The Relationship between MDPSTs and MDPIPs

Jianmin Ji
Multi-Agent Systems Lab, Department of Computer Science
University of Science and Technology of China
Hefei, 230026, China
jizheng@mail.ustc.edu.cn

December 10, 2007

1 Preparation

Markov decision processes with imprecise probabilities (MDPIPs) [3] and Markov decision processes with set-valued transitions (MDPSTs) [2] are two import frameworks for imprecise MDPs.

An MDPIP is a Markov decision process where transitions are specified through sets of probability measures. An MDPIP is defined by a tuple $\langle\mathcal{S}, \mathcal{A}, \mathcal{K}, \mathcal{C}\rangle$, where

- \mathcal{S} is a finite set of states of the system;
- $\mathcal{A}: \mathcal{S} \rightarrow 2^{\mathcal{S}}$ is the possible action function, where $\mathcal{A}(s)$ is a set of possible actions for the state s;
- \mathcal{K} is a credal set over the state space, a nonempty credal set $\mathcal{K}_{s}(a)$ for all $s \in \mathcal{S}$ and $a \in \mathcal{A}(s)$, representing the set of probability distributions $P\left(s^{\prime} \mid s, a\right)$ over successor states in \mathcal{S};
- $\mathcal{C}: \mathcal{S} \times A \rightarrow \mathbb{R}$ is a real-valued, bounded reward function.

An MDPST is a Markov decision process where transitions move probabilistically to reachable sets, and the probability for a particular state is not resolved by the model. An MDPST is defined by a tuple $\langle\mathcal{S}, \mathcal{A}, m, \mathcal{C}\rangle$, where

- $\mathcal{S}, \mathcal{A}, \mathcal{C}$ are the same as those defined in MDPIPs;
- For any $s \in \mathcal{S}, a \in \mathcal{A}(s)$, and $k \in 2^{\mathcal{S}} \backslash \emptyset, m(k \mid s, a)$ stands for the probability of ending in the set of states $k . \mathbf{F}(s, a)=\{k \mid m(k \mid s, a)>$ $0\}$.

The relationship between MDPIPs and MDPSTs is discussed in the next section.

2 The main theorem

In this section we prove that any MDPST is expressible by a MDPIP. The proof is based on the Farkas Lemma [1]. We use A^{T} to denote the transpose of the matrix A.

Lemma 1 (Farkas Lemma)

$$
(\exists x \geq 0, A x=b) \Leftrightarrow\left(\forall y,\left(A^{T} y \geq 0 \Rightarrow b^{T} y \geq 0\right)\right)
$$

With the help of the Farkas Lemma, we have the following fundamental relationship between MDPSTs and MDPIPs.

Theorem 1 Any MDPST $q=\langle\mathcal{S}, \mathcal{A}, m, \mathcal{C}\rangle$ is expressible by an MDPIP $r=$ $\langle\mathcal{S}, \mathcal{A}, \mathcal{K}, \mathcal{C}\rangle$, where for each $s \in \mathcal{S}$ and $a \in \mathcal{A}(s)$, any possible probability distribution $P(\cdot \mid s, a) \in \mathcal{K}_{s}(a)$ should satisfy the following condition: for any $k \subseteq \mathcal{S}$,

$$
\begin{equation*}
\sum_{k^{\prime} \in \mathbf{F}(s, a), \text { s.t. } k^{\prime} \subseteq k} m\left(k^{\prime} \mid s, a\right) \leq \sum_{s^{\prime} \in k} P\left(s^{\prime} \mid s, a\right) . \tag{1}
\end{equation*}
$$

Proof. For any $s \in \mathcal{S}$ and $a \in \mathcal{A}(s)$, a probability distribution $P(\cdot \mid s, a)$ is allowed by a $\operatorname{MDPST}\langle\mathcal{S}, \mathcal{A}, m, \mathcal{C}\rangle$ iff the following linear equations have a non-negative solution.

$$
\left\{\begin{array}{l}
\sum_{k \in F(s, a)} m(k \mid s, a) W\left(k, s_{1}\right)=P\left(s_{1} \mid s, a\right), \tag{2}\\
\sum_{k \in F(s, a)} m(k \mid s, a) W\left(k, s_{2}\right)=P\left(s_{2} \mid s, a\right), \\
\cdots \\
\sum_{k \in F(s, a)} m(k \mid s, a) W\left(k, s_{n}\right)=P\left(s_{n} \mid s, a\right), \\
\sum_{s^{\prime} \in k_{1}} W\left(k_{1}, s^{\prime}\right)=1 \\
\sum_{s^{\prime} \in k_{2}} W\left(k_{2}, s^{\prime}\right)=1 \\
\cdots \\
\sum_{s^{\prime} \in k_{l}} W\left(k_{l}, s^{\prime}\right)=1
\end{array}\right.
$$

where $n=|\mathcal{S}|$ and $l=|\mathbf{F}(s, a)|$. For each $k \in \mathbf{F}(s, a)$ and $s^{\prime} \in \mathcal{S}, W\left(k, s^{\prime}\right)$ is the variable. Intuitively, $W\left(k, s^{\prime}\right)$ is the weight of s^{\prime} in k. Clearly, there are $|\mathbf{F}(s, a)| \times|\mathcal{S}|$ variables and $|\mathbf{F}(s, a)|+|\mathcal{S}|$ equations.

From the Farkas Lemma, it is equal to prove that, for all possible y, $A^{T} y \geq 0$ implies $b^{T} y \geq 0$. Let $y=\left\{e q^{s_{1}}, \ldots, e q^{s_{n}}, e q^{k_{1}}, \ldots, e q^{k_{l}}\right\}^{T}$ and $A^{T} y \geq 0$ then for each $k \in \mathbf{F}(s, a)$, if $s^{\prime} \in k$ then $e q^{s^{\prime}} m(k \mid s, a)+e q^{k} \geq 0$, if $s^{\prime} \notin k$ then $e q^{s^{\prime}} m(k \mid s, a) \geq 0$. We need to prove that the inequality $P\left(s_{1} \mid s, a\right) e q^{s_{1}}+\cdots+P\left(s_{n} \mid s, a\right) e q^{s_{n}}+e q^{k_{1}}+\cdots+e q^{k_{l}} \geq 0$ is valid. It is equal to prove that the following inequality is valid under the condition (1):

$$
\begin{align*}
& P\left(s_{1} \mid s, a\right) e q^{s_{1}}+\cdots+P\left(s_{n} \mid s, a\right) e q^{s_{n}}-\min \left\{e q^{s^{\prime}} \mid s^{\prime} \in k_{1}\right\} m\left(k_{1} \mid s, a\right) \\
&-\cdots-\min \left\{e q^{s^{\prime}} \mid s^{\prime} \in k_{l}\right\} m\left(k_{l} \mid s, a\right) \geq 0 \tag{3}
\end{align*}
$$

It is clear that if there exists some $k \in \mathbf{F}(s, a)$ s.t. $s^{\prime} \notin k$, then $e q^{s^{\prime}} \geq 0$. Let $t=\left\{s^{\prime} \mid \forall k \in \mathbf{F}(s, a), s^{\prime} \in k\right.$ and $\left.e q^{s^{\prime}} \leq 0\right\}$. If $t \neq \emptyset$ then inequality (3) is valid if the following inequality is valid

$$
\begin{equation*}
\sum_{s^{\prime} \in t} P\left(s^{\prime} \mid s, a\right) e q^{s^{\prime}}+\sum_{s^{\prime} \notin t} P\left(s^{\prime} \mid s, a\right) e q^{s^{\prime}}-\min \left\{e q^{s^{\prime}} \mid s^{\prime} \in t\right\} \geq 0 \tag{4}
\end{equation*}
$$

Clearly, inequality (4) is valid, now we only need to consider $t=\emptyset$.
If $t=\emptyset$ then for each $s^{\prime} \in \mathcal{S}$, eq ${ }^{s^{\prime}} \geq 0$. Let $c_{0}=\emptyset, \mathcal{S}_{i}=\mathcal{S} \backslash c_{i-1}$, and $c_{i}=c_{i-1} \cup\left\{s^{\prime} \mid e q^{s^{\prime}}=\max \left\{e q^{s^{\prime \prime}} \mid s^{\prime \prime} \in \mathcal{S}_{i}\right\}\right\}, 0<i<\infty$. It is clear that $\mathcal{S}=\bigcup_{0 \leq i<\infty} c_{i}$ and from the condition (1) the following inequality is valid

$$
\begin{equation*}
\sum_{s^{\prime} \in c_{i}} P\left(s^{\prime} \mid s, a\right)-\sum_{k \in \mathbf{F}(s, a), \text { s.t. } k \subseteq c_{i}} m(k \mid s, a) \geq 0 \tag{5}
\end{equation*}
$$

where $0<i<\infty$.
At last, let $E Q\left(c_{i}\right)=\min \left\{e q^{s^{\prime}} \mid s^{\prime} \in c_{i}\right\}$, then for each $k \in \mathbf{F}(s, a)$, $\min \left\{e q^{s^{\prime}} \mid s^{\prime} \in k\right\}=E Q\left(c_{j}\right)$ and $j=\min \left\{i \mid k \subseteq c_{i}\right\}$. So

$$
\begin{align*}
& P\left(s_{1} \mid s, a\right) e q^{s_{1}}+\cdots+P\left(s_{n} \mid s, a\right) e q^{s_{n}}-\min \left\{e q^{s^{\prime}} \mid s^{\prime} \in k_{1}\right\} m\left(k_{1} \mid s, a\right) \\
& \quad \quad-\cdots-\min \left\{e q^{s^{\prime}} \mid s^{\prime} \in k_{l}\right\} m\left(k_{l} \mid s, a\right)= \\
& \sum_{0<i<\infty}\left[E Q\left(c_{i}\right)-E Q\left(c_{i+1}\right)\right] \cdot\left[\sum_{s^{\prime} \in c_{i}} P\left(s^{\prime} \mid s, a\right)-\sum_{k \in \mathbf{F}(s, a), s . t . \operatorname{k\subseteq c}} m(k \mid s, a)\right] \\
& \quad \geq 0 . \tag{6}
\end{align*}
$$

So under the condition (1), inequality (3) is valid and the probability distribution $P(\cdot \mid s, a)$ is allowed.

In fact the condition (1) is also a necessary condition.
Proposition 1 For each $s \in \mathcal{S}$ and $a \in \mathcal{A}(s)$, a probability distribution $P(\cdot \mid s, a)$ is allowed by a $\operatorname{MDPST}\langle\mathcal{S}, \mathcal{A}, m, \mathcal{C}\rangle$, then it satisfies the following condition: for any $k \subseteq \mathcal{S}$,

$$
\begin{equation*}
\sum_{k^{\prime} \in \mathbf{F}(s, a), \text { s.t. } k^{\prime} \subseteq k} m\left(k^{\prime} \mid s, a\right) \leq \sum_{s^{\prime} \in k} P\left(s^{\prime} \mid s, a\right) . \tag{7}
\end{equation*}
$$

Proof. Clearly, in order to have non-negative solutions for linear equations (2), the condition should be satisfied.

There is another condition which is equal to the condition (1).
Proposition 2 For any $\operatorname{MDPST}\langle\mathcal{S}, \mathcal{A}, m, \mathcal{C}\rangle, s \in \mathcal{S}$ and $a \in \mathcal{A}(s), P(\cdot \mid$ $s, a)$ is a probability distribution allowed by the MDPST.

$$
\begin{equation*}
\text { For all } k \subseteq \mathcal{S}, \sum_{s^{\prime} \in k} P\left(s^{\prime} \mid s, a\right) \leq \sum_{k^{\prime} \in \mathbf{F}(s, a) \text {, s.t. } k \cap k^{\prime} \neq \emptyset} m\left(k^{\prime} \mid s, a\right) \tag{8}
\end{equation*}
$$

iff

$$
\begin{equation*}
\text { for all } k \subseteq \mathcal{S}, \quad \sum_{k^{\prime} \in \mathbf{F}(s, a), \text { s.t. } k^{\prime} \subseteq k} m\left(k^{\prime} \mid s, a\right) \leq \sum_{s^{\prime} \in k} P\left(s^{\prime} \mid s, a\right) \text {. } \tag{9}
\end{equation*}
$$

Proof. Assume inequality (8) is true, then
for all $k \subseteq \mathcal{S}, 1-\sum_{s^{\prime} \in k} P\left(s^{\prime} \mid s, a\right) \geq 1-\sum_{k^{\prime} \in \mathbf{F}(s, a), \text { s.t. } k \cap k^{\prime} \neq \emptyset} m\left(k^{\prime} \mid s, a\right)$.
Let $\bar{k}=\mathcal{S} \backslash k$, then

$$
1-\sum_{s^{\prime} \in k} P\left(s^{\prime} \mid s, a\right)=\sum_{s^{\prime} \in \bar{k}} P\left(s^{\prime} \mid s, a\right)
$$

and

$$
1-\sum_{k^{\prime} \in \mathbf{F}(s, a), \text { s.t. } k \cap k^{\prime} \neq \emptyset} m\left(k^{\prime} \mid s, a\right)=\sum_{k^{\prime} \in \mathbf{F}(s, a) \text {, s.t. } k^{\prime} \subseteq \bar{k}} m\left(k^{\prime} \mid s, a\right) .
$$

So from (10) we get

$$
\begin{equation*}
\text { for all } \bar{k} \subseteq \mathcal{S}, \sum_{s^{\prime} \in \bar{k}} P\left(s^{\prime} \mid s, a\right) \geq \sum_{k^{\prime} \in \mathbf{F}(s, a) \text {, s.t. } k^{\prime} \subseteq \bar{k}} m\left(k^{\prime} \mid s, a\right) . \tag{11}
\end{equation*}
$$

So we get (9) from (8), and (8) can be driven from (9) similarly and dually.

References

[1] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.
[2] F. W. Trevizan, F. G. Cozman, and L. N. de Barros. Planning under risk and knightian uncertainty. In Proc. of the 20th IJCAI, pages 2023-2028, 2007.
[3] C. C. White III and H. K. Eldeib. Markov Decision Processes with Imprecise Transition Probabilities. Operations Research, 42(4):739-749, 1994.

