the logic program containing
⊥ ← not trne(T), the following rules for each φ ∈ AtomC(T) whose CNF is in
the form of (4)

l11; . . . ; l1n1 ← not not aφ, (l̄
1
1;not l̄11), . . . , (l̄1n1 ;not l̄1n1),

· · ·
lm1 ; . . . ; lmnm ← not not aφ, (l̄

m
1 ;not l̄m1), . . . , (l̄mnm ;not l̄mnm),

and

a′;¬a′ ← >, (for each a′ ∈ Atom′).

5 The formula is simplified due to Theorem 5 in Section 5.3.

8 Jianmin Ji and Fangzhen Lin

Lemma 4. Let T be a UCL theory and I and J two interpretations. (I, {I, J}) |=
T if and only if there exists a set S of literals occurring in trlp(T) such that
S |= (trlp(T))S∪I and S ∩ Lit = I ∩ J .

Proof. “⇒” (I, {I, J}) |= T . Similar to the proof of Proposition 1, we can create
an interpretation I∗ such that I∗ ∩Lit = I and I∗ |= (1). Note that, (trlp(T))I

∗

contains rules of the form

l1; . . . ; ln ←
,

l ∈ {l1, . . . , ln}, l̄ ∈ I
l̄, (5)

where I∗ |= aφ for corresponding φ ∈ AtomC(T).
Note that, {I, J} |= φ, I |= l1 ∨ · · · ∨ ln and J |= l1 ∨ · · · ∨ ln. Consider the

case, for each literal l ∈ {l1, . . . , ln}, l̄ ∈ I implies l̄ ∈ I ∩ J , then there exists
literal l ∈ {l1, . . . , ln} and l ∈ J such that l ∈ I (if not, l̄ ∈ I which implies
l̄ ∈ J), thus (I ∩ J) |= (5).

We denote S = (I∗ \ I) ∪ (I ∩ J). Clearly, S |= (trlp(T))S∪I .
“⇐” S |= (trlp(T))S∪I and S∩Lit = I ∩J . (trlp(T))S∪I contains rules of (5)

and S |= aφ for corresponding φ ∈ AtomC(T).
Note that I ∩ J |= (5), then I ∩ J |= l1 ∨ · · · ∨ ln whenever l̄ ∈ I ∩ J for

all l̄ ∈ I and l ∈ {l1, . . . , ln}. If J 6|= l1 ∨ · · · ∨ ln, then there exists l̄ ∈ I and
l̄ /∈ I ∩ J , thus l̄ /∈ J and l ∈ J which conflicts to J 6|= l1 ∨ · · · ∨ ln. So J |= φ,
from Proposition 1, (I, {I, J}) |= T .

Theorem 2. Let T be a UCL theory. An interpretation I is causally explained
by T if and only if there exists an answer set S of the logic program trlp(T)∪{⊥ ←
not a, not¬a | a ∈ Atom}, such that S ∩ Lit = I.

Proof. I is causally explained by T means that (I, {I}) is the unique I-model
of T . From Lemma 4, this is equivalent to the condition, for every set S of
literals occurring in trlp(T) and interpretation J such that S |= (trlp(T))S∪I ,
S ∩ Lit = I ∩ J iff J = I. This means that there exists an answer set S of
trlp(T) ∪ {⊥ ← not a, not¬a | a ∈ Atom} such that S ∩ Lit = I.

5 Related Work

5.1 Turner’s Conversion from a Fragment of UCL to Disjunctive
Logic Programming

Turner [17] proposed a simple translation from a subset of UCL theories to
disjunctive logic programs [3] via disjunctive default logic [4].

Turner’s translation considers the UCL formula of the form

C(l1 ∧ · · · ∧ lk) ∧ lk+1 ∧ · · · ∧ lm ⊃ Clm+1 ∨ · · ·Cln, (6)

where l1, . . . , ln are literals.
A UCL formula of the form (6) is translated to the disjunctive rule

lm+1 ∨ · · · ∨ ln ← l1, . . . , lk, not l̄k+1, . . . , not l̄m.

UCL, Propositional Logic and Logic Programming 9

It has been proved that, given a set T of UCL formulas in the form (6), an
interpretation I is an answer set of the corresponding disjunctive logic program
if and only if I is causally explained by T .

When every formula in range of C is a literal, our translation seems more
complex than Turner’s translation. However, some steps in the translation can
also be simplified. Consider the following proposition proposed in [2].

Proposition 2 (Proposition 1 in [2]). For any literal l and any nested ex-
pression F , the one-rule logic program

l← F, (l̄;not l̄)

is strongly equivalent to l← F .

5.2 Ferraris’s Translation from Causal Theories to Logic Programs

Ferraris [2] proposed a translation from McCain and Turner’s causal theories [15]
to logic programs with nested expressions. As causal theories can be easily con-
verted into UCL, we show that Ferraris’s translation is a special case of our
translation proposed in Section 4. First, we briefly review causal theories and
Ferraris’s translation, then we consider the relation to our translation.

A causal theory according to McCain and Turner [15] is a set of causal laws
of the following form

ψ ⇒ φ, (7)

where φ and ψ are propositional formulas.
Ferraris’s translation converts the causal law

ψ ⇒ l1 ∨ · · · ∨ ln, (8)

to the rule

l1; . . . ; ln ← not not ψne, (l̄1;not l̄1), . . . , (l̄n;not l̄n),

where ψne stands for the nested expression of ψ. Theorem 1 in [2] proved that
models of a set of causal laws in the form (8) are identical to complete answer
sets of the corresponding logic programs.

According to Turner [17], a causal law of the form (7) can be translated to
his logic as

ψ ⊃ Cφ. (9)

Thus given our translation from Turner’s logic to logic programming, we have
a translation from McCain and Turner’s causal theory to logic programming as
well.

A UCL formula of the form (9) is called regular. A regular UCL theory is a
set of regular UCL formulas.

Note that, when T is a regular UCL theory, formula (1) in Proposition 1 can
be simplified to ∧

F∈T
trp(F) ∧

∧
φ∈AtomC(T)

(aφ ⊃ φ). (10)

10 Jianmin Ji and Fangzhen Lin

Proposition 3. Let T be a regular UCL theory. A UCL structure (I,S) is a
model of T if and only if there exists a model I∗ of formula (10) such that
I∗ ∩ Lit = I and for each φ ∈ AtomC(T), aφ ∈ I∗ iff S |= φ.

Based on Proposition 3, the translation in Section 4 can also be simplified.
Given a regular UCL theory T , we use tr′ne(T) to denote the nested expression
obtained from (10). We define tr′lp(T) the same as trlp(T) except trne(T) is
replaced by tr′ne(T).

Theorem 3. Let T be a regular UCL theory. An interpretation I is causally
explained by T if and only if there exists an answer set S of the logic program
tr′lp(T) ∪ {⊥ ← not a, not¬a | a ∈ Atom}, such that S ∩ Lit = I.

It is easy to find out that, for regular UCL theory T , tr′lp(T) is equivalent to
the result of Ferraris’s translation.

Our translation in Section 4 can also be specified by Ferraris’s translation.
First, a UCL theory can be converted to a regular UCL theory.

Theorem 4. Let T be a UCL theory. An interpretation I is causally explained
by T if and only if I is causally explained by the regular UCL theory with following
formulas

(1),

aφ ⊃ Cφ, (for each φ ∈ AtomC(T))

a′ ⊃ Ca′, ¬a′ ⊃ C¬a′. (for each a′ ∈ Atom′)

Then we can use Ferraris’s translation turning the regular UCL theory in the
above theorem to a logic program with nested expressions.

5.3 Lee’s Translation from Causal Theories to Propositional
Theories with Loop Formulas

Lee [9] proposed a translation from McCain and Turner’s causal theories to
propositional theories with loop formulas. In this section, we show that we can
also define so called “loop formulas” for our translation in Section 3 and Lee’s
translation would be a special case.

Given a set Π of propositional clauses, i.e. disjunctions of literals, the depen-
dency graph of Π is the directed graph GΠ such that

– the vertices of GΠ are literals in Π, and
– for any two vertices l1, l2, there is an edge from l1 to l2 if there is a clause
C ∈ Π such that l1 and l2 are in C.

A nonempty consistent set L of literals is called a loop of Π if for any literals
l1 and l2 in L, there is a path from l1 to l2 in GΠ such that all the vertices
in the path are in L, i.e. the L-induced subgraph of GΠ is strongly connected.
Specially, the singleton set {l} for every literal l ∈ Lit is a loop. We use Loop(Π)
to denote the set of all loops of Π.

UCL, Propositional Logic and Logic Programming 11

The loop formula associated with a loop L under a set Π of propositional
clauses, denoted by LF (Π,L), is a sentence of the form:∧

l∈L

l ⊃ ¬
∧
C∈Π

C|L→⊥ .

We can simplify the translation from UCL to propositional logic by loops.

Proposition 4. Let Π be a set of propositional clauses,

∧
C∈Π

C ∧
∧

L∈Loop(Π)

LF (Π,L) ⊃
∧
C∈Π

C ∧
∧

K⊆Lit
K is nonempty
and consistent

(∧
l∈K

l ⊃ ¬
∧
C∈Π

C|K→⊥

)
.

Proof. Let L ∈ Loop(Π), K a nonempty consistent set of literals s.t. L ⊆ K,
and there does not exist an edge of GΠ from a literal in L to a literal in K \ L.

There does not exist an edge of GΠ from a literal in L to a literal in K \ L,
then there does not exist a clause C in Π of the form

l1 ∨ · · · ∨ ln

such that li ∈ L and lj ∈ K \ L for some 1 ≤ i, j ≤ n. Thus, if C ∈ Π and
C ∩ L 6= ∅, then C ∩ (K \ L) = ∅.

For each clause C ∈ Π, as L ⊆ K, there are three different cases.
Case 1, L∩C = ∅. If L∩C 6= ∅, then K∩C 6= ∅, thus ¬C|L→⊥ ≡ ¬C|K→⊥ ≡

⊥. If L ∩ C = ∅, then ¬C|L→⊥ ≡ ¬C, thus C ∧ LF ({C}, L) ⊃ C ∧ (
∧
l∈K l ⊃

¬C|K→⊥).
Case 2, L ∩ C 6= ∅, L ∩ C = ∅, and K ∩ C = ∅. From the above condition,

C ∩ (K \ L) = ∅, then ¬C|L→⊥ ≡ ¬C|K→⊥.
Case 3, K∩C 6= ∅. Then ¬C|K→⊥ ≡ ⊥, thus C∧LF ({C}, L) ⊃ C∧(

∧
l∈K l ⊃

¬C|K→⊥).
Based on the above results,

∧
C∈Π

C ∧ LF (Π,L) ⊃
∧
C∈Π

C ∧

(∧
l∈K

l ⊃ ¬
∧
C∈Π

C|K→⊥

)
.

In addition, for every nonempty consistent set K of literals, there always exists
a loop L ⊆ K such that there does not exist an edge of GΠ from a formula in L
to a formula in K \ L. So the proposition is proved.

Given a UCL theory T , with a slight abuse of notations, we use Loop(T)
to the set of loops of the set of clauses which are in CNF of φ ∈ AtomC(T).
Similarly, we use Loopa(T) to the set of loops of the set of clauses which are in
CNF of (1).

Theorem 5. Let T be a UCL theory. An interpretation I is causally explained
by T if and only if there exists a model I∗ of the propositional formula

12 Jianmin Ji and Fangzhen Lin

(1) ∧
∧

φ∈AtomC(T)

(aφ ⊃ φ̂)

∧
∧

A⊆Lita, A∈Loopa(T)

(∧
la∈A

la ⊃ ¬ forget
(
(1);Atom∗

)∣∣
A→⊥

)

∧
∧

L∈Loop(T)

∧
l∈L

l̂ ⊃ ¬
∧

φ∈AtomC(T)

(aφ ⊃ φ̂)
∣∣∣
L̂→⊥

 , (11)

such that I∗ ∩ Lit = I.

Similar to the discussion in the previous section, when T is a regular UCL
theory, the above theorem can be simplified.

Theorem 6. Let T be a regular UCL theory. An interpretation I is causally
explained by T if and only if there exists a model I∗ of the propositional formula∧

F∈T
trp(F) ∧

∧
φ∈AtomC(T)

(aφ ⊃ φ) ∧
∧

φ∈AtomC(T)

(aφ ⊃ φ̂)

∧
∧

L∈Loop(T)

∧
l∈L

l̂ ⊃ ¬
∧

φ∈AtomC(T)

(aφ ⊃ φ̂)
∣∣∣
L̂→⊥

 , (12)

such that I∗ ∩ Lit = I.

When each formula in the range of C is a clause in the regular UCL theory T ,
comparing the above theorem with Theorem 1 in [9], it is easy to find out that
formula (12) corresponds to DR(T) ∪ CLC(T) in Lee’s Theorem.

6 Conclusion

We have provided translations from Turner’s logic of universal causation to
propositional logic and logic programming. These translations generalize the
respective translations by Ferraris and Lee for McCain and Turner’s causal the-
ories. Our next step is to use these results to implement Turner’s logic using
SAT and ASP solvers.

It is worth mentioning here that our results in this paper can also be used to
map Turner’s logic to fixed-point nonmonotonic logics such as default logic [16]
and Lin and Shoham’s logic of GK [13,8].

Acknowledgments. This work had been supported by the National Hi-Tech
Project of China under grant 2008AA01Z150, the Natural Science Foundation of
China under grant 60745002 and 61175057, the USTC Key Direction Project, the
Fundamental Research Funds for the Central Universities, the Youth Innovation
Fund of USTC, and HK RGC GRF 616909 . We thank the anonymous reviewers
for their valuable comments on an earlier version of the paper.

UCL, Propositional Logic and Logic Programming 13

References

1. Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M.,
Schaub, T.: Conflict-Driven Disjunctive Answer Set Solving. In: Brewka, G., Lang,
J. (eds.) Proceedings of the 11th International Conference on Principles of Knowl-
edge Representation and Reasoning (KR-08). pp. 422–432. AAAI Press, Menlo
Park, CA, USA (2008)

2. Ferraris, P.: A logic program characterization of causal theories. In: Proceedings of
the 20th International Joint Conference on Artificial Intelligence (IJCAI-07). pp.
366–371 (2007)

3. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Comput. 9(3/4), 365–386 (1991)

4. Gelfond, M., Lifschitz, V., Przymusińska, H., Truszczyński, M.: Disjunctive De-
faults. In: Allen, J.F., Fikes, R., Sandewall, E. (eds.) Proceedings of the 2nd In-
ternational Conference on Principles of Knowledge Representation and Reasoning
(KR-91). pp. 230–237. Morgan Kaufmann, San Fransisco, CA, USA (1991)

5. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal
theories. Artificial Intelligence 153(1-2), 49–104 (2004)

6. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer Set Programming Based on
Propositional Satisfiability. J. Autom. Reasoning 36(4), 345–377 (2006)

7. Janhunen, T., Niemelä, I.: GnT – A Solver for Disjunctive Logic Programs. In:
Lifschitz, V., Niemelä, I. (eds.) Proceedings of the 7th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR-04). pp. 331–335.
Springer-Verlag, Berlin, Heidelberg (2004), lNAI 2923

8. Ji, J., Lin, F.: From Turner’s Logic of Universal Causation to the Logic of GK. In:
Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.) Correct Reasoning. Lecture Notes
in Computer Science, vol. 7265, pp. 380–385. Springer (2012)

9. Lee, J.: Nondefinite vs. definite causal theories. In: Proceedings of the 7th Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-
04). pp. 141–153 (2004)

10. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The DLV system for knowledge representation and reasoning. ACM Transactions
on Computational Logic 7(3), 499–562 (2006)

11. Lifschitz, V.: Action languages, answer sets and planning. In: The Logic Program-
ming Paradigm: a 25-Year Perspective, pp. 357–373. Springer Verlag (1999)

12. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals
of Mathematics and Artificial Intelligence 25(3-4), 369–389 (1999)

13. Lin, F., Shoham, Y.: A logic of knowledge and justified assumptions. Artificial
Intelligence 57(2-3), 271–289 (1992)

14. Lin, F., Reiter, R.: Forget it. In: Working Notes of AAAI Fall Symposium on
Relevance. pp. 154–159 (1994)

15. McCain, N., Turner, H.: Causal theories of action and change. In: Proceedings of
the 14th National Conference on Artificial Intelligence (AAAI-97). pp. 460–465
(1997)

16. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)
17. Turner, H.: Logic of universal causation. Artificial Intelligence 113(1), 87–123

(1999)

