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Abstract. Logic of knowledge and justified assumptions, also known as
logic of grounded knowledge (GK), was proposed by Lin and Shoham as
a general logic for nonmonotonic reasoning. To date, it has been used
to embed in it default logic, autoepistemic logic, and general logic pro-
gramming under stable model semantics. Besides showing the generality
of GK as a logic for nonmonotonic reasoning, these embeddings shed light
on the relationships among these other logics. Along this line, we show
that Turner’s logic of universal causation can be naturally embedded into
logic of GK as well.

1 Introduction

Lin and Shoham [4] proposed a logic with two modal operators K and A, stand-
ing for knowledge and assumption, respectively. The idea is that one starts with
a set of assumptions (those true under the modal operator A), computes the
minimal knowledge under this set of assumptions, and then checks to see if the
assumptions were justified in that they agree with the resulting minimal knowl-
edge. For instance, consider Ap ⊃ Kp. If one assumes p, then one can conclude
Kp, thus the assumption that p holds is justified, and one gets a GK model
where both Ap and Kp are true. However, there is no GK model of ¬Ap ≡ Kp
as one cannot deduce Kp when assuming p but gets Kp when not assuming p.

To date, there have been embeddings from default logic [13] and autoepis-
temic logic [12] to the logic of GK [4], as well as from general logic programs [2,
3] to logic of GK [5]. Among others, these embeddings shed new lights on non-
monotonic reasoning, and have led to an interesting characterization of strong
equivalence in logic programming [7, 5], and helped relate logic programming to
circumscription [4] as the semantics of GK is just a minimization together with
an identity checking after the minimization. Here we add to this repertoire by
providing an embedding from Turner’s logic of universal causation [14] to logic
of GK.

This paper is organized as follows. Section 2 reviews logic of GK and Turner’s
logic. Section 3 shows how Turner’s logic can be embedded in GK. Finally,
Section 4 concludes this paper.
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2 Preliminaries

2.1 Propositional languages

We assume a propositional language with two zero-place logical connectives >
for tautology and ⊥ for contradiction. We denote by Atoms the set of atoms,
the signature of our language, and Lit the set of literals: Lit = Atoms ∪ {¬a |
a ∈ Atoms}. A set I of literals is called complete if for each atom a, exactly one
of {a,¬a} is in I.

In this paper we identify an interpretation with a complete set of literals.
Thus if I is a complete set of literals, we use it as an interpretation when we say
that it is a model of a formula, and we use it as a set of literals when we say
that it entails a formula. In particular, we denote by Th(I) the logical closure
of I (considered to be a set of literals).

2.2 The logic of GK

The language of GK proposed by Lin and Shoham [4] is a modal propositional
language with two modal operators, K, for knowledge, and A, for assumption.
GK formulas are propositional formulas with K and A. A GK theory is a set of
GK formulas.

GK is a nonmonotonic logic, and its semantics is defined using the standard
Kripke possible world interpretations. Informally speaking, a GK model is a
Kripke interpretation where what is true under K is minimal and exactly the
same as what is true under A. The intuition here is that given a GK formula,
one first makes some assumptions (those true under A), then one minimizes
the knowledge thus entailed, and finally checks to make sure that the initial
assumption is justified in the sense that the minimal knowledge is the same as
the initial assumption.

Formally, a Kripke interpretationM is a tuple 〈W,π,RK , RA, s〉, where W is
a nonempty set of possible worlds, π a function that maps a possible world to an
interpretation, RK and RA binary relations over W representing the accessibility
relations for K and A, respectively, and s ∈W , called the actual world of M . The
satisfaction relation |= between a Kripke interpretation M = 〈W,π,RK , RA, s〉
and a GK formula F is defined in a standard way as follows:

– M 6|= ⊥,
– M |= a if a ∈ π(s), where a is an atom,
– M |= ¬F iff M 6|= F ,
– M |= F ∧G iff M |= F and M |= G,
– M |= F ∨G iff M |= F or M |= G,
– M |= F ⊃ G iff M 6|= F or M |= G,
– M |= KF iff 〈W,π,RK , RA, ω〉 |= F for any ω ∈W , such that (s, ω) ∈ RK ,
– M |= AF iff 〈W,π,RK , RA, ω〉 |= F for any ω ∈W , such that (s, ω) ∈ RA.

Note that, for any ω ∈ W , π(ω) is an interpretation. We say that a Kripke
interpretation M is a model of a GK formula F if M satisfies F , M is a model
of a GK theory T if M satisfies every GK formula in T .
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The modal logic that we have just defined corresponds to K [1], with two
independent modal operators K and A. In the following, we write T |= ϕ if the
modal formula ϕ is entailed by T in K.

In the following, given a Kripke interpretation M , we let

K(M) = {φ | φ is a propositional formula and M |= Kφ },
A(M) = {φ | φ is a propositional formula and M |= Aφ }.

Notice that K(M) and A(M) are always closed under classical logical entailment.
Given a GK formula T , a Kripke interpretation M is a minimal model of T

if M is a model of T and there does not exist another model M1 of T such that
A(M1) = A(M) and K(M1) ⊂ K(M). We say that M is a GK model of T if M
is a minimal model of T and K(M) = A(M).

We consider only a special kind of GK formulas. An A-atom is a formula of
the form Aφ and a K-atom is a formula of the form Kφ, where φ is a proposi-
tional formula. An A-literal (K-literal) is an A-atom (K-atom) or the negation
of it. Both A-atoms and K-atoms are called GK-atoms. A GK-literal is a GK-
atom or the negation of a GK-atom. A GK formula is called a pure GK formula if
it is formed from GK-atoms and propositional connectives. A pure GK theory is
a set of pure GK formulas. Similarly, a K-formula is a GK formula formed from
K-atoms and propositional connectives and a K-theory is a set of K-formulas.
Note that there is no nested occurrences of modal operators in pure GK theories
or K-theories.

So far in the applications of GK, only pure GK formulas are used. For in-
stance, a (propositional) default theory ∆ = (W,D) is translated into pure GK
formulas in the following way:

1. Translate each φ ∈W to Kφ.
2. Translate each default (φ : ψ1, . . . , ψn/ϕ) ∈ D to

Kφ ∧ ¬A¬ψ1 ∧ · · · ∧ ¬A¬ψn ⊃ Kϕ ∈ ∆GK .

Similarly, a disjunctive logic program rule

p1 ∨ · · · ∨ pk ← pk+1, . . . , pt, not pt+1, . . . , not pm,

where p’s are atoms, corresponds to the following pure GK formula:

Kpk+1 ∧ · · · ∧Kpt ∧ ¬Apt+1 ∧ · · · ∧ ¬Apm ⊃ Kp1 ∨ · · · ∨Kpk.

In this paper, we show how Turner’s logic of universal causation can be
embedded in GK.

2.3 Turner’s logic of universal causation

Turner’s logic of universal causation [14], called UCL, is a nonmonotonic modal
logic that generalizes McCain and Turner’s causal action theories [9]. We first
briefly review it here and then show how it can be embedded in GK.



4 Jianmin Ji and Fangzhen Lin

The language of UCL is a modal propositional language with one modal
operator C. Semantically, a UCL structure is a pair (I,S), where S is a set of
interpretations, and I ∈ S. The satisfaction relation between UCL sentences and
UCL structures is defined as follows:

(I,S) |= a iff I |= a (for any atom a)

(I,S) |= Cφ iff for all I ′ ∈ S, (I ′,S) |= φ

and the usual definition of propositional connectives.
Given a UCL theory T , we write (I,S) |= T to mean that (I,S) |= φ, for

every φ ∈ T . In this case, (I,S) is said to be a model of T . We also say that
(I,S) is an I-model of T , emphasizing the distinguished interpretation I.

The semantics of UCL is defined by so-called causally explained interpreta-
tions: an interpretation I is causally explained by a theory T if (I, {I}) is the
unique I-model of T .

Notice that this semantics is language-sensitive. For example, assuming that
p is the only atom in the language, Cp has a unique causally explained model
{p}. However, if there is another atom, say q, then Cp has no causally explained
models.

It is easy to see that under this definition, for any theory T , I is causally
explained by T iff it is causally explained by the theory obtained from T by
removing all occurrences of C that are under the scope of another C. Thus, in
the rest of the paper, we consider only UCL formulas that do not have a nested
occurrence of C.

3 Embedding Turner’s logic of universal causation to GK

Now we show that Turner’s logic can be embedded into GK by providing a
translation from UCL theories to pure GK theories.

Given a UCL formula F without nested occurrences of C, let trGK(F ) be
the pure GK formula obtained from F by replacing every occurrence of C by
K and adding A before each atom which is not in the range of C in F . Given
a UCL theory T , let trGK(T ) = { trGK(F ) | F ∈ T }. For example, if F is
(a ∧ ¬b) ⊃ C(a ∧ ¬b), then trGK(F ) is (Aa ∧ ¬Ab) ⊃ K(a ∧ ¬b).

Given that causally explained interpretations depend on the underlying lan-
guage used but GK models do not, it is clear that our translation from UCL to
GK needs to have a language dependent component as well. In the following, if
Atoms is the set of atoms in the language, we let

trGK(Atoms) = {Aa ∨A¬a | a ∈ Atoms}.

Our following result shows that in GK, trGK(T )∪trGK(Atoms) captures causally
explained interpretations of T .

Theorem 1. Let T be a UCL theory. If I is a causally explained interpretation
of T , then there exists a GK model M of trGK(T ) ∪ trGK(Atoms) such that
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A(M) = Th(I). Conversely, ifM is a GK model of trGK(T )∪trGK(Atoms), then
some interpretation I, A(M) = K(M) = Th(I), and I is a causally explained
interpretation of T .

Proof. Given a pure GK theory T ′, if M is a model of T ′ ∪ trGK(Atoms), then
A(M) = Th(I) for some interpretation I.

Given a UCL structure (I,S), we can always create a Kripke interpretation
M such that A(M) = Th(I) and K(M) =

⋂
I′∈S Th(I ′). Note that I ∈ S,

thus K(M) ⊆ A(M), if {I} ⊂ S, then K(M) ⊂ A(M). From the definition of
trGK(T ), if (I,S) is a model of T , then M is a model of trGK(T ).

Given a Kripke interpretation M such that A(M) = Th(I) for some inter-
pretation I and K(M) ⊆ A(M), we can always create a UCL structure (I,S)
such that

S = { I ′ | interpretation I ′ satisfies every propositional formula in K(M) }.

Note that K(M) ⊆ A(M), thus I ∈ S, if K(M) ⊂ A(M), then {I} ⊂ S. From
the definition of trGK(T ), if M is a model of trGK(T ) ∪ trGK(Atoms) such that
K(M) ⊆ A(M), then A(M) = Th(I) for some interpretation I and (I,S) is a
model of T .

From the above results, if I is a causally explained interpretation of T , then
(I, {I}) is a model of T and there does not exist another model (I,S) such that
{I} ⊂ S. We can create a Kripke interpretation M such that A(M) = K(M) =
Th(I). As (I, {I}) is a model of T , then M is a model of trGK(T ). There does
not exist another model (I,S) such that {I} ⊂ S, then there does not exists
another model M ′ of trGK(T ) such that A(M ′) = Th(I) and K(M ′) ⊂ A(M ′),
thus M is a GK model of trGK(T ), M is a GK model of trGK(T )∪ trGK(Atoms).

IfM is a GK model of trGK(T )∪trGK(Atoms), then A(M) = K(M) = Th(I),
where I = (A(M)∩Atoms)∪ (A(M)∩¬Atoms). Clearly, (I, {I}) is a model of
T and there does not exist another model (I,S) such that {I} ⊂ S, thus I is a
causally explained interpretation of T .

Let us call a GK model M unary if for some interpretation I we have that
A(M) = Th(I). Thus by the above theorem, GK theories translated from UCL
theories have only unary GK models.

Consider again the simple UCL theory {Cp}. If Atoms = {p}, then its GK
translation is {Kp,Ap∨A¬p}. This GK theory has a GK model and if M is such
a GK model, then A(M) = K(M) = Th({p}). However, if Atoms = {p, q}, then
the GK translation is {Kp,Ap ∨A¬p,Aq ∨A¬q}, and there is no GK model
for this theory as one could not deduce Kq if Aq is assumed, neither could one
deduce K¬q when A¬q is assumed.

4 Conclusion

Logic of GK was proposed as a general framework for nonmonotonic reasoning.
Like circumscription [10, 11], it is based on minimization. To date, it has been
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shown to be able to embed fixed-point nonmonotonic logics such as default logic.
In this paper, we show that it can embed Turner’s logic of universal causation as
well. One potential use of this result is to work as a bridge to connect fixed-point
based causal action theories such as McCain and Turner’s with minimization-
based ones such as that in [6, 8]. However, this remains future work.
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