
Toward Open Knowledge Enabling for Human-
Robot Interaction

Xiaoping Chen, Jiongkun Xie, Jianmin Ji, and Zhiqiang Sui
Computer School, University of Science and Technology of China

This paper presents an effort on enabling robots to utilize open-source knowledge resources

autonomously for Human-Robot Interaction. The main challenges include how to extract

knowledge in semi-/unstructured natural languages, make use of multiple types of knowl-

edge in decision-making, and identify the missing knowledge. Techniques for multi-mode

Natural Language Processing, integrated decision-making and open knowledge searching

are proposed. The OK-KeJia robot prototype is implemented and evaluated, especially

with two tests on 11,615 user tasks and 467 user desires, respectively. The experiments

show that the overall performance improves remarkably due to the use of appropriate open

knowledge. In the later test, the percentage of ful�lled user desires increases from 0.86%

to 28.69% when 15,020 open knowledge rules plus WordNet synonymies are used.
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1. Introduction

Human-Robot Interaction (HRI) draws more and more interest from researchers (Cantrell

et al., 2012; Rosenthal et al., 2011; Kaupp et al., 2010; Chen et al., 2010; Tenorth &

Beetz, 2009; Doshi & Roy, 2007; Thrun, 2004; Fong et al., 2003; Burgard et al., 1999). In

HRI settings, robots should be able to communicate with users, understand users' requests

and provide services for users accordingly by taking physical and other actions. For these

purposes, a robot needs a lot of knowledge. For instance, when a user tells a robot �I am

thirsty�, the robot is expected to do something to meet the user's desire. If the robot knows

that this desire may be met by serving a drink to the user, then it can plan and execute

some actions towards this goal. In many cases, however, it is too hard to equip a robot

with complete knowledge before it is put to use. In these cases, the challenge is to develop

robots that can acquire, ideally automatically, missing knowledge from somewhere for the

tasks requested by users at running time.

There are open-source knowledge resources available on the web, such as Cyc1, the

Open Mind Indoor Common Sense database (OMICS) (Gupta & Kochenderfer, 2004),

ontologies, and household appliances manuals. Robots can also get knowledge through

human-robot dialogue. In this paper, we call the knowledge from these resources open

knowledge and report an effort on online acquiring and making use of open knowledge

for HRI. We consider three requirements in this effort. (i) The robots should be able to

�understand� knowledge in natural language, since a great proportion of open knowledge

1http://www.opencyc.org/

Journal of Human-Robot Interaction, Vol. 1, No. 1, 2011, Pages 1-16.



Chen et al., Toward Open Knowledge Enabling for Human-Robot Interaction

is expressed in natural language. (ii) The robots should be capable of using different types

of knowledge, because a single user task may involve multiple types of knowledge that

exist in more than one open-source knowledge resource. (iii) A robot should be aware of

what knowledge it lacks for a given task and can search for the missing knowledge from

open-source resources. When a robot encounters knowledge shortages, it should be able to

recognize what gaps exist between the knowledge it already possesses and the task at hand,

and then try to �nd the relevant pieces of knowledge.

We have made a continual effort on developing intelligent service robots that can meet

these requirements jointly in the KeJia project. The main ideas are sketched below. Firstly,

we develop multi-mode NLP techniques for comprehension and extraction of knowledge in

different modes of natural language expressions, and transformation of the extracted knowl-

edge into an intermediate representation. Secondly, we propose an integrated decision-

making mechanism based on a uniform representation of knowledge, so that different types

of knowledge can be made use of. Thirdly, we put forth a principle for detecting knowledge

gaps between the current task and the local knowledge of a robot, and introduce mecha-

nisms for searching missing knowledge from open-source resources.

There are projects sharing a part of common concerns with us, but not all mentioned

above. KnowRob (Tenorth & Beetz, 2009; Lemaignan et al., 2012) also use open knowl-

edge such as Cyc ontology and OMICS in HRI. The authors study how extraction, repre-

sentation and use of the knowledge can enable a grounded and shared model of the world

suitable for later high-level tasks such as dialogue understanding. A specialized symbolic

knowledge representation system based on Description Logics is employed. While their

approach is action-centric, where a robot collects and reasons about knowledge around ac-

tion models, our approach is open-knowledge-centric, focusing on automatically acquiring

and utilizing open knowledge for on-line planning with general-purpose decision-making

mechanisms. (Cantrell et al., 2012) is similar to our work in that open knowledge in nat-

ural language is formalized in order to update the planner model and enhance the plan-

ning capability of a robot. The major difference lies in the resources and scale of open

knowledge, since we use large-scale knowledge resources (e.g., OMICS). In addition, our

formalization of open knowledge concerns both unstructured and semi-structured natural

language expressions. (Rosenthal et al., 2010) proposes a symbiotic relationship between

robots and humans, where the robots and humans bene�t each other by requesting and

receiving help on actions they could not performed alone due to limitations of abilities.

The Cognitive Systems for Cognitive Assistants (CoSy) project makes a continual contri-

bution on the human-robot dialogue processing for HRI. (Kruijff et al., 2010) postulates

a bi-directionality hypothesis which relates the linguistic processing with the robots' ex-

periences associated with a situated context. They show how such bi-directionality be-

tween language and perception in�uences the situated dialogue processing for HRI. Like

CoSy, the situated dialogue processing for HRI is also needed in our system, which pro-

vides our robot a foundation for understanding the requests from users and searching for

open knowledge. The integrated decision-making mechanism proposed here is similar to

Golog (Levesque et al., 1997) to a great extent. However, missing steps in a sequence as

constraint are allowed and can be �lled in by our mechanism, but not in Golog. In fact,

Golog programs are intended to be high-level control programs of robots written by the

designer, while our approach aims to make robots work by user requests and open knowl-

edge. (Talamadupula et al., 2010) tries to adapt planning technology to Urban Search And

Rescue (USAR) with a human-robot team, paying special attention to enabling existing

planners, which work under closed-world assumptions, to cope with the open worlds in
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USAR scenarios. We try to adapt planning technology to HRI, especially by using open

knowledge.

In Section 2 we present the framework and architecture of the OK-KeJia robot, de-

scribes the main ideas of the whole work. The implementing techniques for two main

modules of the robot, multimode NLP and integrated decision-making, are addressed in

Section 3 and 4, respectively. Some case studies are reported in Section 5 and conclusions

are given in Section 6.

2. System Overview

To describe the framework of OK-KeJia robots, we adopt a simple and general language for

knowledge representation in this paper. The vocabulary of the language includes objects,

predicates and action names. A predicate expresses an attribute of an object, environment

or human. For instance, small(obj) expresses that object obj is small. A predicate or its

negation is called a literal.

We assume that a robot is equipped with a set of primitive actions. A primitive ac-

tion (action for short) is speci�ed as an ordered pair hpre-cond(a); eff(a)i, called an

action description, where a is a action name, pre-cond(a) and eff(a) are sets of lit-

erals. Intuitively, eff(a) is the effects of executing action a and pre-cond(a) is the

pre-conditions under which a can be executed and eff(a) can be reached through exe-

cution of a. For instance, pre-cond(move) = fnav-target(l);:robot-at-loc(l)g and
eff(move) = frobot-at-loc(l)g. The set of all the action descriptions is called the ac-

tion model of the robot and taken as its built-in knowledge. We require that every action a

is implemented by a routine on a real robot, with hpre-cond(a); eff(a)i being the expected
action model.

In HRI settings, an action model is generally insuf�cient for a robot to provide ser-

vices to users, since user requests may contain predicates that do not appear in the action

model. For example, �thirsty� does not generally appear in the action model of a robot.

In this paper, we consider three more types of knowledge. (i) Conceptual Knowledge,

i.e., knowledge about relationships between concepts. Typically, ontologies specify such

relationships, like super and equivalent classes of concepts. (ii) Procedural Knowledge,

i.e., knowledge describing the steps of how to accomplish a task (relationship between a

task and its sub-tasks). (iii) Functional Knowledge, i.e., knowledge about effects of tasks,

sometimes called goals. For instance, the effects of task �put object 1 on table 2� can

be expressed as a set of literals, fon(object1; table2); empty(grip)g. Manual instructions

include functional knowledge, e.g., about the functions of buttons of a microwave oven.

Theoretically, a growing model is de�ned as M = hA;C�; P �; F �i, where A is the

action model, C�, P � and F � store the conceptual, procedural and functional knowledge

that the robot has obtained, respectively. We assume in this paper that an element of C�

maps a concept into its superclass/subclass concepts, P � a task into its sub-tasks, and F �

a task into its effects, respectively. C�, P � and F � can expand during the robot's running.

The model provides a framework for analyzing the main research issues. In particular, the

integrated decision-making mechanism should be so constructed that knowledge from C�,

P � and F � can be made use of by it. Moreover, knowledge gaps can be identi�ed against

the differences between a user task and the local knowledge inM .

The overall architecture of our robot OK-KeJia is shown in Figure 1. The robot is

driven by input from human-robot dialogue. The information extracted from the dialogue is

further processed by the multi-mode NLP module. The integrated decision-making module

tries to generate a plan for the current user task. If succeeds, the plan consisting of primitive
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actions is fed to the low-level control module to execute. The robot tries to acquire open

knowledge when it detects knowledge gaps for the current task. Then the open knowledge

searching module is triggered to obtain relevant pieces of knowledge from some open-

source knowledge resources. Some meta-control mechanism (Chen et al., 2012) is also

needed for the coordination of these modules, but not shown in Figure 1. The robot's

sensors include a laser range �nder, a stereo camera and a 2D camera. The robot has an

arm for manipulating portable items. The on-board computational resource consists of two

laptops.

Figure 1. The overall architecture of OK-KeJia

The human-robot dialogue (HRD) component provides the interface for communica-

tion between users and the robot. The Speech Application Programming Interface (SAPI)

developed by Microsoft is used for the speech recognition and synthesis. Once a user's

utterance is captured by the recognizer, it will be converted to a sequence of words. The

embedded dialogue manager (Figure 2) then classi�es the dialogue contribution of the

input utterance by keeping track of the dialogue moves of the user. According to the dia-

logue move, the HRD component decides to update the world model, which contains the

information from the perceptual model and of the robot's internal state, and/or to invoke

the decision-making module for the task planning, with the semantic representation of the

input utterance produced by the multi-mode NLPmodule (Section 3). At present, the struc-

ture of the dialogue is represented as a �nite state transition network. Figure 2 shows our

implementation (i.e., �nite state machine) of managing a simple human-robot dialogue in

which the user tells the robot facts that he/she has observed or tasks, and the robot asks

for more information. A mixed-initiative dialogue management will be developed in our

future work.

Assume that a robot's perception of the current environmental and internal state is ex-

pressed as a set of literals, called an observation. And user tasks are transformed into

(dummy, sometimes) goals. Given an observation o and a goal g, a plan for ho; gi is de-
�ned as a sequence ho; a1; : : : ; an; gi, where a1; : : : ; an are primitive actions, such that the

goal g will be reached after the execution of a1; : : : ; an under any initial state satisfying

o. In the literature, there are two basic schemas of decision-making for autonomous agents

and robots, which can be employed in open knowledge settings. One is goal-directed plan-
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Figure 2. The �nite state machine for a simple human-robot dialogue

ning, the procedure of generating a plan ho; a1; : : : ; an; gi for any ho; gi with functional

knowledge. The other one is task-directed action selection. This schema employs pro-

cedural knowledge iteratively, until the task is decomposed into a sequence of primitive

actions. In Section 4, we present a hybrid schema that integrates some mechanism of task

decomposition into a goal-directed planning system.

The ability of acquiring open knowledge depends on the detection of knowledge gaps

between the current task and the robot's local knowledge. LetM = hA;C�; P �; F �i be the
growing model of the robot, and eff(A) = fpjp 2 eff(a) for some a 2 Ag, i.e., the union
of all eff(a)where a is a primitive action inA. A predicateQ is grounded inM if following

conditions hold: (i) Q 2 eff(A); or (ii) Q is �reduced� (see Section 4) to Q1; : : : ; Qn by

C�[P �[F � such that eachQi (i = 1; : : : ; n) is grounded inM . A task is grounded inM if

every predicate in the description of the task is grounded inM . This leads to the de�nition

of knowledge gaps: There is a knowledge gap between a user task p and the robot's growing

modelM , if and only if there is a predicate Q in p such that Q is not grounded inM . Now

we describe the principle of open knowledge searching as follows: Given a task p and a

growing model M such that there is a knowledge gap between p and M . Search open-

source knowledge resources to �nd C+, P+ and/or F+ (i.e., new knowledge) so that there

is no knowledge gap between p and M+ = hA;C� [ C+; P � [ P+; F � [ F+i. We

develop searching algorithms in accordance with each chosen resource of open knowledge

based on this principle. In each case study we conducted, the robot accumulated knowledge

during the process of one task set, but does not across task sets, since that would involve

consistency issue of the acquired knowledge.

3. Multi-mode NLP

In this section, we demonstrate how to formalize the knowledge in unstructured natural

language (e.g., in human-robot dialogue and manual instructions) and in semi-structured

natural language (tuples in OMICS) to an intermediate language called Human-Robot Di-

alogue Structure (HRDS). HRDS captures the semantics of natural language sentences. Its
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syntax is Lisp-like (see Appendix A) and it can be translated further into the ASP language

(Section 4). HRDS has not been fully developed for handling with all the situations in

human-robot dialogue, yet it is suf�cient for our needs in this paper. Handlings of un-

structured and semi-structured knowledge share the same underlying formalization (i.e.,

syntactic parsing and semantic interpretation), though the semantic interpretation of the

OMICS knowledge needs further processing. By the same mechanism, both Chinese and

English are processed with a slight difference in con�guration, particularly the lexicon.

Therefore, our robot can use open knowledge in both languages for one and the same task.

However, grammar plays a less important role in Chinese language, which weakens the

performance of the same mechanism in processing Chinese to some extent. This paper

presents the multi-mode NLP techniques for English expressions of knowledge.

3.1 Formalizing the knowledge in natural language

The translation process consists of the syntactic parsing and the semantic interpretation.

In the syntactic parsing, the Stanford parser (Klein & Manning, 2003) is employed to ob-

tain the syntax tree of a sentence. The semantic interpretation using �-calculus (Blackburn

& Bos, 2005) is then applied on the syntax tree to construct the semantics. For this pur-

pose, a lexicon with semantically annotated lexemes and a collection of augmented syntax

rules (as-rules, for short) are hand crafted in our current implementation. However, (Ge &

Mooney, 2009) provides a promising machine learning approach to automatic constructing

such a lexicon with the as-rules, which will be introduced into our work in the future.

Table 1: Part of the lexicon

Word Category Semantics

if IN �p:�q:(cause p q)
the DT �x:�y:y@x
you PRP �x:x@robot
will MD �r:r@(t+ 1)

press VBP �p:�x:(uent (pred press l x Y )

(conds (pred at time l t) p@(�y:y@Y )))

begin VB �q:�r:�p:(uent (pred begin l X Y )

(conds (pred at time l r) p@X q@Y ))
microwave NN �x:((pred oven x) (predmicrowave x))
microwave NN �p:�q:(p@q (predmicrowave q))
oven NN �x:(pred oven x)
START/RESUME NN �p:�q:(p@q (pred start resume q))
button NN �x:(pred button x)
cooking NN �x:(pred cooking x)
. . . . . . . . .

A semantically annotated lexeme lists the syntactic category of a word and its semantics

represented by a �-calculus formula, as shown in Table 1. One word could have multiple

senses (i.e., � formula). For example, the word microwave has two senses: one represents

the concept microwave oven, the other gives the partial semantics of a compound noun

(e.g., microwave oven). The combinations of all senses of each word in a sentence will be
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Figure 3. Syntax tree of sentence �if you press the START/RESUME button, the microwave oven

will begin cooking�.

analyzed in the semantic interpretation.

An as-rule augments the corresponding syntax rule with an extra slot which combines

the semantic interpretations of the parts of the rule's right hand side. For example, the

as-rule VP(vp := vb@np) ! VB(vb)NP(np) speci�es that the semantic interpretation of
VP results from applying the semantic interpretation of VB to that of NP. The notation `@'
denotes such application. Some of the as-rules are shown below:

S(s := sbar@(np@vp))! SBAR(sbar) NP(np) VP(vp)

S(s := np@vp)! NP(np) VP(vp)

SBAR(sbar := in@s)! IN(in) S(s)

NP(np := dt@(nn1@nn2))! DT(dt) NN(nn1) NN(nn2)

NP(np := nn)! NN(nn)

NP(np := prp)! PRP(prp)

VP(vp := md@vp)! MD(md) VP(vp)

VP(vp := vbp@np)! VBP(vbp) NP(np)

VP(vp := vb@np)! VB(vb) NP(np)

Once the syntax tree of a sentence is generated by the Stanford parser, its se-

mantics is computed using the �-conversion with corresponding lexemes and as-

rules. Given the sentence if you press the START/RESUME button, the mi-

crowave oven will begin cooking. Its syntax tree is shown in Figure 3.

The semantics of words START/RESUME of category NN and button of cate-

gory NN, retrieved from the lexicon, are �p:�q:(p@q (pred start resume q))
and �x:(pred button x), respectively. According to the as-rule NP(np :=

7



Chen et al., Toward Open Knowledge Enabling for Human-Robot Interaction

dt@(nn1@nn2)) ! DT(dt) NN(nn1) NN(nn2), the phrase START/RESUME button is

converted to its semantics: �q:((pred button q) (pred start resume q)). Applying the
�-conversion on the syntax tree in Figure 3 from the bottom up to the root, the semantics

of the sentence is gained and expressed as the following HRDS:

(cause (uent (pred press l1 robot Y1)

(conds (pred at time l1 t) (pred button Y1) (pred start resume Y1)))

(uent (pred begin l2 X2 Y2)

(conds (pred at time l2 t+ 1) (pred oven X2) (predmicrowave X2)

(pred cooking Y2))))

It expresses the causation between two �uents: (pred press l1 robot Y1) and

(pred begin l2 X2 Y2). The predicates in the �eld marked by conds of the �uent press,
as well as begin, are the conditions which the terms (e.g., l1 and Y1) in the �uent should

satisfy when the �uent is valid. For example, the �uent (pred press l1 robot Y1) holds
in the conditions that Y1 is a button and it functions to start or to resume the running of a

microwave.

3.2 Semantic interpretation of OMICS

In the OMICS project (Gupta & Kochenderfer, 2004), an extensive collection of knowl-

edge is collected from Internet users, in order to enhance the capability of autonomously

accomplishing tasks for indoor robots. The knowledge was input into sentence templates

by users, censored by administrators, and then converted into and stored as tuples, of which

most elements are English phrases. There are 48 tables in OMICS at present capturing dif-

ferent sorts of knowledge, including Help table (each tuple mapping a user desire to a task

that may meet it), Tasks table (containing the names of tasks input by internet users), Steps

table (each tuple decomposing a task into steps). Since some of the tables are related, some

pieces of knowledge in OMICS can be represented as tuples in a joint table generated by

a SQL query. The elements of such a tuple are semantically related according to the cor-

responding sentence template. Therefore, we introduce the semantically-augmented rules,

one for each tuple sort, to capture the semantic information of tuples. Some semantically-

augmented rules are listed below:

Location(loc := (state (uent (pred in X Y ) (conds obj@X room@Y ))))

! Object(obj) Room(room)

TaksSteps(tasksteps := (dec task step0))! Task(task) Step(step0)

TaksSteps(tasksteps := (dec task (seq step0 step1)))! Task(task) Step(step0) Step(step1)

Task(task := vp)! VP(vp)

Step(step := vp)! VP(vp)

The semantic interpretation of OMICS will be demonstrated with the following exam-

ple. The Tasks table and the Steps table combine to produce a joint table Tasks/Steps, where

each tuple speci�es steps of a task and also the de�nition of the task (Table 2). Accordingly,

the semantically-augmented rule

TaksSteps(tasksteps := (dec task (seq step0 step1 step2 step3)))

! Task(task) Step(step0) Step(step1) Step(step2) Step(step3) (1)
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Table 2: A part of Tasks/Steps table

task stepnum step

fetch an object 0 locate the object

fetch an object 1 go to the object

fetch an object 2 take the object

fetch an object 3 go back to where you were

Table 3: The semantic interpretation of tuple elements

Tuple Element Category Semantics

fetch an object Task (task fetch X (conds (pred object X)))
locate the object Step (task locate X (conds (pred object X)))
go to the object Step (task go X (conds (pred object X)))
take the object Step (task take X (conds (pred object X)))
go back to where you were Step (task go back X (conds (pred location X)))

de�nes the semantics of the tuple.

The semantic interpretation procedure works in a bottom-up fashion. The tuple ele-

ments are �rst interpreted as shown in the table 3. Following the rule (1), the semantics of

tuple elements are combined together piece by piece. Then we get the HRDS representation

of the task fetch an object:

(dec (task fetch X1 (conds (pred object X1)))

(seq (task locate X2 (conds (pred object X2)))

(task go X (conds (pred object X)))

(task take X (conds (pred object X)))

(task go back X (conds (pred location X)))))

4. Integrated Decision-making

In the KeJia project, the integrated decision-making module is implemented using Answer

Set Programming (ASP), a logic programming language with Prolog-like syntax under

stable model semantics originally proposed in (Gelfond & Lifschitz, 1988). The mod-

ule implements a growing model M = hA;C�; P �; F �i, the integrated decision-making

mechanism, as well as some auxiliary mechanisms as an ASP programM�. The integrated

decision-making inM is then reduced to computing answer sets ofM� through some ASP

solver. When the robot's multi-mode NLP module extracts a new piece of knowledge and

stores it into M , it will be transformed further into ASP-rules and added into the corre-

sponding part ofM�.

4.1 Representing growing models in ASP

Given any growing model M = hA;C�; P �; F �i, all the components, A, C�, P � and F �

can be represented in ASP with following conventions. Firstly, the underlying language

includes three pairwise-disjoint symbol sets: a set of action names, a set of �uent names,
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and a set of time names. The atoms of the language are expressions of the form occurs(a; t)
or true(f; t), where a, f , and t are action, �uent, and time name, respectively. Intuitively,
occurs(a; t) is true if and only if the action a occurs at time t, and true(f; t) is true if and
only if the �uent f holds at time t. Based on these conventions, an ASP-rule is of the form:

H  p1; : : : ; pk; not q1; : : : ; not qm:

where pi, 1 � i � k, and qj , 1 � j � m, are literals, andH is either empty or an literal. A

literal is a formula of the form p or :p, where p is an atom. If H is empty, then this rule is

also called a constraint. An ASP-rule consisting of only H is called an ASP-fact. An ASP

program is a �nite set of ASP-rules. There are two kinds of negation in ASP, the classical

negation : and non-classical negation not . Roughly, not q means that q is not derivable

from the ASP program. Similarly, a constraint that p1; : : : ; pk speci�es that p1; : : : ; pk
are not derivable jointly the ASP program. We take the action grasp for example to show

how primitive actions are represented as ASP-rules. The related �uents are

� grasp(X): the action of griping the object X and picking it up.

� holding(X): the �uent that the object X is held in the grip of the robot.

� on(X;Y ): the �uent that the object X is on the object Y .

The effect of executing grasp(X) is holding(X) and described by following ASP-rules:

true(holding(X); t+ 1) occurs(grasp(X); t);

:true(on(X;Y ); t+ 1) occurs(grasp(X); t); true(on(X;Y ); t):

And the precondition of grasp(X) is not holding(Y ) for any Y , i.e., the grip holds noth-
ing, which is described in ASP as a constraint

 occurs(grasp(X); t); true(holding(Y ); t):

Other primitive actions are represented as ASP-rules similarly. In addition, the occur-

rence of any primitive action is forced to conform to the following restrictions

occurs(grasp(X); t) not:occurs(grasp(X); t);

:occurs(grasp(X); t) not occurs(grasp(X); t):

Each element of P � decomposes a task into some sub-tasks or actions. For the general

case, see the details in Section 4.2. When a task T is decomposed to an action sequence

ha1; a2; : : : ; ani, we add an ASP-rule into the ASP program

process(T; t; t0) occurs(a1; t); occurs(a2; t+ 1); : : : ; occurs(an; t+ n); t0 = t+ n:

where process(T; t; t0) denotes that the task T is accomplished during time t to t0. Accord-

ingly, the de�nitions of process(T; t; t0) are also included in the ASP program. Similarly,

for each element of F � designating a set of literals fl1; : : : ; lmg to a task T , we add an

ASP-rule

process(T; t; t0) true(l1; t
0); : : : ; true(lm; t

0); t < t0

into the ASP program. It is the case of C� elements, which are transformed into ASP-rules

similarly. Moreover, we use

 true(holding(X); t); true(falling(X); t);

true(falling(X); t) true(on(X;Y ); t); true(falling(Y ); t):
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to specify that falling(X) is an indirect effect of some action that causes falling(Y ) while
X is on Y . The frame problem is resolved by �inertia lows� of the form

true(�; t+ 1) true(�; t); not:true(�; t+ 1);

:true(�; t+ 1) :true(�; t); not true(�; t+ 1):

where � is a meta-variable ranging over �uent names. The inertia lows guarantee the

minimal change condition. In the Situation Calculus (Reiter, 2001), the successor state

axioms are used to �solve� the frame problem. According to this solution, the designer

must enumerate as effect axioms all the ways in which the value of a particular �uent can be

changed, and add axioms to capture the assumption that �these effect axioms characterize

all the conditions under which an action causes a �uent to become true (respectively, false)

in the successor situation�. Once, such an effect axiom is modi�ed then the corresponding

successor state axiom needs also to be modi�ed. However, in the ASP program, the effect

axiom is the only rule that needs to be modi�ed, while others remain unchanged. The initial

state (at time 0) of the environment can be expressed in facts of the form true(�; 0).

4.2 Integrated decision-making in ASP

Since any ASP solver innately possesses a general-purpose goal-directed planning schema,

we embed a general-purpose task-directed action selection schema into the existing

schema, so that the augmentation becomes a general-purpose decision-making mechanism

that integrates both schemas and guarantees the executability of every plan it generates.

Technically, the augmentation is built on the basis ofM�.

First of all, we name a class of entities called �sequence� this way: (i) an action a is

a sequence; (ii) a task T is a sequence; and (iii) if pi (1 � i � m) are sequences, then
p1; : : : ; pm is a sequence. Let � = hs0; a0; s1; : : : ; an�1; sni be any trajectory. That �

satis�es a sequence p is de�ned recursively as follows:

(1) If p = a, where a is an action, then a0 = a;

(2) If p = T , where T is a task such that there is a HRDS rule in P � that decomposes T

into a sequence of sub-tasks, then � satis�es this sequence of sub-tasks; or T is a task such

that it is designated a set of literals in F �, then this set is a subset of the state sn;

(3) If p = p1; : : : ; pm, where pi (1 � i � m) are sequences, then there exists 0 �
n1 � n2 � � � � � nm�1 � n such that:

� the trajectory hs0; a0; : : : ; sn1i satis�es p1;
� the trajectory hsn1 ; an1 ; : : : ; sn2i satis�es p2;
� � � � ;
� the trajectory hsnm�1 ; anm�1 ; : : : ; sni satis�es pn.
According to the de�nitions above, if a trajectory hs0; a0; s1; : : : ; an�1; sni satis�es a

sequence a; a0 where a and a0 are actions, and a0 is not executable in s1, then a0 = a

and there exists a state sm (1 � m � n) such that si satis�es the preconditions of a
0 and

am = a0. In other words, the sub-trajectory hs1; a1; : : : ; smi �lls up the �gap� between a
and a0.

A sequence s speci�es how to complete a task T step by step. If a trajectory con-

tains a sub-trajectory which satis�es s, then the corresponding task T is also completed in

this trajectory. Now we consider how to specify a procedure s in ASP. Given an grow-

ing model M , we want to obtain a set of ASP-rules of s, �s, such that a trajectory

hs0; a0; s1; : : : ; an�1; sni satis�es both M and s if and only if ftrue(�; i)j� 2 si; 0 �
i � ng [ f:true(�; i)j:� 2 si; 0 � i � ng [ foccurs(ai; i)j0 � i � n� 1g is an answer
set ofM� [�s.
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Any sequence de�ned above can be speci�ed in HRDS as hsequencei, see Appendix A
for details. Given such a sequence S, we de�ne the set �s of ASP-rules recursively as

follows (where t, t0, t1, . . . , tm�1 are meta-variables ranging over time):

(1) If S = (act name a X1 : : : Xm

(conds (pred cond1 X1 : : : Xm) : : : (pred condn X1 : : : Xm)))
where name a is an action name, X1 : : : Xm are its parameters, and predicates

cond1(X1; : : : ; Xm); : : : ; condn(X1; : : : ; Xm) represent domains of these parameters,

then �S is the set of following ASP-rules

complete(p; t; t+ 1) occurs(name a(X1; : : : ; Xm); t);

true(cond1(X1; : : : ; Xm); t); : : : ; true(condn(X1; : : : ; Xm); t):

(2) If S = (task name t X1 : : : Xm

(conds (pred cond1 X1 : : : Xm) : : : (pred condn X1 : : : Xm)))
where name t is an task name, X1 : : : Xm are its parameters, and predicates

cond1(X1; : : : ; Xm); : : : ; condn(X1; : : : ; Xm) represent domains of these parameters,

then �S contains

complete(p; t; t0) complete(name t(X1; : : : ; Xm); t; t
0);

true(cond1(X1; : : : ; Xm); t); : : : ; true(condn(X1; : : : ; Xm); t):

(3) If P � designates a sequence S0 to accomplish the task name t(X1; : : : ; Xm), then
�S also contains �S0 and

complete(name t(X1; : : : ; Xm); t; t
0) complete(S0; t; t0):

(4) If F � designates a set of literals f�1; : : : ; �o;:�o+1; : : : ;:�mg for the task, then
�S also contains

complete(name t(X1; : : : ; Xm); t; t
0) true(�1; t

0); : : : ; true(�o; t
0);

:true(�o+1; t
0); : : : ;:true(�m; t

0); t < t0:

(5) If S = (seq S1 : : : Sm), where Si (1 � i � m) are sequences, �S contains

�S1 ; : : : ;�Sm and

process(S; t; t0) process(S1; t; t1); process(S2; t1; t2); : : : ; process(Sm; tm�1; t
0):

5. Case-studies

We have conducted a variety of case studies of open knowledge enabling on KeJia robots.

In a case study (Chen et al., 2010), we tested the KeJia robot's ability of acquiring causal-

ity knowledge through human-robot dialogue. A testing instance is shown in Figure 4.

There was a board putting on the edge of a table, with one end sticking out. A red can

was put on the sticking out end of the board, and a green can was on the other end. The

task for KeJia is to pick up the green can under a default presupposition of avoiding any-

thing falling. We took a version of KeJia without any built-in knowledge about �balance�,

�fall�, or any other equivalents. A human told the robot �An object will fall if it is on the

sticking out end of a board and there is nothing on the other end of the board�. KeJia's

12
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NLP module extracted the knowledge and transformed it into an ASP-rule, and with the

rule the decision-making module generated a plan, in which the robot moved the red can

to the table �rst and then picked up the green one. The robot accomplished the task by

executing this plan2. It is worthwhile emphasizing the fact that KeJia could not have ac-

complished the task without the causality knowledge acquired. This indicates that KeJia's

ability is substantially enhanced by knowledge acquisition through human-robot dialogue.

In another case study (Xie et al., 2012), a user requested for heating up some popcorn with

a microwave oven, while the robot had not known the functions of the buttons on the con-

trol panel before the experiment. The robot extracted knowledge of the buttons' function

from the manual in English (Section 3.1 shows the translation of one of the sentences from

the manual). With the extracted knowledge, the robot generated a plan consisting of 22

primitive actions in 3.4 seconds. It executed the plan and accomplished the task in 11.3

minutes3.

Figure 4. Testing instance of acquiring causality knowledge through human-robot dialogue

In this paper, we further report �rst system evaluation of the proposed techniques

through two tests on two large task sets collected from OMICS. Meanwhile, we took a

version of the OK-KeJia robot that contains only two sorts of built-in knowledge. One

is the action models, and the other one is the semantically annotated lexemes of words

in the lexicon, a type of linguistic knowledge (see Section 3.1) which is only used in the

multi-mode NLP module. The open knowledge the robot could get in the experiments was

limited to two tables of OMICS and the synonymies ofWordNet4, without any handcrafted

knowledge.

Each test varies in two dimensions, the action model and the open knowledge

base. Five action models, AM1 = fmoveg, AM2 = fmove; findg, AM3 =
fmove; find; pick upg, AM4 = fmove; find; pick up; put downg and AM5 =
fmove; find; pick up; put down; open; closeg, were chosen in order to examine the im-
pact of the different action capabilities of a robot on its overall performance. Each test

2Demo video available on http://ai.ustc.edu.cn/en/demo/Cause Teach.php
3Demo video available on http://ai.ustc.edu.cn/en/demo/ServiceRobot oven.php
4http://wordnet.princeton.edu/wordnet/
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consisted of three rounds with different open knowledge bases, in order to show the impact

of open knowledge on performance.

The task set in Test 1 is de�ned as follows. There are 11,615 different tuples in

Tasks/Steps, each consisting of a task name T and a sequence of steps (sub-tasks), s. We

take s as the de�nition of T . For example, there are two tuples: <help someone carry

something, 0. pick up the item, 1. walk with the item to where the person needs it> and

<help someone carry something, 0. get object, 1. follow person>. Obviously, these two

tuples with the same task name de�ne two different tasks, because there is no guarantee that

any action sequence that ful�ll one of the two tasks must ful�ll the other one. Therefore,

we collected all the 11,615 task de�nitions in the task set for Test 1.

In the �rst-round of Test 1, only the action models were used in the planning procedure

with no open knowledge (i.e., C� = P � = F � = ;). Every task in the task set was input
into the robot and the robot tried to ful�ll it. A task is solvable by the robot's planner

if and only if each step of the task is a primitive action. In the second-round, only the

11,615 Tasks/Steps tuples were used as a sort of procedural knowledge, now taken as task-

decomposition rules (td-rules, for short). Hence C� = F � = ; and P � � Tasks/Steps.

It follows that a task can be ful�lled if all of its steps can be reduced to primitive actions

through some td-rules. In the third-round, the robot tried to get open knowledge from

both Tasks/Steps and WordNet (i.e., P � � Tasks/Steps, C� � WordNet synonymies, and

F � = ;). Consequently, �move to a location� and �go to a location� were identi�ed as

equivalent and executable by the robot, although only the former can be matched to the

robot's primitive action. Obviously, the open knowledge used in this test is extremely

sparse�only the de�nitions of the tasks were used as the procedural knowledge.

A set of algorithms were developed. Algorithm 1 is only for understanding the main

ideas of the actual algorithm for the second-round experiment of Test 1. In the iteration,

a new td-rule from the Tasks/Steps table is selected, processed by the multi-mode NLP

module, and added into the growing model. Then the planner is called to compute an ac-

tion sequence for the user task. For the third-round, synonymies of WordNet are used to

substitute concepts appeared in td-rules with their equivalent primitive actions. The plan-

ner taskP lan in the algorithm is a simpli�ed version of the integrated decision-making

module due to some reasons. Most importantly, since this case study was conducted on

large task sets collected from OMICS, we did not succeed in associating with each task an

observation, which were obtained by our real robots in other case studies mention above.

Consequently, the executability condition was simpli�ed as �consisting of primitive ac-

tions�.

The task set in Test 2 consists of 467 different desires appeared in the Help table of

OMICS, with duplicate ones discarded. Some exampleHelp tuples are<are sick, by giving

medicine>, <are cold, by making hot tea>, and <feel thirsty, by offering drink>. In each

tuple, the �rst element is taken as a user desire, while the second element, a task, is taken as

a means to meet the desire, not as the de�nition of the desire. In the �rst-round of Test 2, no

open knowledge was used. In the second-round, the 3,405 unduplicated tuples inHelpwere

taken as functional knowledge and Tasks/Steps as procedural knowledge (i.e., F � � Help,

P � � Tasks/Steps, and C� = ;). WordNet synonymies were used in the third-round.

The experimental results are shown in Table 4. On every action model in each round,

the number of tasks or desires that were ful�lled by the robot is listed in the table. In

addition, the percentages of ful�lled tasks or desires with respect to the size of the task sets

on AM5 are listed in the last column. We make following observations.

(1) The overall performance increases remarkably due to the use of a moderate
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Algorithm 1 getActionSequence(phrase ph)

1: /* generate an action sequence for task ph */

2: p := parsePredicates(ph)
/* semantically parses ph to internal representation p */

3: Subtask := subTask(p)
/* initiate Subtask with sub-tasks of p */

4: P+ :=P �

/* initiate P+ with the action model P � */

5: Res := taskP lan(p)
/* taskP lan returns an action sequence computed by the integrated decision-making

module */

6: if Res 6= null then

7: return Res

8: end if

9: while there is a new tuple t from Tasks/Steps that matches an element of Subtask do

10: q := parsePredicates(t)
11: Subtask := subTask(q)
12: P+ :=P+ [ q
13: Res := taskP lan(p)
14: if Res 6= null then

15: return Res

16: end if

17: end while

18: return Failure

Table 4: Experimental results

Open Knowledge AM1 AM2 AM3 AM4 AM5

Percentage

onAM5

Test 1 (11,615 user tasks)

Null 6 24 45 164 207 1.78%

Tasks/Steps (11,615 rules) 7 28 51 174 219 1.89%

Tasks/Steps+WordNet 16 43 71 233 297 2.56%

Test 2 (467 user desires)

Null 0 1 1 4 4 0.86%

Help+Tasks/Steps (15,020 rules) 29 63 83 107 117 25.05%

Help+Tasks/Steps+WordNet 43 73 87 119 134 28.69%

amount of open knowledge. The percentage of ful�lled tasks increases from 1.78% to

2.56% in Test 1 with very sparse open knowledge of two types, and from 0.86% to 28.69%

in Test 2 with a moderate amount of open knowledge of three types, respectively. The

difference in the performance improvements in the two tests further reveals the signi�cant

function of the amount or �density� of the open knowledge.

(2)General-purpose techniques play an essential role in supporting the use of open

knowledge. It is worthwhile emphasizing that the improvements were made through us-
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ing open knowledge by some general-purpose mechanisms (multi-mode NLP, integrated

decision-making and open knowledge searching), without any manual assistance. Actu-

ally, it is dif�cult to utilize manual assistance in case of large task sets.

(3) A robot's basic ability (primitive actions) is still a key factor for the overall per-

formances. As expected, the robot met more user requests with more primitive actions in

all the cases. More detailed examination indicates that there are lots of user requests which

are not met just due to the powerlessness of the action models used in the experiments,

though KeJia robots can do more actions that are not contained in the action models.

6. Conclusions

Along with remarkable progress in HRI-related areas, it is interesting to consider the pos-

sibility of improving the performance of robots using open knowledge autonomously, in-

stead of handcraft coding of knowledge. The KeJia project is a long-term effort toward

this goal. We focus on three issues in this paper: (i) How does a robot �understand� and

extract open knowledge in unstructured and semi-structured natural language; (ii) How

does a robot make use of different types of knowledge in decision-making in order to meet

user requests; (iii) How can a robot be aware of what knowledge it lacks for a given task

and search for the missing knowledge from open-source resources. A set of techniques

are proposed, including mechanisms for multi-mode NLP, integrated decision-making and

open knowledge searching, and the OK-KeJia robot prototype is developed and tested in

a variety of case studies. In particular, �rst system evaluation is conducted with two large

task sets, consisting of 11,615 user tasks and 467 user desires collected from OMICS, re-

spectively. Different action models and multiple types of open knowledge from OMICS

and WordNet are used in the evaluation. The experiments show that overall performances

will increase remarkably due to the use of appropriate open knowledge. In the test with

11,615 user tasks and very sparse open knowledge of two types, the percentage of ful�lled

tasks increases only from 1.78% to 2.56%. In the test with 467 user desires and a moderate

amount of open knowledge of three types, the percentage increases remarkably from 0.86%

to 28.69%. Considering that only a very small proportion of knowledge in OMICS (i.e.,

2 tables from the 48 in total) was used in this case study, there would be some room for

further progress.

Many challenges remain in the current work. The tests with large task sets conducted

so far did not involve the context of HRI, where sometimes a user request can only be

understood together with the observation of the scenario. This leads to an investigation into

the connection of open knowledge and contexts of HRI. How to make use of a larger amount

of open knowledge is also an interesting issue, especially when context is considered. We

believe these two issues are related. They may demand more on techniques for multi-mode

NLP, integrated decision-making, and identi�cation of knowledge gaps. Another question

is about the relation between open knowledge and action model learning. Integration of

both techniques may help improve the performance of HRI further.
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Appendix A

The BNF de�nition for the syntax of Human-Robot Dialogue Structure

hvariablei ::= a string where the �rst character is upper-case, e.g., X

hconstanti ::= a string where the �rst character is lower-case or a underline, e.g., a, b, etc.

htermi ::=hconstanti j hvariablei

hpredicatei ::= (pred hnamei htermi+)

hfluenti ::= (uent hpredicatei (conds hpredicatei+))

hformulai ::=hfluenti j (neg hformulai) j (conj hformulai+) j (disj hformulai+)

hactioni ::= (act haction namei htermi+ (conds hpredicatei+))

htaski ::= (task htask namei htermi+ (conds hpredicatei+))

hsequencei ::=hactioni j htaski j (seq hsequencei+)

hcausationi ::= (cause hfluenti hfluenti)

hdecompositioni ::= (dec htaski hsequencei)

heffecti ::= (e� htaski hformulai)

hstatementi ::= (state hformulai)

hrequesti ::= (req htaski)
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