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1 Preparation

Markov decision processes with imprecise probabilities (MDPIPs) [3] and
Markov decision processes with set-valued transitions (MDPSTs) [2] are two
import frameworks for imprecise MDPs.

An MDPIP is a Markov decision process where transitions are speci-
fied through sets of probability measures. An MDPIP is defined by a tuple
〈S,A,K, C〉, where

• S is a finite set of states of the system;

• A : S → 2S is the possible action function, where A(s) is a set of
possible actions for the state s;

• K is a credal set over the state space, a nonempty credal set Ks(a) for
all s ∈ S and a ∈ A(s), representing the set of probability distributions
P (s′ | s, a) over successor states in S;

• C : S × A → R is a real-valued, bounded reward function.

An MDPST is a Markov decision process where transitions move proba-
bilistically to reachable sets, and the probability for a particular state is not
resolved by the model. An MDPST is defined by a tuple 〈S,A, m, C〉, where

• S, A, C are the same as those defined in MDPIPs;
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• For any s ∈ S, a ∈ A(s), and k ∈ 2S \ ∅, m(k | s, a) stands for the
probability of ending in the set of states k. F(s, a) = {k | m(k | s, a) >

0}.

The relationship between MDPIPs and MDPSTs is discussed in the next
section.

2 The main theorem

In this section we prove that any MDPST is expressible by a MDPIP. The
proof is based on the Farkas Lemma [1]. We use AT to denote the transpose
of the matrix A.

Lemma 1 (Farkas Lemma)

(∃x ≥ 0, Ax = b) ⇔ (∀y, (AT y ≥ 0 ⇒ bT y ≥ 0)).

With the help of the Farkas Lemma, we have the following fundamental
relationship between MDPSTs and MDPIPs.

Theorem 1 Any MDPST q = 〈S,A, m, C〉 is expressible by an MDPIP r =
〈S,A,K, C〉, where for each s ∈ S and a ∈ A(s), any possible probability

distribution P (· | s, a) ∈ Ks(a) should satisfy the following condition: for

any k ⊆ S,
∑

k′∈F(s,a), s.t. k′⊆k

m(k′ | s, a) ≤
∑

s′∈k

P (s′ | s, a). (1)

Proof. For any s ∈ S and a ∈ A(s), a probability distribution P (· | s, a)
is allowed by a MDPST 〈S,A, m, C〉 iff the following linear equations have a
non-negative solution.



















































∑

k∈F (s,a) m(k | s, a)W (k, s1) = P (s1 | s, a),
∑

k∈F (s,a) m(k | s, a)W (k, s2) = P (s2 | s, a),

· · ·
∑

k∈F (s,a) m(k | s, a)W (k, sn) = P (sn | s, a),
∑

s′∈k1
W (k1, s

′) = 1,
∑

s′∈k2
W (k2, s

′) = 1,
· · ·
∑

s′∈kl
W (kl, s

′) = 1.

, (2)

where n = |S| and l = |F(s, a)|. For each k ∈ F(s, a) and s′ ∈ S, W (k, s′) is
the variable. Intuitively, W (k, s′) is the weight of s′ in k. Clearly, there are
|F(s, a)| × |S| variables and |F(s, a)| + |S| equations.

2



From the Farkas Lemma, it is equal to prove that, for all possible y,
AT y ≥ 0 implies bT y ≥ 0. Let y = {eqs1, . . . , eqsn, eqk1, . . . , eqkl}T and
AT y ≥ 0 then for each k ∈ F(s, a), if s′ ∈ k then eqs′m(k | s, a) + eqk ≥ 0,
if s′ 6∈ k then eqs′m(k | s, a) ≥ 0. We need to prove that the inequality
P (s1 | s, a)eqs1 + · · · + P (sn | s, a)eqsn + eqk1 + · · · + eqkl ≥ 0 is valid. It is
equal to prove that the following inequality is valid under the condition (1):

P (s1 | s, a) eqs1 + · · ·+ P (sn | s, a) eqsn − min{eqs′ | s′ ∈ k1} m(k1 | s, a)

− · · · − min{eqs′ | s′ ∈ kl} m(kl | s, a) ≥ 0. (3)

It is clear that if there exists some k ∈ F(s, a) s.t. s′ 6∈ k, then eqs′ ≥ 0. Let
t = {s′ | ∀k ∈ F(s, a), s′ ∈ k and eqs′ ≤ 0}. If t 6= ∅ then inequality (3) is
valid if the following inequality is valid

∑

s′∈t

P (s′ | s, a) eqs′ +
∑

s′ 6∈t

P (s′ | s, a) eqs′ − min{eqs′ | s′ ∈ t} ≥ 0. (4)

Clearly, inequality(4) is valid, now we only need to consider t = ∅.
If t = ∅ then for each s′ ∈ S, eqs′ ≥ 0. Let c0 = ∅, Si = S \ ci−1, and

ci = ci−1 ∪ {s′ | eqs′ = max{eqs′′ | s′′ ∈ Si}}, 0 < i < ∞. It is clear that
S =

⋃

0≤i<∞ ci and from the condition (1) the following inequality is valid
∑

s′∈ci

P (s′ | s, a) −
∑

k∈F(s,a), s.t. k⊆ci

m(k | s, a) ≥ 0, (5)

where 0 < i < ∞.
At last, let EQ(ci) = min{eqs′ | s′ ∈ ci}, then for each k ∈ F(s, a),

min{eqs′ | s′ ∈ k} = EQ(cj) and j = min{i | k ⊆ ci}. So

P (s1 | s, a) eqs1 + · · ·+ P (sn | s, a) eqsn − min{eqs′ | s′ ∈ k1} m(k1 | s, a)

− · · · − min{eqs′ | s′ ∈ kl} m(kl | s, a) =
∑

0<i<∞

[EQ(ci) − EQ(ci+1)] · [
∑

s′∈ci

P (s′ | s, a) −
∑

k∈F(s,a), s.t. k⊆ci

m(k | s, a)]

≥ 0. (6)

So under the condition (1), inequality (3) is valid and the probability
distribution P (· | s, a) is allowed. �

In fact the condition (1) is also a necessary condition.

Proposition 1 For each s ∈ S and a ∈ A(s), a probability distribution

P (· | s, a) is allowed by a MDPST 〈S,A, m, C〉, then it satisfies the following

condition: for any k ⊆ S,
∑

k′∈F(s,a), s.t. k′⊆k

m(k′ | s, a) ≤
∑

s′∈k

P (s′ | s, a). (7)
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Proof. Clearly, in order to have non-negative solutions for linear equations
(2), the condition should be satisfied. �

There is another condition which is equal to the condition (1).

Proposition 2 For any MDPST 〈S,A, m, C〉, s ∈ S and a ∈ A(s), P (· |
s, a) is a probability distribution allowed by the MDPST.

For all k ⊆ S,
∑

s′∈k

P (s′ | s, a) ≤
∑

k′∈F(s,a), s.t. k∩k′ 6=∅

m(k′ | s, a) (8)

iff

for all k ⊆ S,
∑

k′∈F(s,a), s.t. k′⊆k

m(k′ | s, a) ≤
∑

s′∈k

P (s′ | s, a). (9)

Proof. Assume inequality (8) is true, then

for all k ⊆ S, 1 −
∑

s′∈k

P (s′ | s, a) ≥ 1 −
∑

k′∈F(s,a), s.t. k∩k′ 6=∅

m(k′ | s, a). (10)

Let k̄ = S \ k, then

1 −
∑

s′∈k

P (s′ | s, a) =
∑

s′∈k̄

P (s′ | s, a)

and

1 −
∑

k′∈F(s,a), s.t. k∩k′ 6=∅

m(k′ | s, a) =
∑

k′∈F(s,a), s.t. k′⊆k̄

m(k′ | s, a).

So from (10) we get

for all k̄ ⊆ S,
∑

s′∈k̄

P (s′ | s, a) ≥
∑

k′∈F(s,a), s.t. k′⊆k̄

m(k′ | s, a). (11)

So we get (9) from (8), and (8) can be driven from (9) similarly and
dually. �
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