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Abstract A dynamic domain consists of a set of legal states and a transition function
that maps states to states. AI formalisms for specifying dynamic domains have so far
focused on describing the effects of actions, that is, the transition functions. In this
paper we propose a notion of characteristic set of position systems for the purpose of
describing legal states. A position system for a type of objects is a set of properties
that are mutually exclusive, and that in each state, every object of the type must
satisfy exactly one of these properties called its position under the position system. A
set of position systems, one for each type of objects in the domain, is characteristic
if there is a one-to-one mapping between legal states and sets of objects’ positions
under these position systems. These position systems are useful for reasoning about
these dynamic systems including planning. In particular, we show that once we have
characteristic sets of position systems for a dynamic domain, planning can be done
by writing rules about when to move objects from one position to another.

Keywords Dynamic domain · Position system

1 Introduction

A dynamic domain or transition system consists of a set of states and a transition
function that maps states to states. While this is a simple mathematical notion, using
it in practice is a challenging task because the number of states is often large, and the
transition functions may be complex. In fact, much of work in AI on reasoning about
actions is about good formalisms for specifying transition systems. These formalisms
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include the situation calculus McCarthy (1963); Reiter (2001), event calculus Kowal-
ski and Sergot (1986), fluent calculus Thielscher (1998), action languages Gelfond
and Lifschitz (1999); Giunchiglia and Lifschitz (1998), and STRIPS-like languages
Fikes and Nilsson (1972); McDermott et al (1998). However, all these formalisms are
used primarily for specifying the effects of actions, that is, the transition functions.

Consider the blocks world domain. A STRIPS style specification of the domain
would need to provide for each action three lists: the precondition list that specifies
the conditions that must be satisfied for the action to be executed successfully, the add
list that specifies the properties that will be made true by the action, and the delete
list that specifies the properties that will be made false by the action. For instance, for
action stack(x, y), they are

– Precondition list: holding(x), clear(y).
– Add list: handempty, on(x, y).
– Delete list: holding(x), clear(y).

This description works on states given by sets of atoms that are true in the states. It
does not explicitly say which states are legal. Informally, we understand that a block
cannot be on top of itself, there can be only at most one block on top of any block, the
robot’s hand can hold at most one block, etc. While it does not matter what happens
when an action description is applied to a state that is not legal, the users do need to
make sure that it will not yield an illegal state from a legal one.

The same is true for Reiter’s successor state axioms, which are of the form:

F (x, do(a, s)) ≡ ϕ(x, a, s),

where ϕ(x, a, s) is a formula about situation s. They are intended to specify how
the truth values of F (x) in the successor state do(a, s) is to be determined using a
formula about the current state s, provided that the current state s is legal and a is
executable. If any of these conditions is not true, then while the situation do(a, s) still
exists and its corresponding state determined using the successor state axioms, their
validity is not guaranteed. In other words, the successor state axioms are supposed
to make sense only when the current state is legal and the action is executable. But
again, which state is considered legal is not explicitly stated, and the user is supposed
to understand it well enough so that starting from a legal state, the new state computed
using the successor state axioms will also be legal.

There has been few work specifically on specifying the space of legal states. One
notable exception was a complete axiomatization of the legal blocks world states
by Cook and Liu (2003).On the other hand, the space of legal states is closely related
to state constraints and static causal rules for which there have been an extensive body
of work (e.g. Finger (1986); Ginsberg and Smith (1988b,a); Carbonell et al (1991);
Lin and Reiter (1994); Lin (1995); McCain and Turner (1995); Thielscher (1995);
Zhang and Foo (1997); Zhang et al (2002); Lin (2004); Huang et al (2000); Herzig
and Varzinczak (2007); Thielscher (2011)). Intuitively, a state is legal if it satisfies
all the state constraints. But to our knowledge, there has not been any work on how
to systematically write down these state constraints for the purpose of defining the
space of legal states, which is part of what this paper is about. It’s well-known that
state constraints, action effect descriptions, causal rules, and action preconditions
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interact with each other, and much of the aforementioned work has dealt with this.
State constraints and causal rules can work together with action effect axioms to
entail new action effects as well as new action preconditions. On the other hand,
action effect axioms and state constraints can entail new state constraints as well.
Thus the consistency of an action theory including causal rules, state constraints,
effect axioms, and action preconditions is not a trivial question, and has been studied
by many authors. However, none of these authors so far had addressed the question of
when it is enough for a set of state constraints and static causal rules to capture exactly
the space of legal states. One of the main point of this paper is that it is important to
consider the problem of how to define the space of legal states in its own right, not
just as a side effect of state constraints, causal rules, and action descriptions. Just
as it is important to study how one should best provide a complete axiomatization
of action effects (the frame and ramification problems), it is important to study how
one should provide a characterization of legal states. Furthermore, the notion of legal
states can and should be studied on its own, independent of causal rules and action
effects. As we argue in this paper, often it does not matter whether one has a complete
set of constraints in the sense that a state is legal iff it satisfies the set of constraints. A
more important criterion is whether a set of possible constraints is characteristic in the
sense that no two different legal states can satisfy the same subset of the constraints.
For instance, the differences come up in the blocks world: to completely capture the
space of legal states in the blocks work requires a second-order axiom to rule out
cycles, but our position system for it is first-order and characteristic.

Having an explicit representation of legal states is useful. Many have observed
that state constraints can be used to prune the search space in planning (e.g. Carbonell
et al (1991); Huang et al (2000); Tu et al (2011)). What we propose in this paper is
to use a special class of constraints, what we call “position systems” to characterize
legal states. Consider the logistics domain that consists of cities, locations, packages
and vehicles. In any legal state, a package is either at exactly one of the locations or
in exactly one of the vehicles, and a vehicle is at exactly one of the locations. Thus
the properties “at location l” and “in vehicle h” are like the “positions” of packages,
and “at location l” the positions of vehicles. We now proceed to make this precise.

2 Basic definitions

To abstract away action formalisms, we consider transition systems. Given a first-
order language L, a transition system is (M, T ), where M is a set of first-order
structures in L, and T a binary relation. Intuitively,M is the set of legal states and
T represents the transition function on the legal states. Typically, structures in M
should share the same domain of objects, but this is not required.

We consider typed objects. The types can be represented as sorts in a many-sorted
first-order language L or by unary predicates.

Let M be a set of states (structures in L). Let ϕi(x,yi) be a formula that may
contain variable x of type τ and variables in yi as free variables, and ni either a
natural number or inf , 1 ≤ i ≤ k. We say that {(ϕ1(x,y1), n1), ..., (ϕk(x,yk), nk)}
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is a position system inM for objects of type τ if the following properties are true in
all states inM:

– for every object x of type τ , one of the property ϕi(x,yi) must be true:

∀x.∃y1ϕ1(x,y1) ∨ · · · ∨ ∃ykϕk(x,yk). (1)

– each object of type τ can satisfy just one property:

∀x,yi, z.ϕi(x,yi) ∧ ϕi(x, z) ⊃ yi = z, (2)
∀x.∃yiϕi(x,yi) ⊃ ∀yj¬ϕj(x,yj), (3)

where i 6= j, z is a tuple of new variables of the same size and type as yi, and
ϕi(x, z) the result obtained from ϕi by replacing the variables in yi by their
respective variables in z.

– at most ni objects of type τ can satisfy ϕi(x,yi), that is, for each i, if ni is not
inf , then

∀x1, ..., xni+1,yi.ϕi(x1,yi)∧· · ·∧ϕi(xni+1,yi) ⊃ (x1 = x2∨· · ·∨x1 = xni+1).
(4)

Our first observation is that there are many position systems. For instance, trivial-
ly, {(P (x), inf), (¬P (x), inf)} is a position system. A good position system is one
that can be used to capture legal states.

In the following, we make use of the following conventions. If ϕ(x1, ..., xn) is a
formula with a tuple of distinct free variables (x1, ..., xn), and (a1, ..., an) a matching
tuple of objects in the domain of a structure M , then we write ϕ(a1, ..., an) to denote
the expression of replacing ai for every free occurrences of xi in ϕ for all 1 ≤ i ≤ n.
Notice that formally speaking, ϕ(a1, ..., an) is not a formula. For any such expression
ϕ(a1, ..., an), we write M |= ϕ(a1, ..., an) if for some distinct variables x1, ..., xn
not occurring in ϕ(a1, ..., an), and some variable assignment σ such that σ(xi) =
ai, 1 ≤ i ≤ n, M,σ |= ϕ(x1, ..., xn) (ϕ(x1, ..., xn) is true in M under σ), where
ϕ(x1, ..., xn) is the result of replacing ai by xi in ϕ(a1, ..., an) for all 1 ≤ i ≤ n.

If {(ϕ1(x,y1), n1), ..., (ϕk(x,yk), nk)} is a position system for objects of sort
τ , M a legal state, and a an object of sort τ in the domain of M , then the position
of a in M is the unique ϕi(a,b) that is true in M , where b is a tuple of objects in
M that match the free variables other than x in ϕi. In the following, we denote the
position of a in M by pos(a,M). If we have a position system for every sort in L,
then every object in M will have a position. In the following, we denote by pos(M)
the set of positions of the objects in M :

pos(M) = {pos(a,M) | a is an object in M}.

Given a transition system (M, T ) in language L, a set P of position systems,
one for each sort, is said to be characteristic for M iff for any two distinct states
M1,M2 ∈ M that have the same domain, pos(M1) 6= pos(M2). This means that a
state inM can be represented by the set of objects and their positions in it.

The main message of this paper is that a characteristic set of position systems
often exists, is easy to define, and useful. In the rest of the paper, we illustrate us-
ing three domains: the blocks world domain, the wall painting domain, the logistics
domain, and the tire world domain.
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3 Examples

3.1 The blocks world

Consider the blocks world domain with fluents on(x, y), ontable(x), holding(x),
handempty, and clear(x).

A state in the blocks world is legal if it contains a finite number of blocks, and
has the property that among the blocks, at most one is held by the robot (holding(x)
is true), and the rest arranged into some non-overlapping single column towers on the
table.

The following position system says that a block is either held by the robot, on the
table, or on another block:

{(on(x, y), 1), (ontable(x), inf), (holding(x), 1)}. (5)

This system gives rise to the following axioms:

∀x.(∃y)on(x, y) ∨ ontable(x) ∨ holding(x), (6)
∀x, y1, y2.on(x, y1) ∧ on(x, y2) ⊃ y1 = y2, (7)
∀x.[(∃y)on(x, y)] ⊃ ¬ontable(x), (8)
∀x.[(∃y)on(x, y)] ⊃ ¬holding(x), (9)
∀x.ontable(x) ⊃ ¬holding(x), (10)
∀x1, x2, y.on(x1, y) ∧ on(x2, y) ⊃ x1 = x2, (11)
∀x1, x2.holding(x1) ∧ holding(x2) ⊃ x1 = x2. (12)

The above set of axioms does not capture legal states. To do that, we need to add
a second-order axiom to rule out cycles in the transitive closure of on(x, y), and an
axiom to rule out the possibility of the robot holding a tower of more than one blocks.

However, the position system (5) is characteristic. If two legal states have the
same position for every blocks in their domain, then they are the same state.

Proposition 1 If M1 and M2 are two legal blocks world states, and pos(M1) =
pos(M2), then M1 =M2.

Thus a legal state in the blocks world can be represented by its set of object
positions according to (5). For instance, the following two-blocks world

{ontable(A), handempty, on(B,A), clear(B)}

can be represented by the positions of the two blocks:

{ontable(A), on(B,A)}.
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3.2 The wall painting domain

Consider a domain with walls and colors, and the action of painting a wall into certain
color: paint(w, c) always succeeds and changes the color of the wall w to color c.
The legal states are those that assign exactly one color to each wall.

So there are two sorts here, wall and color, and one fluent color(w, c). For sort
wall, the position system {color(x, y), inf)} yields the following axioms:

∀x∃y.color(x, y), (13)
∀x, y1, y2.color(x, y1) ∧ color(x, y2) ⊃ y1 = y2. (14)

For sort color, there is no meaningful position system. In fact, a state is legal iff
it satisfies (13) and (14). It follows that {color(x, y), inf)} for x is a characteristic
position system.

3.3 The logistics domain

In logistics domain, the objects are packages, locations, cities, trucks, airplanes, ve-
hicles, and airports. The class of airports is a subclass of locations, and a vehicle is
either an airplane or a truck. There are two predicates: in(x, y) (location x is in city
y or package x is inside vehicle y), and at(x, y) (package x or vehicle x is at location
y).

Like the wall painting example, the legal states can be captured by the following
position systems:

– For locations and airports, {(in(x, y) ∧ city(y), inf)}.
– For packages, {(at(x, y) ∧ location(y), inf), (in(x, y) ∧ vehicle(y), inf)}.
– For airplanes: {(at(x, y) ∧ airport(y), inf)}.
– For trucks: {(at(x, y) ∧ location(y), inf)}. Notice that once a truck is in a city,

it cannot be driven to another city. This is a constraint about dynamics of trucks,
not on the legality of states.

– No meaningful position systems for cities.

3.4 The tire world

The tire world is a standard test domain in Russel and Norvig (2003), in which the
general task is to change a flat tire with a sequence of actions involving fetching
objects from containers, jacking the wheel up and down, loosening and tightening
nuts, removing and putting on nuts, removing and putting on wheels, inflating wheels,
etc.

In the tire world, the objects are nuts, hubs, wheels, containers, and tools (like
jack and wrench). It has the following predicates:

– loose(x, y): nut x is loosen on hub y;
– tight(x, y): nut x is tight on hub y;
– have(x): human has x which might be a nut, hub, wheel, or tool;
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– unfastened(x): hub x is not fastened;
– free(x): hub x is free of wheels;
– on(x, y): wheel x is on hub y;
– in(x, y): object x which might be a nut, hub, wheel, or tool is in container y;
– open(x): container x is opened;
– on ground(x): hub x is on the ground.

The legal states can be captured by the following position systems (we assume
that there is only one nut on the hub and one wheel on the hub):

– For nuts,

{(loose(x, y) ∧ hub(y), 1), (tight(x, y) ∧ hub(y), 1), (have(x), inf),
(in(x, y) ∧ container(y), inf)}.

– For hubs, there are three position systems:

{(loose(y, x) ∧ nut(y), 1), (tight(y, x) ∧ nut(y), 1), (unfastened(x), inf)},
{(free(x), inf), (on(y, x) ∧ wheel(y), 1)},
{(on ground(x), inf), (¬on ground(x), inf)}.

– For wheels,

{(on(x, y) ∧ hub(y), 1), (have(x), inf), (in(x, y) ∧ container(y), inf)}.

– For tools, {(in(x, y) ∧ container(y), inf), (have(x), inf)}.
– For containers, {(open(x), inf), (¬open(x), inf)}.

4 Applications

For a dynamic domain, having a characteristic set of position systems is very useful.
First of all, a position system yields a set of constraints that can be used to prune
search space in planning (e.g. Huang et al (2000); Etzioni (1993); Carbonell et al
(1991)). If we have a characteristic set of position systems, we can then represent
states by the objects and their positions in the domain. This means that we can design
a planner based on when to move which object to where. Assume that we have speci-
fications for the predicate moveTo(x, p1, p2, g): for goal g, if the position of x in the
current state is p1, then it needs to be moved to position p2. Then a simple planner
can work as follows:

while goal g is not true do
choose an action A such that

A is executable and
for some x whose current position is p1, there is
a position p2
such that moveTo(x,p1,p2,g) can be proved and
p2 holds after A is performed

We illustrate using the blocks world domain, the logistics domain, and the tire world
domain.
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4.1 The blocks world

It is easy to write an effective planner this way for the blocks world. In principle, for
each block x and each position p, we need to specify the conditions under which x
needs to be moved to position p. It is often convenient to do this by a sequence of
Prolog-like rules.

We introduce an auxiliary predicate noMove(x, g), meaning for goal g, the block
x does not need to be moved. The following rules specify the predicate. The first two
rules say that do not move a block that is already part of a tower in the goal, and
the last two rules say that do not move a block that is irrelevant for the goal. In the
following, we capitalize variable names, and write P (x) to mean that the atom P (x)
is true in the current state, and P (x, G) that the atom P (x) is true in the goal state G.

noMove(X,G)← ontable(X), ontable(X,G).

noMove(X,G)← on(X,Y ), on(X,Y,G), noMove(Y,G).

noMove(X,G)← ontable(X),¬holding(X,G),¬ontable(X,G),
¬∃Y.on(X,Y,G).

noMove(X,G)← on(X,Y ), noMove(Y,G),¬holding(X,G),¬ontable(X,G),
¬∃Z.on(X,Z,G).

With this predicate, moveTo is easy to specify. If holding(x) is true for some
block x in the current state, then if block x is ready to be moved to its goal position,
then do so (first rule) else put it on the table (second rule). If holding(x) is not true
for any x, then pick a block x that is not forbidden to move and can be moved to
position holding(x) by an action in the current state. The following Prolog-like rules
are sequentially ordered as they are written.

moveTo(X,holding(X), on(X,Y ), G)← on(X,Y,G), clear(Y ), noMove(Y,G).

moveTo(X,holding(X), ontable(X), G).

moveTo(X,P, holding(X), G)← ¬noMove(X,G).

This set of rules, when used by the forward chaining planner that was given ear-
lier, behave in a way similar to TLP planner Bacchus and Kabanza (2000) and TAL
planner Doherty and Kvarnstram (2001).

Since (5) is a characteristic position system for the blocks world, a legal state
can be represented by the set of blocks’ positions in the state. Thus a state can be
represented by a set of O(n) atoms, where n is the number of blocks. Furthermore,
given a set of blocks’ positions, the truth value of other atoms like clear(x) can be
determined in linear time.

Proposition 2 For the blocks world, assume that the initial state S is legal, complete
and represented by Pos(S), the set of the positions of the blocks in the state, and a
goal state G is a set of atoms that are parts of a legal state, then the forward planner
will find a plan of size at most 4n in polynomial time, where n is the number of blocks.
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Proof Our first observation is that if noMove(x,G) can be proved, then G can
be achieved without any action being done on x. Our second observation is that if
holding(x) is true in the current state, then x is either moved to the table in the next
state or to its goal position. Thus in the worst case, the algorithm will move all blocks
on the table and build up the towers specified in the goal, and this involves at most
4n actions. When grounded, there are O(n2) possible actions, and O(n2) rules for
moveTo and noMove. Checking whether a rule can be fired takes time linear to the
size of S andG, which isO(n). Thus it takesO(n5) to decide on an action to do, and
O(n6) to return a plan. This is a very rough analyses in the worst time. In practice,
the algorithm should run much faster.

4.2 The logistics domain

Here we assume that a goal is a set of atoms of the form at(p, l), where p is a package
and l a location.

Again the following Prolog-like rules are interpreted sequentially in the order that
are written. A rule can be applied only if none of the rules before it can be applied.

1. If package X is at an airport, load it to an airplane if it needs to go to another city,
and load it to a truck if it needs to go to another location in the same city:

moveTo(X, at(X,L), in(X,V ), G)←
package(X), airport(L), airplane(V ), at(X,L2, G), in(L,C1),

in(L2, C2), C1 6= C2.

moveTo(X, at(X,L), in(X,V ), G)←
package(X), airport(L), truck(V ), at(X,L2, G), in(L,C), in(L2, C),

L 6= L2.

2. If package X is at a location other than an airport, but needs to be moved, then
load it to a truck:

moveTo(X, at(X,L), in(X,V ), G)←
package(X), truck(V ),¬airport(L), at(X,L2, G), L 6= L2.

3. If package X is in a vehicle and the vehicle is at X’s destination, then unload X
from the vehicle:

moveTo(X, in(X,V ), at(X,L), G)← at(V,L), at(X,L,G).

4. If packageX is in an airplane which is in the same city asX’s destination is, then
unload X from the airplane:

moveTo(X, in(X,V ), at(X,L), G)←
airplane(V ), at(V,L), at(X,L1, G), in(L,C), in(L1, C).
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5. If package X is in a truck which is at an airport in a city that is not the same as
X’s destination is, then unload X from the truck so an airplane can pick it up:

moveTo(X, in(X,V ), at(X,L), G)←
truck(V ), airport(L), at(V,L), at(X,L1, G), in(L,C), in(L1, C1),

C 6= C1.

6. Fly an airplane Y to pickup package X if X is at an airport and needs to go to
another city:

moveTo(Y, at(Y,L1), at(Y,L2), G)←
airplane(Y ), package(X), at(X,L2), airport(L2), at(X,L3, G),

in(L2, C1), in(L3, C2), C1 6= C2.

7. Drive a truck Y to pickup package X if it needs to go to another location:

moveTo(Y, at(Y,L1), at(Y,L2), G)←
truck(Y ), package(X), at(X,L2), in(L1, C), in(L2, C), at(X,L3, G),

L2 6= L3.

8. If a truck Y has a package X in it, then if X needs to be delivered to a location
that is in the same city as the truck is, then drive Y to X’s destination else drive
the truck to an airport:

moveTo(Y, at(Y,L1), at(Y,L2), G)←
truck(Y ), package(X), in(X,Y ), in(L1, C), in(L2, C), at(X,L2, G),

L2 6= L3.

moveTo(Y, at(Y,L1), at(Y,L2), G)←
truck(Y ), airport(L2), package(X),¬airport(L1), in(X,Y ), in(L1, C),

in(L2, C).

The rules above for the logistics domain look more involved than the ones for the
blocks world, but they are not really hard to write. Basically, we just go through all
possible positions of a package and decide what to do.

We emphasize that the rules above are sequentially ordered. For example, the
last rule says that if a truck is at a non-airport location L1, contains a package, then
it needs to go to an airport in the same city. This is correct only if the package’s
destination is not in the same city as the truck is. However, if this were the case, an
earlier rule would have been applied first.

Similar to the blocks world domain, while this set of rules does not guarantee the
planner to return shortest plans, it does make the planner run in polynomial time.

Proposition 3 Assume that the initial state S is complete and represented byPos(S),
and the goal G is a set of locations for packages. If the goal is achievable, then the
forward planner will find a plan of size at most 12n in polynomial time, where n is
the number of packages in the goal.
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Proof For each package in the goal, it takes at most 12 actions to move it to its
goal position: drive a truck to where it was, load it into the truck, drive the truck to
an airport, unload it at the airport, fly an airplane to the airport, load the package
into the airplane, fly the airplane to an airport in the city where the package is to be
delivered, unload the package at the new airport, drive a truck to the new airport, load
the package to the truck, drive the truck to the package’s final location, and unload
the package from the truck.

The results are easy to see by observing that according to the rules, the planner
will not run into a cycle, and will not move any package that is not in the goal.

4.3 The tire world

Without loss of generality, we assume that a goal is a set of atoms of the form
on(w, h), where w is a wheel and h a hub.

The following Prolog-like rules can be used by the forward chaining planner for
searching a plan.

1. If the human does not have a jack (resp. wrench) and jack J (resp. wrenchWC) is
in container C, then open C if it is not opened, fetch J (resp.WC) if C is opened:

moveTo(C,¬open(C), open(C), G)←
jack(J), container(C),¬have jack, in(J,C).

moveTo(J, in(J,C), have(J), G)←
jack(J), container(C),¬have jack, open(C).

moveTo(C,¬open(C), open(C), G)←
wrench(WC), container(C),¬have wrench, in(WC,C).

moveTo(WC, in(WC,C), have(WC), G)←
wrench(WC), container(C),¬have wrench, open(C).

2. If a wheel needs to be on hub H and there is another wheel W on H , then
– jack down H if there is a nut tight on H and H is not on the ground,
– loosen the nut if it is tight on H and H is on the ground,
– jack up H if there is a nut loose on H and H is on the ground,
– remove the nut if it is loose and H is not on the ground,
– jack up H if H is unfastened and on the ground,
– remove the wheel if H is unfastened and not on the ground.

moveTo(H,¬on ground(H), on ground(H), G)←
wheel(W ), wheel(W2), hub(H), nut(N), have jack, on(W,H),

on(W2, H,G),W 6=W2, tight(N,H).

moveTo(H, tight(N,H), loose(N,H), G)←
wheel(W ), wheel(W2), hub(H), nut(N), have wrench, on(W,H),

on(W2, H,G),W 6=W2, on ground(H).
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moveTo(H, on ground(H),¬on ground(H), G)←
wheel(W ), wheel(W2), hub(H), nut(N), have jack, on(W,H),

on(W2, H,G),W 6=W2, loose(N,H).

moveTo(H, loose(N,H), unfastened(H), G)←
wheel(W ), wheel(W2), hub(H), nut(N), have wrench, on(W,H),

on(W2, H,G),W 6=W2,¬on ground(H).

moveTo(H, on ground(H),¬on ground(H), G)←
wheel(W ), wheel(W2), hub(H), nut(N), have jack, on(W,H),

on(W2, H,G),W 6=W2, unfastened(H).

moveTo(H, on(W,H), free(H), G)←
wheel(W ), wheel(W2), hub(H), nut(N), on(W2, H,G),W 6=W2,

unfastened(H),¬on ground(H).

3. If wheel W is on hub H and it needs to be on another hub, then
– jack down H if there is a nut tight on H and H is not on the ground,
– loosen the nut if it is tight on H and H is on the ground,
– jack up H if there is a nut loose on H and H is on the ground,
– remove the nut if it is loose and H is not on the ground,
– jack up H if H is unfastened and on the ground,
– remove the wheel if H is unfastened and not on the ground.

moveTo(H,¬on ground(H), on ground(H), G)←
wheel(W ), hub(H), hub(H2), nut(N), have jack, on(W,H),

on(W,H2, G), H 6= H2, tight(N,H).

moveTo(H, tight(N,H), loose(N,H), G)←
wheel(W ), hub(H), hub(H2), nut(N), have wrench, on(W,H),

on(W,H2, G), H 6= H2, on ground(H).

moveTo(H, on ground(H),¬on ground(H), G)←
wheel(W ), hub(H), hub(H2), nut(N), have jack, on(W,H),

on(W,H2, G), H 6= H2, loose(N,H).

moveTo(H, loose(N,H), unfastened(H), G)←
wheel(W ), hub(H), hub(H2), nut(N), have wrench, on(W,H),

on(W,H2, G), H 6= H2,¬on ground(H).

moveTo(H, on ground(H),¬on ground(H), G)←
wheel(W ), hub(H), hub(H2), nut(N), have jack, on(W,H),

on(W,H2, G), H 6= H2, unfastened(H).

moveTo(W, on(W,H), have(W ), G)←
wheel(W ), hub(H), hub(H2), nut(N), on(W,H2, G), H 6= H2,

unfastened(H),¬on ground(H).
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4. If wheel W is in container C and W needs to be on a hub, then open C if it is not
opened, fetch W if C is opened:

moveTo(C,¬open(C), open(C), G)←
wheel(W ), hub(H), container(C), on(W,H,G), in(W,C).

moveTo(W, in(W,C), have(W ), G)←
wheel(W ), hub(H), container(C), on(W,H,G), open(C).

5. If wheel W needs to be on hub H , human has W and H is free, then jack up H
if H is on the ground and put W on H otherwise:

moveTo(H, on ground(H),¬on ground(H), G)←
wheel(W ), hub(H), have jack, have(W ), free(H), on(W,H,G).

moveTo(W,have(W ), on(W,H), G)←
wheel(W ), hub(H), free(H), on(W,H,G),¬on ground(H).

Again, above rules are easy to write. We just go through all possible positions of the
wheel and hub, and decide what to do. Different from other domains, the order of
above rules is not important. These rules can be applied randomly while still guaran-
teeing the planner to return a plan.

Similarly, while this set of rules does not guarantee the planner to return shortest
plans, it does make the planner run in polynomial time.

Proposition 4 For the tire world, assume that the initial state S is legal, complete
and represented by Pos(S), and a goal state G is a set of requirements that some
wheels are on some hubs. If the goal is achievable, then the forward planner will find
a plan of size at most 15n in polynomial time, where n is the number of atoms in the
goal.

Proof For each on(w, h) in the goal, it takes at most 15 actions to move it to its goal
position: open a container, fetch a jack, open another container, fetch a wrench, jack
down h, loosen the nut on h, jack up h, remove the nut from h, remove the wheel on
h, jack down the hub h′ where w is on, loosen the nut on h′, jack up h′, remove the
nut from h′, remove w from h′, put w on h.

5 Concluding remarks

We have proposed a systematic approach to specify the space of legal states by a
framework of position systems, and related it to state constraints. We have shown how
it can be used in planning. Informally, a position system defines possible “positions”
an object can have. Theoretically, there may be many position systems for a transition
system. But the desired ones are those that are characteristic in the sense that the
set of objects’ positions according to these position systems identifies uniquely a
legal state. We believe that most transition systems in AI have such characteristic
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position systems. One future work is to verify this by defining characteristic position
systems for the known AI transition systems such as the planning domains used in
the planning competitions (e.g. Bacchus (2001)).
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