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Some exact results on 4-cycles: stability and supersaturation

Jialin He∗ Jie Ma† Tianchi Yang‡

Abstract

Extremal problems on the 4-cycle C4 played a heuristic important role in the development of
extremal graph theory. A fundamental theorem of Füredi states that the Turán number ex(q2 +
q + 1, C4) ≤ 1

2
q(q + 1)2 holds for every q ≥ 14, which matches with the classic construction of

Erdős-Rényi-Sós and Brown from finite geometry for prime powers q.
Very recently, we [20] obtained the first stability result on Füredi’s theorem, by showing that

for large even q, every (q2+q+1)-vertex C4-free graph with more than 1

2
q(q+1)2−0.2q edges must

be a spanning subgraph of a unique polarity graph. Using new technical ideas in graph theory and
finite geometry, we strengthen this by showing that the same conclusion remains true if the number
of edges is lowered to 1

2
q(q + 1)2 − 1

2
q + o(q). Among other applications, this gives an immediate

improvement on the upper bound of ex(n,C4) for infinite many integers n.
A longstanding conjecture of Erdős and Simonovits states that every n-vertex graph with

ex(n,C4) + 1 edges contains at least (1 + o(1))
√
n 4-cycles. In [20] we proved an exact result

and confirmed Erdős-Simonovits conjecture for infinitely many integers n. As the second main
result of this paper, we further characterize all extremal graphs for which achieve the ℓ’th least
number of copies of C4 for any fixed positive integer ℓ. This can be extended to more general
settings and provides enhancements on the understanding of the supersaturation problem of C4.

1 Introduction

Given a graph F , we say a graph is F -free if it does not contain F as a subgraph. The Turán number
ex(n, F ) of F is the maximum number of edges in an n-vertex F -free graph. Turán type and related
extremal problems are the central subjects of extremal graph theory. In this paper, we focus on
extremal problems on one of the basic and perhaps most influential objects in this area – the cycle C4

of length four. (For indistinct notations appeared below, we shall refer readers to Section 2.)
Proposed by Erdős [8] more than 80 years ago, the study of ex(n,C4) has a rich history. In [24]

Reiman showed a general upper bound that ex(n,C4) ≤ n
4 (1+

√
4n− 3). However it is known that the

equality never holds by the Friendship Theorem of Erdős, Rényi and Sós [12]. One can also deduce
from the proof of Reiman that if the number of edges in an n-vertex C4-free graph is close to 1

2n
3/2,

then almost all vertices have roughly
√
n neighbors and almost all pairs of vertices have one common

neighbor. This suggests that perhaps in principle, the neighborhoods of vertices can be regarded as
lines of certain projective plane. Indeed, using orthogonal polarity graphs constructed from finite
projective planes, Erdős-Rényi-Sós [12] and Brown [4] proved a lower bound that

ex(q2 + q + 1, C4) ≥
1

2
q(q + 1)2 for all prime powers q. (1)

These two results together imply an asymptotic formula that ex(n,C4) =
(

1
2 + o(1)

)

n3/2.
Determining the exact value of ex(n,C4) in general seems to be extremely difficult and far beyond

reach. On the other hand, Erdős conjectured (e.g. [9]) that the orthogonal polarity graph is optimal;
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that is, the inequality in (1) should be replaced with an equality for all prime powers q. Füredi [14]
first confirmed this for q = 2k in 1983, by showing ex(q2+ q+1, C4) ≤ 1

2q(q+1)2 holds for all even q.
In 1996, Füredi [16] proved that the same upper bound holds for all q ≥ 14. We summarize his results
as following.

Theorem 1.1 (Füredi, [14, 16]). If q /∈ {1, 7, 9, 11, 13}, then ex(q2 + q + 1, C4) ≤ 1
2q(q + 1)2. Hence

for all prime powers q ≥ 14, ex(q2 + q + 1, C4) =
1
2q(q + 1)2.

Füredi also proved that extremal graphs for q ≥ q0 must be orthogonal polarity graphs of order q
(unpublished, see [17]). More recently, Firke, Kosek, Nash and Williford [19] proved ex(q2 + q, C4) ≤
1
2q(q+1)2 − q for all even integers q, which implies that ex(q2 + q, C4) =

1
2q(q+1)2 − q for all q = 2k.

We remark that these results on C4 belong to the category of rather rare exact results for the notorious
degenerate extremal graph problems (for a comprehensive survey, see Füredi-Simonovits [18]). Very
recently, we [20] proved a stability result on the Turán number of 4-cycles, which gives a structural
description for those C4-free graphs whose number of edges is close to the extremal graph.

Theorem 1.2 ([20], Theorem 1.2). Let q ≥ 109 be even and G be a C4-free graph on q2+q+1 vertices
with at least 1

2q(q + 1)2 − 0.2q + 1 edges. Then G is a subgraph of a unique polarity graph of order q.

The first main result of this paper extend the above result as follows.

Theorem 1.3. Let q be even and G be a C4-free graph on q2+ q+1 vertices with at least 1
2q(q+1)2−

1
2q+ o(q) edges. Then there exists a unique polarity graph of order q, which contains G as a subgraph.

In its proof we use many new technical ideas, some of which are from finite geometry. We would
like to note that the current method cannot break the “−1

2q” barrier due to the limit for bounding
the maximum degree. Before we discuss the applications of this result, we also like to point out
that this stability result holds in a strong sense, namely, it only adds edges when turning graphs into
desired configurations. On the other hand, there are infinitely many examples showing that the same
conclusion can not hold if the number of edges is lowered to 1

2q(q+1)2−q+1. For q = 2k, there exists
an orthogonal polarity graph H of order q with 1

2q(q + 1)2 edges: Choose non-adjacent u, v ∈ V (H)
with dH(u) = q+1 and dH(v) = q. Let G be obtained from H by deleting all edges incident to v and
then adding a new edge uv. Clearly G is C4-free and has 1

2q(q + 1)2 − q + 1 edges. However, G can
not be contained in any polarity graph H ′ of order q, as dG(u) = q+2 and ∆(H ′) = q+1.1 For more
discussion on this stability result, we direct readers to the concluding remarks.

As a first application of Theorem 1.3, we can derive the following result on ex(n,C4). Let λ(q) be
the maximum number of edges in a polarity graph of order q (if no such graphs exist, set λ(q) = 0).

Corollary 1.4. Let q be even. If λ(q) ≥ 1
2q(q+1)2 − 1

2q+ o(q), then ex(q2 + q+1, C4) = λ(q), where
the equality holds only for polarity graphs of order q with λ(q) edges; otherwise, ex(q2 + q + 1, C4) <
1
2q(q + 1)2 − 1

2q + o(q). In particular, ex(q2 + q + 1, C4) ≤ max
{

λ(q), 12q(q + 1)2 − 1
2q + o(q)

}

.

This corollary provides an improvement of Füredi’s theorem for even integers q; to be precise, it
improves the upper bound by 1

2q − o(q) for at least infinite many even q (we shall explain why later).
This and some other inference on ex(n,C4) will be under further discussion in Section 7.

A closely related extremal problem to Turán numbers is “the problem of supersaturated graphs”
(quoted from [13]). It studies the following function: for a given graph F and for integers n, t ≥ 1,

hF (n, t) = min{#F (G) : |V (G)| = n, |E(G)| = ex(n, F ) + t},

where #F (G) denotes the number of distinct copies of F in a graph G. A notable example is the
study of the triangle K3, started by Rademacher who proved that hK3

(n, 1) = ⌊n/2⌋ in 1941.
Returning to our focus, throughout this paper we write

h(n, t) = hC4
(n, t) and h(n) = h(n, 1).

1In fact the number of edges can not be lowered to 1

2
q(q + 1)2 − q + 2 (this will be more involved to justify).

2



Analogously as Rademacher’s result on the triangle, Erdős and Simonovits conjectured that any n-
vertex graph with ex(n,C4) + 1 edges should contain many copies of C4. This problem repeatedly
appeared in many papers of Erdős. A weak version (see [6], Conjecture 42) asserted that h(n) ≥ 2
for large n, and another form (e.g. in [10, 11]) stated that h(n) ≥ c

√
n for some constant c > 0. The

strongest version of this conjecture is the following.

Conjecture 1.5 (Erdős and Simonovits [13]). For integers n, h(n) ≥
(

1 + o(1)
)√

n.

As indicated in [13], if true, this bound will be sharp for infinitely many integers n. We remark that
a direct application of Theorem 1.3 already can show that h(q2 + q + 1) ≥

(

1
2 − o(1)

)

q for q = 2k.
We proved the following supersaturation result on C4 in [20] using the stability result therein.

Theorem 1.6 ([20], Theorem 1.3). Let q ≥ 1012 be even and let G be a graph on q2 + q + 1 vertices
with 1

2q(q + 1)2 + 1 edges. Then either G contains at least 2q − 3 copies of C4, or G is obtained from
an orthogonal polarity graph of order q by adding a new edge. In the latter case, G contains q − 1, q
or q + 1 copies of C4.

As a corollary, this confirmed Conjecture 1.5 for an infinite sequence of integers n as follows.

Corollary 1.7 ([20]). Let q = 2k for k ≥ 40. Then h(q2 + q + 1) = q − 1, where the graph achieves
this equality if and only if it is obtained from an orthogonal polarity graph of order q by adding a new
edge between (any) two vertices of degree q.

The second main result of this paper is to further characterize all extremal graphs for which achieve
the ℓ’th least number of copies of C4 for any fixed integer ℓ ≥ 1.

Theorem 1.8. Let q ≫ ℓ and q be even. Let G be a graph on q2 + q + 1 vertices with 1
2q(q + 1)2 + 1

edges. Then either G has at least (ℓ+ 1)q − (ℓ+ 1)2 copies of C4, or there exist some s ∈ {1, 2, ..., ℓ}
and an orthogonal polarity graph H of order q such that G can be obtained from H by deleting or
adding 2s−1 edges. In the latter case, the number of copies of C4 in G is between sq− s2 and sq+ s2.

This also indicates that the numbers of copies of C4 among all such graphs are distributed sporadically
(concentrated around sq for small integers s).

For the general supersaturation problem of C4, the function h(n, t) is known to be Θ(t4/n4) when
t = Ω(n3/2) for all n (e.g. see [13]). We show in the following result that for an infinite sequence of
integers n, one can say rather accurately about the function and in particular, one can determine the
order of its magnitude for every positive integer t.

Theorem 1.9. The following statements hold for large q = 2k. (A) For every 1 ≤ t < q1/8/30,
h(q2 + q + 1, t) = t(q − 1), where the equality holds for graphs G if and only if G is obtained from an
orthogonal polarity graph of order q by adding a matching of size t among vertices of degree q.
(B) For every t ≥ 1, h(q2 + q + 1, t) ≥

(

1
2 + o(1)

)

tq and h(q2 + q + 1, t) = Θ(tq + t4/q8).

This follows by Theorems 9.1 and 9.2 which are stated in some more general settings. We refer readers
to Section 9 for their precise statements. As for general n, one also can determine the order of the
magnitude of h(n, t) when t = Ω(n3/2−ǫ) for some ǫ ≥ 0.2375.

Proposition 1.10. Let n be sufficiently large. If t ≥ 3n1.2625, then h(n, t) = Θ(t
√
n+ t4/n4).

The organization of this paper is as follows. Section 2 consists of preliminaries, where we give
notations and collect some results. In Section 3, we outline the proof of Theorem 1.3. The full proof
of Theorem 1.3 will be divided and completed in Sections 4, 5 and 6. In Section 7, we prove Corollary
1.4 and discuss other consequences on ex(n,C4). In Section 8, we prove Theorem 1.8. In Section 9,
we prove Theorem 1.9 and Proposition 1.10 for the supersaturation problem of C4. In Section 10,
we discuss several problems in relation to the results here. We would like to remark that though our
results often are stated with parity condition, many arguments in the proofs in fact work without any
parity constraints.
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2 Preliminaries

2.1 General notations

We follow the notations of Füredi (e.g. [15]). A hypergraph H is an ordered pair (V, E), where V is
a finite set consisting of vertices and E is a collection of subsets (called edges) of V . We use e(H) to
denote the number of edges in H. For x ∈ V , the degree dH(x) of x denotes the number of edges of H
containing x. The maximum degree of H is denoted by ∆(H) = max{dH(x) : x ∈ V }. We say H is k-
regular if all vertices have degree k and k-uniform if all edges have k vertices. A k-uniform hypergraph
is also called a k-graph (and a graph if k = 2). We say H is 1-intersecting if any two distinct edges of
H have exactly one common vertex. The incidence matrix of a hypergraph H = (V, E) is an |E| × |V |
matrix M(H) such that M(E, x) = 1 if x ∈ E ∈ E and 0 otherwise.

Let G = (V, E) be a graph. Let x ∈ V and A ⊆ V . The neighborhood NG(x) of x is the set of
vertices y ∈ V with xy ∈ E , while the closed neighborhood NG[x] is defined by NG(x) ∪ {x}. Let
NA(x) = NG(x) ∩ A. Define NG(A) to be the set of vertices u ∈ V \A adjacent to some vertex in A
and G[A] to be the subgraph of G induced on A. For a path P , its length |P | denotes the number of
edges it contains. We say P is a k-path if |P | = k. For disjoint sets A,B ⊆ V , e(A,B) denotes the
number of edges ab in G with a ∈ A and b ∈ B. A set of edges is called independent if their endpoints
are pairwise-disjoint. For u, v ∈ V , we let dG(u, v) = |NG(u) ∩ NG(v)|. We call {u, v} an uncovered
pair if dG(u, v) = 0 and a covered pair otherwise. Let UP be the set of uncovered pairs of G and let
P2 be the set of all 2-paths in G. The adjacency matrix A(G) of G is a |V | × |V | symmetric matrix
such that A(x, y) = 1 if xy ∈ E and 0 otherwise.

Throughout this paper, the notation
(x
2

)

means the function x(x − 1)/2 for all reals x. For any
positive integer k, we write [k] as the set {1, 2, ..., k}. For all above notations, we often drop the
subscripts when they are clear from context.

2.2 Projective planes

A finite projective plane of order q, denoted by PG(2, q), is a (q + 1)-uniform (q + 1)-regular 1-
intersecting hypergraph H = (P,L) with |P | = q2 + q + 1, where P consists of points and L consists
of lines. It also follows that |L| = q2 + q + 1 and any two points are contained in a unique line. The
existence of PG(2, q) is well known for all prime powers q. On the other hand, a major conjecture in
this field asserts that the order q of PG(2, q) must be a prime power (known for q ≤ 11 and still open
for q = 12).

A substantial body of our proofs will be involved with projective planes and 1-intersecting hyper-
graphs. In preparation we now collect some related results. The first two will play important roles
for the constructive nature in our stability result (Theorem 1.3).

Theorem 2.1 ([21]). Let q ≥ 3900 and H be a 1-intersecting (q+1)-hypergraph with q2+q+1 vertices

and more than q2 −
√
5−1
2 q+17

√

q/5 edges. Then H can be embedded into a projective plane of order
q.

Theorem 2.2 ([7]). Let H be a 1-intersecting (q + 1)-hypergraph with q2 + q + 1 vertices and more
than q2 − q + 1 edges. If H can be embedded into a projective plane of order q, then this projective
plane and the embedding both are unique.

The following celebrated Bruck-Ryser theorem [5] gives a sufficient condition for the non-existence
of projective planes of given order.

Theorem 2.3 ([5]). If q ≡ 1 or 2 mod 4 is an integer which cannot be expressed as a sum of two
square numbers, then there exist no projective planes of order q.

We also need a useful lemma proved by Füredi (i.e., Lemma 3.7 in [15]).
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Lemma 2.4 ([15]). Let M = (mij) be the incidence matrix of a projective plane of order q. Suppose
that mij = mji whenever 1 ≤ i ≤ q2 − q + 3 or 1 ≤ j ≤ q2 − q + 3. Then the whole matrix M is
symmetric.

The coming lemma has been used in literatures (e.g. [7]), which will serve as a handy tool for
finding a large 1-intersecting hypergraph in the proof of Theorem 1.3. For completion, we give a proof.

Lemma 2.5 (e.g. [7]). Let H be a 1-intersecting (q+1)-hypergraph on vertex set V with |V | = q2+q+1.
Suppose that F is a (q + 1)-uniform hypergraph on the same vertex set V such that F ∩ H = ∅ and
for any edge f ∈ F , there exist q edges h1, ..., hq ∈ H satisfying that f ∪ h1 ∪ ... ∪ hq = V and
|f ∩ h1 ∩ ... ∩ hq| = 1. Then H ∪ F is also 1-intersecting.

Proof. We first point out that to show this, it suffices to prove that for any f ∈ F , H ∪ {f} is 1-
intersecting. This is because if we initially set G = H and repeatedly operate by applying this for one
edge f ∈ F at a time and updating G by G ∪ {f}, then in the end we would conclude that G = H∪F
is 1-intersecting. Note that this indeed is valid as the conditions in the statement also hold for G
(instead of H) at any given time.

For the above desired statement, suppose on the contrary that there exist f ∈ F and h ∈ H
such that |h ∩ f | = 0 or |h ∩ f | ≥ 2. We know that there are h1, ..., hq ∈ H and u ∈ V such that
f∪h1∪...∪hq = V and f∩h1∩...∩hq = {u}. By the size of V , we also see that f\{u}, h1\{u}, ..., hq\{u}
must form a partition of V \{u}. It is then clear that h /∈ {f, h1, · · · , hq}. If |h ∩ f | = 0, then there
must exist some i ∈ [q] such that |h ∩ hi| ≥ 2, a contradiction to that H is 1-intersecting. Hence we
may assume |h ∩ f | ≥ 2. Suppose u ∈ h. Then u ∈ h ∩ hi for all i ∈ [q]; since H is 1-interesting, we
conclude that h ∩ (h1 ∪ ... ∪ hq) = {u} and thus h = f , a contradiction. Now suppose u /∈ h. Then
|h ∩ (f\{u})| ≥ 2 and thus there exists some j ∈ [q] such that |h ∩ (hj\{u})| = 0, which also shows
that |h ∩ hj| = 0, a contradiction. We have completed the proof now.

2.3 Polarity graphs

A polarity π of a projective plane H = (P,L) is a bijection π : P ∪ L → P ∪ L such that

• π2 is the identity function with π : P ↔ L, and

• for any pair (x,L) ∈ P × L, if x ∈ L then π(L) ∈ π(x).

For a projective plane H = (P,L) of order q, where P = {xi} and L = {Li}, consider a function
φ : P ↔ L which maps xi ↔ Lσ(i) for some permutation σ on [q2 + q+1]. Let M(φ) be the incidence
matrix of H, where the rows are listed in the order of xi’s and the columns are listed in the order of
Lσ(i)’s as i increases. It is worth pointing out that

the function φ is a polarity ⇐⇒ the incidence matrix M(φ) is symmetric. (2)

Now let π be a polarity of a projective plane H = (P,L) of order q. The polarity graph G(π) (of
order q) is a simple graph on the vertex set P such that xy ∈ E(G(π)) if and only if x ∈ π(y). A
point x ∈ P is called absolute (with respect to π) if x ∈ π(x). Let a(π) denote the number of absolute
points. In [2], Baer proved that

there exists some integer mπ ≥ 0 such that a(π) = q + 1 +mπ · √q. (3)

A polarity π and its polarity graph G(π) are called orthogonal, if a(π) = q + 1 (i.e., mπ = 0). It is
known that for any prime power q, there always exists an orthogonal polarity graph of order q.

Combining the above facts, it is easy to derive the following for polarity graphs.

Proposition 2.6. Let π be a polarity of order q. Then the polarity graph G(π) is a C4-free graph on
q2 + q+ 1 vertices with exactly 1

2q(q + 1)2 − mπ

2

√
q edges such that every vertex has degree q or q +1.
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The following lemma on polarity graphs is well-known (see Baer [1] for a proof).

Lemma 2.7. Any two vertices of degree q in a polarity graph of order q are nonadjacent.

The next lemma will be frequently used in the forthcoming proofs (see Lemma 2.4 in [20]).

Lemma 2.8 ([20]). Let G be a polarity graph of order q with uv /∈ E(G). Then G ∪ {uv} contains
either q− 1, q or q+1 four-cycles, any two of which share uv as the unique common edge. Moreover,
G ∪ {uv} contains q − 1 four-cycles if and only if both u, v have degree q in G.

We also need a property on orthogonal polarity graphs of even order q from [15].

Proposition 2.9. Let q be even and G be an orthogonal polarity graph of order q. Then there exists
a (unique) vertex w of degree q + 1 such that N(w) consists of all vertices of degree q in G.

2.4 C4-free graphs

We now give out notations arising from C4-free graphs, and along the way we also establish some
statements for future use.

Throughout this subsection, let G = (V, E) be a C4-free graph on n = q2 + q + 1 vertices. For a
vertex v, let d0(v) = |{u ∈ V : {u, v} ∈ UP}|.
Proposition 2.10. |UP | = 1

2

∑

v∈V d0(v) and |P2|+ |UP | =
(n
2

)

.

Proof. The first equation follows by the definition. Since G is C4-free, each 2-path corresponds to a
unique covered pair. Thus we have |P2| =

(n
2

)

− |UP |.

We now introduce an important notation for our proofs. For any v ∈ V , the deficiency f(v) of v
is defined by

f(v) := max{q + 1− d(v), 0}.
The deficiency of a subset A ⊆ V is f(A) =

∑

v∈A f(v). Let Si = {v ∈ V : d(v) = i}.
Proposition 2.11. We have f(N(v)) ≥ q for each v ∈ Sq+2, and if ∆(G) ≤ q + 2 then f(V ) =
(q + 1)n − 2e(G) + |Sq+2|.
Proof. Consider v ∈ Sq+2 with N(v) = {v1, ..., vq+2}. Since G is C4-free, N(vi)\{v} are pairwise-
disjoint, which implies that

∑

vi∈N(v)(d(vi)− 1) ≤ n− 1. Thus we get

f(N(v)) ≥
∑

vi∈N(v)

(q + 1− d(vi)) ≥ (q + 2)q − (n− 1) = q.

Since ∆(G) ≤ q+2, it is straightforward to see that f(V ) =
∑

v∈V max{q +1− d(v), 0} = (q+1)n−
2e(G) + |Sq+2|.

Let S = {v ∈ V : d(v) ≤ q}. We have the following lemma (see Corollary 5.2 in [15]).

Lemma 2.12. If q is even and ∆(G) = q + 1, then any vertex in Sq+1 has a neighbor in S and
moreover, |S| ≥ q + 1.

2.5 Others

We need the following estimation on the distribution of prime numbers given in [3].

Theorem 2.13 ([3]). For sufficiently large x > 0, the interval [x−x0.525, x] contains prime numbers.

At the end of this section, we give an easy-to-use lemma, which is often adopted in replace of
standard Cauchy-Schwarz inequalities (see Lemma 2.6 in [20]).

Lemma 2.14 ([20]). Let a1, ..., am be nonnegative integers satisfying
∑m

i=1 ai ≥ km+ r, where m,k, r

are integers with m,k > 0 and r ≥ −m. Then we have
∑m

i=1

(

ai
2

)

≥ m
(

k
2

)

+ rk.
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3 Proof outline of Theorem 1.3

In this section we discuss the proof of Theorem 1.3. For convenience, we restate Theorem 1.3 in the
following thorough version.

Theorem 3.1. For any c ∈ (0, 1), there exists some qc such that the following holds for even integers
q ≥ qc. If G is a C4-free graph on q2 + q + 1 vertices with at least 1

2q(q + 1)2 − c
2q edges, then there

exists a unique polarity graph of order q containing G as a subgraph.

We now give a outline of the proof of Theorem 3.1. In a nutshell, it stems from the work of Füredi
[14, 15, 16]. Given a C4-free graph G on q2 + q +1 vertices with many edges, our goal is to construct
a polarity graph of order q containing G as a subgraph. This is achieved in the following three steps.

Step 1. We show that it suffices to consider for ∆(G) = q + 1.

Step 2. Let R be the family of all subsets NG(x) where x ∈ V (G) has degree q + 1 and “almost” all
neighbors of x have degree q + 1. Then we show that there exists a projective plane H of
order q defined on V (G) with R ⊆ H.

Step 3. We show that there exists a polarity π of the above projective plane H such that its polarity
graph G(π) contains G as a subgraph.

To say more, Step 1 will be handled in Section 4, where we reduce Theorem 3.1 to the following
statement (with restriction ∆(G) = q + 1).

Theorem 3.2. For any ǫ ∈ (0, 1), there exists some qǫ such that the following holds for even integers
q ≥ qǫ. If G is a C4-free graph on q2 + q + 1 vertices with maximum degree q + 1 and at least
1
2q(q+1)2 − ǫ

2q edges, then there exists a unique polarity graph of order q containing G as a subgraph.

Our reduction shows that ǫ = c+ o(1) holds for Theorem 3.2 =⇒ c holds for Theorem 3.1.
For Theorem 3.2, we will divide its proofs into Sections 5 and 6. In Section 5, we complete Step

2 by establishing Lemma 5.1, which asserts that there exists a 1-intersecting (q + 1)-hypergraph H
containing R and at least q2 lines. This indeed is enough to accomplish Step 2 as we can apply
Theorem 2.1 to enlarge H into a projective plane of order q containing R. The proof of Lemma 5.1 is
involved, where the main technical difficulty lies in accurate analysis on the intricate relations between
neighborhoods of vertices of degree q or q+1. Finally, we finish Step 3 in Section 6 and thus the proof
of Theorem 3.2. The arguments of this step will heavily rely on the properties of the family R.

4 Reducing to ∆ = q + 1

In this section, as outlined earlier, we present a proof which reduces Theorem 3.1 to Theorem 3.2.

Proof of Theorem 3.1 (Assuming Theorem 3.2). For any c ∈ (0, 1), we define ǫ to be any real
in (c, 1) and choose qc such that c+ 50√

qc
≤ ǫ < 1 and qc ≥ max

{

qǫ,
2500
(ǫ−c)2

}

, where qǫ is from Theorem

3.2. Let q ≥ qc be an even integer and let G be a C4-free graph on n = q2 + q + 1 vertices such that

e(G) ≥ 1

2
q(q + 1)2 − c

2
q.

We will show that there exists a unique polarity graph of order q containing G as a subgraph.
Let ∆ denote the maximum degree of G. By the lower bound on e(G), it is easy to see that

∆ ≥ q + 1. If ∆ = q + 1, since e(G) ≥ 1
2q(q + 1)2 − c

2q ≥ 1
2q(q + 1)2 − ǫ

2q and q ≥ qc ≥ qǫ, our goal is
accomplished by Theorem 3.2. So we may assume that q + 2 ≤ ∆ ≤ q2 + q.

Let V (G) = {v1, ..., vn}. We now process by showing a sequence of claims.

Claim 4.1. ∆ = q + 2.
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Proof. Suppose that d(v1) = ∆ ≥ q + 3. We now estimate the number T of 2-paths in G with none
of its endpoints in N(v1). Since any two vertices have at most one common neighbor and any two
vertices in N(vi) are contained in a 2-path, we have

(

q2 + q + 1−∆

2

)

=

(

n−∆

2

)

≥ T ≥
n
∑

i=2

(|N(vi) \N(v1)|
2

)

.

Since G is C4-free, we see |N(vi) \N(v1)| = d(vi)− d(vi, v1) ≥ d(vi)− 1 for 2 ≤ i ≤ n. As q ≥ qc being
sufficiently large, we have that

n
∑

i=2

|N(vi) \N(v1)| ≥ 2e(G) −∆− (n− 1) ≥ (q2 + q)(q − 1) + (q2 + 2−∆).

As q2 + 2−∆ ≥ −(q2 + q), using Lemma 2.14 (with m = n− 1 = q2 + q), we have

(

q2 + q + 1−∆

2

)

≥
n
∑

i=2

(|N(vi) \N(v1)|
2

)

≥ (q2 + q)

(

q − 1

2

)

+ (q − 1)(q2 + 2−∆).

After simplification, this is equivalent to that g(∆) := ∆2 − (2q2 + 3)∆ + (2q3 + 5q2 − 5q + 4) ≥ 0,
where q+3 ≤ ∆ ≤ q2+ q. It can be verified that g(q+3) and g(q2 + q) both are negative. Since g(∆)
is quadratic, this shows that g(∆) < 0 for all choices of ∆, a contradiction. This proves the claim.

Claim 4.2. Any two vertices of degree q + 2 have one common neighbor.

Proof. Suppose for a contradiction that there exist v1, v2 ∈ Sq+2 such that N(v1) ∩N(v2) = ∅. Then
for 3 ≤ i ≤ n we have |N(vi)\(N(v1)∪N(v2))| = |N(vi)|−|N(vi)∩N(v1)|−|N(vi)∩N(v2)| ≥ d(vi)−2.
Similarly as above, we estimate the number of 2-paths with none of its endpoints in N(v1) ∪N(v2).
Using Jensen’s inequality, we get that

(

n− 2(q + 2)

2

)

≥
n
∑

i=3

(|N(vi) \ (N(v1) ∪N(v2))|
2

)

≥ (n− 2)

(

∑n
i=3(d(vi)−2)

n−2

2

)

= (n− 2)

( 2e(G)−2(q+2)−2(n−2)
n−2

2

)

≥ (q2 + q − 1)

( q3−3q−cq−2
q2+q−1

2

)

which is equivalent to

(q2 + q − 1)(q2 − q − 3)(q2 − q − 4) ≥ (q3 − 3q − cq − 2)(q3 − q2 − 4q − cq − 1).

After further simplification, we can derive that

2(c− 1)q4 + (3− c)q3 + (11 − 7c− c2)q2 − 3(2 + c)q − 14 ≥ 0.

Since 0 < c < 1, this inequality can not hold for large q, a contradiction.

Claim 4.3. Any common neighbor of three vertices of degree q + 2 has degree at most q/2.

Proof. Suppose on the contrary that v1, v2, v3 ∈ Sq+2 have a common neighbor v4 such that d =
d(v4) > q/2. Let A = N(v4)\{v1, v2, v3}, B = V \N [v4] and C = N(v1) ∪ N(v2) ∪ N(v3). So
|A| = d− 3 and |B| = q2 + q − d. By similar discussion as before, we have that |N(v) \C| ≥ d(v)− 1
for v ∈ A and |N(u) \ C| ≥ d(u) − 3 for u ∈ B ∪ {v4}. Therefore,

∑

v∈A
(d(v) − 1) +

∑

v∈B
(d(v) − 3) =

(

2e(G) − 3(q + 2)− d
)

− |A| − 3|B|

≥(q(q + 1)2 − cq)− 3q2 − 6q + d− 3 ≥ (q2 + q − 3)(q − 2)− (q/2 + 9).
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Note that −(q/2 + 9) > −(q2 + q − 3). Using Lemma 2.14, if we estimate the number of 2-paths T
with none of its endpoints in C, then we can derive that

(

n− 3(q + 2) + 2

2

)

≥ T ≥
(

d− 3

2

)

+
∑

v∈A

(

d(v) − 1

2

)

+
∑

v∈B

(

d(v) − 3

2

)

≥
(

q/2− 3

2

)

+ (q2 + q − 3)

(

q − 2

2

)

− (q − 2)(q/2 + 9).

This inequality is equivalent to q2 − 50q + 72 ≤ 0, which contradicts that q is large.

Claim 4.4. There are at most 7 vertices of degree at most q/2.

Proof. Suppose on the contrary that there are at least 8 vertices of degree at most q/2. Recall the
notations in Subsection 2.4. For any v ∈ Sq+1−k for k ∈ [q], we have

d0(v) = (n− 1)−
∑

u∈N(v)

(d(u) − 1) = (q2 + 2q + 1− k)−
∑

u∈N(v)

d(u)

≥ (q2 + 2q + 1− k)− (q + 2)(q + 1− k) = (k − 1)(q + 1),

where the inequality holds as ∆ = q + 2. By Proposition 2.10, we have

(

n

2

)

− |P2| = |UP | = 1

2

∑

v∈V
d0(v) ≥

q + 1

2

q
∑

k=1

(k − 1)|Sq+1−k| ≥
q + 1

2
· q
2
· 8 = 2q2 + 2q.

We also have |P2| =
∑

v∈V
(d(v)

2

)

and
∑

v∈V d(v) ≥ q(q + 1)2 − cq = (q2 + q + 1)(q + 1)− (q + cq + 1).
Since −(q + cq + 1) > −(q2 + q + 1), by Lemma 2.14 we get

|P2| ≥ (q2 + q + 1)

(

q + 1

2

)

− (q + 1)(q + cq + 1) =

(

n

2

)

− (q + 1)(q + cq + 1).

Combining with the above two inequalities, we derive that

2q2 + 2q − (q + 1)(q + cq + 1) = (q + 1)((1 − c)q − 1) ≤ 0.

Again, this contradicts the fact that q is large and thus completes the proof of Claim 4.4.

Claim 4.5. |Sq+2| ≤ 22
√
q.

Proof. Let S′ = {v : d(v) ≤ q/2} and S′
q+2 = Sq+2\N(S′). By Claim 4.4 we have |S′| ≤ 7, so

|Sq+2 ∩N(S′)| ≤ 7q/2 and |S′
q+2| ≥ |Sq+2| − 7q/2. Recall S = {v : d(v) ≤ q}.

We now define a weight function w on the edges xy with x ∈ S′
q+2 and y ∈ S by assigning w(xy)

to be the deficiency f(y). We consider the total weight W of these edges. On the one hand, by
Proposition 2.11, every S′

q+2 vertex contributes at least q and

f(S) = f(V ) = (q + 1)n − 2e(G) + |Sq+2| ≤ q + cq + 1 + |Sq+2|.

On the other hand, by Claim 4.3, every vertex in S is adjacent to at most two vertices in S′
q+2 and

thus contributes at most twice of its deficiency. Putting these together, we have

q(|Sq+2| − 7q/2) ≤ q|S′
q+2| ≤ W ≤ 2f(S) ≤ 2(q + cq + 1 + |Sq+2|), (4)

from which we derive that |Sq+2| ≤ 3.5q2+2(1+c)q+2
q−2 ≤ 4q. For any v ∈ S′, let N(v)∩Sq+2 = {u1, ..., ut}.

Since N(ui)\{v} are disjoint for all i ∈ [t], by Proposition 2.11 it follows that

f(V ) ≥ f(v) +

t
∑

i=1

f(N(ui)\{v}) ≥ f(v) + t(q − f(v)) = (d(v) − 1)(t− 1) + q.
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Since d(v) ≥ t and |Sq+2| ≤ 4q, by (4) we have

(t− 1)2 + q ≤ f(V ) ≤ q + cq + 1 + |Sq+2| ≤ 6q + 1,

implying that |N(v) ∩ Sq+2| = t ≤ √
5q + 1 + 1 ≤ 3

√
q for any v ∈ S′.

We improve the estimation of |Sq+2 ∩ N(S′)| ≤ 21
√
q and can run the above procedure again.

Since |S′
q+2| ≥ |Sq+2| − 21

√
q, we have

q(|Sq+2| − 21
√
q) ≤ q|S′

q+2| ≤ W ≤ 2f(S) ≤ 2(q + cq + 1 + |Sq+2|).

This shows that |Sq+2| ≤ 21q
√
q+2(1+c)q+2

q−2 ≤ 22
√
q.

We are ready to complete the proof. Since |Sq+2| ≤ 22
√
q, we can delete at most 22

√
q edges from

G to get a subgraph G′ with maximum degree q + 1. By the choice of ǫ, we have

e(G′) ≥ e(G) − 22
√
q ≥ 1

2
q(q + 1)2 − c

2
q − 22

√
q ≥ 1

2
q(q + 1)2 − ǫ

2
q. (5)

By Theorem 3.2, there exists a unique polarity graph H containing G′ as a subgraph. Let e1, ..., et
be the edges deleted from G, where t ≤ 22

√
q. We may assume that t ≥ 1, as otherwise G = G′ is a

subgraph of H. So we have e1 = xy /∈ E(H). By Lemma 2.8, H ∪ {e1} contains at least q − 1 copies
of C4, all of which contain e1 and are edge-disjoint otherwise.

Consider G′ ∪ {e1}, which is a subgraph of G and thus is C4-free. So any of these C4’s found in
H ∪ {e1} must have an edge not in G′ ∪ {e1}, which are pairwise-distinct. This shows that e(G′) ≤
e(H)− (q− 1) ≤ 1

2q(q+1)2− (q− 1), which contradicts (5). This finishes the proof of Theorem 3.1.

We point out that the reduction in this section works for all integers q, not necessarily for even q.

5 Finding a large 1-intersecting hypergraph

We prove Theorem 3.2 in the following two sections. The goal of this section is to construct a 1-
intersecting (q + 1)-hypergraph, which represents the C4-free graph considered in Theorem 3.2 (see
Lemma 5.1 below).

Let ǫ and G be from Theorem 3.2 throughout this section. Namely, ǫ ∈ (0, 1) is a fixed constant
and G = (V, E) is a C4-free graph on n = q2 + q + 1 vertices with maximum degree q + 1 and

e(G) ≥ 1

2
q(q + 1)2 − ǫ

2
q, (6)

where q is an even integer. Moreover, we choose q and δ = δ(ǫ) such that

1

q
≪ δ ≪ 1− ǫ. (7)

The following notations will play essential roles in the proofs of the coming two sections.

Definition 5.1. Let B = {x ∈ V : |N(x) ∩ S| ≥ δq} and A = Sq+1\B. Let R = {N(x) : x ∈ A}. We
call any subset in V of size q + 1 a line.

Now we are able to state the main result of this section.

Lemma 5.1. There is a 1-intersecting (q+1)-hypergraph on the vertex set V , which contains R and
at least q2 lines.

The full proof of this is involved, which we break into two subsections. However, Subsection 5.1
is concise and about 2-page long, which indicates that Lemma 5.1 holds for any real ǫ ∈ (0, 1/2).2

Subsection 5.2 requires rather technical efforts to show Lemma 5.1 for all ǫ ∈ (0, 1). We like to mention
that Subsection 5.2 is not necessary for the stability with a weaker bound such as in [20].

2Note that Claim 5.8 yields a 1-intersecting (q+1)-hypergraph containing R and at least q2 +(1− 2ǫ)q+O(1) lines.
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5.1 An initiatory bound

The proof of Lemma 5.1 will process by showing a sequence of claims. Before that, we first collect
some basic properties on G. By Proposition 2.11 and Lemma 2.12, we have

q + 1 ≤ |S| ≤
q

∑

i=0

(i+ 1)|Sq−i| = f(V ) = (q + 1)n− 2e(G) ≤ q + ǫq + 1 (8)

and thus
q2 − ǫq ≤ |Sq+1| ≤ q2. (9)

For any T ⊆ S, it holds that q + ǫq + 1 ≥ f(V ) ≥ f(T ) + (|S| − |T |) ≥ f(T ) + (q + 1 − |T |). This
implies that

f(T ) ≤ |T |+ ǫq for any T ⊆ S

and in particular, one can derive that

d(x) ≥ (1− ǫ)q and d(x) + d(y) ≥ (2− ǫ)q for any x, y ∈ V. (10)

In the same way as we did in [20] (see Claim 3.1 in [20]), we can prove the first claim by deriving
some bounds on the sizes of A and B (we omit the proof here, since they are similar).

Claim 5.1. |B| ≤ 2
δ and |A| ≥ |Sq+1| − |B| ≥ q2 − ǫq − 2

δ .

Next we investigate properties on some special vertices of degree q + 1, defined as following. We
remark that by Lemma 2.12, any vertex in Sq+1 is adjacent to at least one vertex in S.

Definition 5.2. A vertex v ∈ V has property 1, if v ∈ Sq+1 satisfies that |N(v) ∩ Sq+1| = q and
|N(v) ∩ Sq| = 1. Let V1 denote the set of all vertices of property 1 in G.

We also can derive the following analogue of the size of |V1| (see the beginning of the proof of
Claim 3.2 in [20]).

Claim 5.2. |V1| ≥ (1− ǫ)q2 − (1 + 2ǫ)q.

Suppose v ∈ V1 has N(v) = {v1, ..., vq+1}. Let Ni = N(vi) \N [v] for i ∈ [q + 1]. The next claim
describes the structure of the neighborhood of a vertex in V1 (see Proposition 5.4 in [15]).

Claim 5.3. For v ∈ V1, the sets N1, ..., Nq+1 form a partition of V \N [v], and G[N(v)] consists of a
matching of size q

2 plus an isolated vertex of degree q.

The following is key for constructing a (q + 1)-uniform 1-interesting hypergraph (see (7) in [20]).

Claim 5.4. Suppose v ∈ V1 has N(v) = {v1, ..., vq+1}. If u ∈ Sq+1 \N [v] is adjacent to Sq+1 ∩N(v),
then |N(u) ∩N(vi)| = 1 for all i ∈ [q + 1].

We then show that the neighborhood of any vertex in A contains many vertices of property 1.
Following the definitions in [20], for any x ∈ A we define Sx = N(x)∩S and S∗

x = Sx∪(N(Sx)∩N(x)).
Since x ∈ A, we have |Sx| ≤ δq. Every vertex in Sx has at most one neighbor inN(x), so |S∗

x\Sx| ≤ |Sx|
and thus |S∗

x| ≤ 2|Sx| ≤ 2δq. Then we can get the following claim (see the proof of Claim 3.2 in [20]).

Claim 5.5. For x ∈ A, there are at least (1− ǫ− 3δ)q + 1 vertices of property 1 in N(x)\S∗
x.

Finally, combining the above claims, the selection of δ and the analysis at the ending of the proof
of Claim 3.2 in [20], we can conclude the following claim.

Claim 5.6. R is a 1-intersecting (q + 1)-hypergraph with |R| ≥ q2 − ǫq − 2/δ.

Definition 5.3. Let V ∗
1 = V1\N(B). For v ∈ V ∗

1 , let v
′ be the unique vertex in N(v) of degree q. Let

L = {N [v′] : v ∈ V ∗
1 }.
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It is clear that R ∩L = ∅.

Claim 5.7. For any L ∈ L, there exist R1, ..., Rq ∈ R such that L ∪R1 ∪ ... ∪Rq = V and |L ∩R1 ∩
... ∩Rq| = 1. Moreover, |L| ≥ (1− ǫ)q − (2 + 2ǫ+ 2/δ).

Proof. Given L ∈ L, there exists a vertex v ∈ V ∗
1 with N(v) = {v1, ..., vq+1} and L = N [vq+1]. Since

N(v) ∩B = ∅, we see that v1, ..., vq ∈ A and thus N(v1), ..., N(vq) ∈ R. By Claim 5.3, it implies that
L∪N(v1)∪ ...∪N(vq) = V and L∩N(v1)∩ ...∩N(vq) = {v}, as desired. It remains to show the lower
bound of |L|. By Claims 5.1 and 5.2, we have |V ∗

1 | ≥ |V1|− |N(B)| ≥ (1− ǫ)q2− (1+2ǫ)q−2(q+1)/δ.
It is obvious that each L ∈ L corresponds to a unique vertex u ∈ Sq\B with L = N [u] (as otherwise
it will force a C4), however such a vertex u may be adjacent to at most q vertices in V1\N(B). Thus

we have that |L| ≥ |V ∗

1 |
q ≥ 1

q

(

(1− ǫ)q2 − (1 + 2ǫ)q − 2(q + 1)/δ
)

≥ (1− ǫ)q − (2 + 2ǫ+ 2/δ).

Using the above claims, we now can construct a 1-intersecting (q+1)-hypergraph with many edges.

Claim 5.8. R∪ L is a 1-intersecting (q + 1)-hypergraph based on G with |R ∪ L| ≥ q2 + (1− 2ǫ)q −
(2 + 2ǫ+ 4/δ).

Proof. In view of Lemma 2.5, we see from Claims 5.6 and 5.7 that R ∪ L is a 1-intersecting (q + 1)-
hypergraph. Since R ∩ L = ∅, we have |R ∪ L| ≥ (q2 − ǫq − 2/δ) + (1 − ǫ)q − (2 + 2ǫ + 2/δ) =
q2 + (1− 2ǫ)q − (2 + 2ǫ+ 4/δ), completing the proof.

5.2 The completion of the proof of Lemma 5.1

Following the sequence of previous claims, we now continue and complete the proof of Lemma 5.1.
By (9), we write

|Sq+1| = q2 − αq for some constant 0 ≤ α ≤ ǫ. (11)

Using |V | = ∑q+1
i=0 |Si| and 2e(G) =

∑q+1
i=0 i|Si|, by (6) and (11) we can conclude that

|Sq| ≥ 2e(G) − (q − 1)|V | − 2|Sq+1| ≥ (2α+ 1− ǫ)q + 1. (12)

Definition 5.4. We say a vertex v has property 2, if v ∈ Sq+1\N(B) satisfies |N(v)∩Sq+1| = q−1
and |N(v) ∩ Sq| = 2. Let V2 denote the set of all vertices of property 2 in G.

Claim 5.9. Any u ∈ Sq\(B ∪N(V ∗
1 )) has at least (1− ǫ− 3δ)q − (1 + 6/δ) neighbors in V2.

Proof. Let Su = N(u)∩ S and S∗
u = Su ∪ (N(Su)∩N(u)). Since u /∈ B and every vertex in Su has at

most one neighbor in N(u), we have |S∗
u\Su| ≤ |Su| ≤ δq and |S∗

u| ≤ 2δq.
Write N(u) = {u1, ..., uq} and Ni = N(ui) \ N [u] for each i ∈ [q]. Since G is C4-free, all the

sets Ni are disjoint. Note that N(u) ∩ V ∗
1 = ∅. So N(u) ∩ V1 ⊆ N(u) ∩ N(B). Since each vertex in

B has at most one neighbor in N(u), we have |N(u) ∩ V1| ≤ |N(u) ∩ N(B)| ≤ |B| ≤ 2/δ and thus
|N(u)\V1| ≥ q − 2/δ. Each ui ∈ N(u)\(V1 ∪ S∗

u) has degree q + 1 and at least two neighbors in S, all
of which (except u) are in V \N [u]. Hence for such ui ∈ N(u)\(V1 ∪ S∗

u), the deficiency f(Ni) is at
least 1 with equality if and only if |N(ui) ∩ Sq+1| = q − 1 and |N(ui) ∩ Sq| = 2. Let M be the set of
vertices ui ∈ N(u)\(V1 ∪ S∗

u) with f(Ni) = 1. By counting the deficiency, we have

|M |+ 2(|N(u)\V1| − |S∗
u| − |M |) + |Su| ≤

q
∑

i=1

f(Ni ∪ {ui}) ≤ f(V ) ≤ q + ǫq + 1.

Using |N(u)\V1| ≥ q − 2/δ, we can derive that |M | ≥ (1 − ǫ − 3δ)q − (1 + 4/δ). Notice that
M\N(B) ⊆ V2. Since M ⊆ N(u), each vertex in B has at most one neighbor in M and thus we
have at least |M\N(B)| ≥ |M | − |B| ≥ (1− ǫ− 3δ)q − (1 + 6/δ) vertices in N(u) ∩ V2.

Claim 5.10. For v ∈ V2, G[N(v)] consists of a matching of size q
2 plus an isolated vertex of degree q.
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Proof. We observe that every v ∈ V2 is in A and every x ∈ N(v) ∩ Sq+1 is also in A. By Claim 5.6,
|N(v) ∩ N(x)| = 1. Since v has q − 1 neighbors of degree q + 1 and q is even, it is easy to see that
G[N(v)] must contain exactly q

2 edges which form a matching and moreover, the only isolated vertex
in G[N(v)] has degree q.

In view of Claim 5.10, we now give some notations in relation to V2 for later use.

Definition 5.5. For v ∈ V2, we write N(v) = {v1, ..., vq+1} such that d(v1) = d(v2) = q and the edge
set of G[N(v)] is {v2iv2i+1 : 1 ≤ i ≤ q

2}. Let Ni = N(vi)\N [v] for each i, and let the unique vertex
not contained in ∪1≤i≤q+1N [vi] be v⋆.

Note that the sets N [v], N1, ..., Nq+1 and {v⋆} form a partition of V . We recall that R = {N(x) :
x ∈ A} is 1-intersecting and subsets in V of size q + 1 are called lines.

Definition 5.6. For v ∈ V2, we say v1 and v2 are the type-I vertex and type-II vertex for v, respectively.
We also say that Lv

I = N [v1] is the type-I line for v and Lv
II = N(v2) ∪ {v⋆} is the type-II line for

v.3 Furthermore, we say v ∈ V2 is extendable if R ∪ {Lv
I , L

v
II} is 1-intersecting; otherwise, we call

it non-extendable.

Claim 5.11. For v ∈ V2, we have v3, ..., vq+1 ∈ A, Lv
I ∪ Lv

II ∪ N(v3) ∪ ... ∪ N(vq+1) = V and
Lv
I ∩ Lv

II ∩N(v3) ∩ ... ∩N(vq+1) = {v}. Moreover for each N ∈ R, |N ∩ Lv
I |+ |N ∩ Lv

II | = 2.

Proof. It is clear that the first conclusion follows by definition. Consider any v ∈ V2 and N ∈ R.
Note that vi ∈ A for 3 ≤ i ≤ q + 1. If N = N(vi) for some 3 ≤ i ≤ q + 1, then the second conclusion
is clear. Otherwise, as R is 1-intersecting, we see that |N ∩ N(vi)| = 1 for 3 ≤ i ≤ q + 1. This also
infers that |N ∩ (Lv

I ∪ Lv
II)| = 2, completing the proof.

Therefore, if v ∈ V2 is non-extendable, then there must be a line N ∈ R with (|N∩Lv
I |, |N∩Lv

II |) ∈
{(0, 2), (2, 0)}. This motivates the following definitions.

Definition 5.7. If v ∈ V2 is extendable, we say both vertices v1, v2 and both lines Lv
I , L

v
II are good

(of type-I, type-II respectively) for v. Suppose v ∈ V2 is non-extendable. If there exists N ∈ R with
|N ∩Lv

I | = 2, then the type-I vertex v1 is called bad for v. If there exists N ′ ∈ R with |N ′ ∩Lv
II | = 2,

then the type-II vertex v2 is called bad for v.

We point out that any vertex of type-I or -II for some vertex in V2 belongs to the set Sq\B. Recall
that V ∗

1 = V1\N(B) and L = {N [u] : u ∈ Sq ∩N(V ∗
1 )} from Definition 5.3.

Claim 5.12. Let u be a vertex of type-I or -II for some v ∈ V2. If u ∈ N(V ∗
1 ), then N [u] ∈ L and u

is a good vertex of type-I for v.

Proof. Suppose that u is adjacent to w ∈ V1\N(B). Then N [u] ∈ L and by Claim 5.8, R ∪ {N [u]}
is 1-intersecting. If u is a type-II vertex for v, then there exists some u′ ∈ N(v) ∩ A adjacent to u.
So N(u′) ∈ R, but {u, v} ⊆ N(u′) ∩ N [u], a contradiction. Hence u is type-I for v. In particular,
Lv
I = N [u]. By Claim 5.11, applying Lemma 2.5 with H = R∪{N [u]} and F = {Lv

II}, we derive that
R∪ {Lv

I , L
v
II} is 1-intersecting. This shows that v is extendable, finishing the proof.

We now investigate more properties for general u ∈ Sq\B. It seems possible that u can be good or
bad for different vertices in V2 ∩N(u). Nevertheless, we will show in the following claims that there
are strong restrictions one can say for the goodness/badness.

Claim 5.13. If v ∈ V2 is non-extendable, then there always exists N ∈ R with |N ∩ Lv
I | = 2.

3We will also say that, for instance, v1 is the vertex of type-I for v and Lv
II is the line of type-II for v.

13



Proof. Let Ni = N(vi)\N [v] for i ∈ [q + 1]. Suppose not. Then by Claim 5.11, there exists some
N(c) ∈ R with |N(c) ∩ Lv

II | = 2. It is clear that v⋆ ∈ N(c). Since c ∈ A, by Claim 5.5 there
are at least (1 − ǫ − 3δ)q + 1 many neighbors of c in V1\S∗

c . As G is C4-free, we can find at least
(1− ǫ− 3δ)q − 2/δ + 1 vertices in (V1 ∩N(c))\N(B).

Now we take b ∈ (V1∩N(c))\
(

N(B)∪N(v1)∪N(v2)∪N(v3)∪N(v)∪N(v⋆)
)

. SupposeN(b)∩N(v) =
{vi} (by Claim 5.6 they intersect). By the choice of b, we may write N(b) = {b1, ..., bq+1} with b1 = vi,
where d(b1) = q + 1 and d(bq+1) = q. Since e(N(b), N2 ∪ {v3}) ≤ |N2 ∪ {v3}| = q − 1, there are at
least two vertices in N(b) with no neighbor in N2 ∪ {v3}. So there exists a ∈ N(b)\{vi} = N(b)\N(v)
with N(a) ∩ (N2 ∪ {v3}) = ∅.

We assert that a ∈ N1∪ ...∪Nq+1 and N(a)∩Lv
II = ∅. First, we see that av /∈ E(G) (as otherwise,

a ∈ N(v) ∩ N(b) = {vi}). It then suffices to show v⋆ /∈ N(a). To see this, suppose v⋆ ∈ N(a) and
then one can find a C4, namely abcv⋆a in G, a contradiction.

We also assert that it has to be d(a) = q. It is clear that d(a) ∈ {q, q + 1}. Suppose for a
contradiction that d(a) = q + 1. Since b ∈ V1\N(B), we have a ∈ A and thus N(a) ∈ R. Since
v3, ..., vq+1 ∈ A, by Claim 5.6 we have |N(a) ∩ N(vℓ)| = 1 for 3 ≤ ℓ ≤ q + 1. Then by Claim 5.11,
|N(a) ∩ Lv

I | = 2, contradicting our assumption.
We now further show that a ∈ N1. Assume for a contradiction that av1 /∈ E(G). As av3 /∈ E(G),

we have a ∈ N2 ∪ N4 ∪ ... ∪ Nq+1. Suppose a ∈ N2. By Claim 5.3, we see that {b1, ..., bq} induces a
matching in G[N(b)]; then at least two of {b1, ..., bq} have no neighbor in N2 ∪ {v3}. Hence we can
choose a′ ∈ {b1, ..., bq}\{vi} with N(a′)∩ (N2 ∪ {v3}) = ∅. But such a′ has degree q+1, contradicting
the previous assertion. Hence we may assume a ∈ Nj for some j ∈ {4, ..., q + 1}. Since b ∈ V1\N(B)
and a ∈ N(b)∩ Sq, by Claim 5.8, R∪ {N [a]} is 1-intersecting. Because vℓ ∈ A for ℓ ∈ {3, 4, ..., q +1},
we have |N [a] ∩N(vℓ)| = 1. This, together with Claim 5.11 and the fact N [a] ∩ Lv

II = ∅, imply that
|N [a] ∩ Lv

I | ≥ 2. As av1 /∈ E(G), we have |N(a) ∩N(v1)| ≥ 2, a contradiction as it would force a C4.
Lastly, we observe that for every choice of such b, the above vertex a, which lies in N1 ∩ Sq ⊆

N(v1)∩Sq, must be distinct. This is because if there exist two vertices say b1, b2 corresponding to the
same vertex a, then it provides a C4 such as b1ab2cb1 in G. There are at least (1− ǫ− 3δ)q − 2/δ − 4
choices for b, implying that |N(v1) ∩ Sq| ≥ (1 − ǫ − 3δ)q − 2/δ − 4 ≥ δq, where the last inequality
holds as 1/q ≪ δ ≪ 1 − ǫ. This shows v1 ∈ B, a contradiction to that v ∈ Sq+1\N(B), completing
the proof.

Claim 5.14. For any u ∈ Sq\B, the number of non-extendable vertices v ∈ V2 ∩N(u) with u as the
type-II vertex is at most 4δq.

Proof. Suppose on the contrary that there exists u ∈ Sq\B such that the set T = {non-extendable v ∈
V2 ∩ N(u) : u is the type-II vertex of v} has size t > 4δq. We write T = {vi : i ∈ [t]} and for each
vi ∈ T , we denote the type-I vertex of vi by ui. It is clear that all ui are distinct (as otherwise it
would force a C4).

By Claim 5.13, for v1 there exists L = N(a) ∈ R such that |L ∩ Lv1
I | = 2. By Claim 5.11,

L ∩N(u) = ∅. This shows that exactly one of the following facts holds for L and any other vi’s in T :

(1). If |L ∩ Lvi
I | = |L ∩ Lvi

II | = 1, then v⋆i ∈ L (because Lvi
II = N(u) ∪ {v⋆i } and L ∩N(u) = ∅);

(2). Otherwise |L ∩ Lvi
I | = 2, then ui ∈ L (because Lvi

I = N [ui] and |L ∩N(ui)| ≤ 1).

Let T1 consist of all vi ∈ T with |L ∩ Lvi
I | = 2. By (2), we see ui ∈ L = N(a) for all vi ∈ T1. Since

a ∈ A and ui ∈ S are distinct, we have |T1| ≤ |N(a) ∩ S| < δq. Now let L′ = N(a′) ∈ R be another
line, other than L, such that |L′ ∩ L

vj
I | = 2 for some vj ∈ T\T1. Let T2 consist of all vj ∈ T\T1 with

|L′ ∩ L
vj
I | = 2. Similarly, we also have |T2| < δq.

We also assert that there are at most δq vertices vi ∈ T sharing a common v⋆i (denoted by v⋆).
Suppose vj1 , ..., vjs ∈ T share a common v⋆ and subject to this, s is maximum. We first find a line L0

with |L0 ∩ L
vj1
I | = 2, which also satisfies L0 ∩ (N(u) ∪ {v⋆}) = ∅. If L0 satisfies that |L0 ∩ L

vji
I | = 2

for all i ∈ [s], then we can get that s < δq as above. So we may assume that there is some vji such
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that (1) holds. By (1), we then derive that v⋆ ∈ L0, a contradiction to that L0 ∩ (N(u) ∪ {v⋆}) = ∅.
This proves the assertion.

By our choice, (1) holds for each of L = N(a) and L′ = N(a′) and for any vi ∈ T\(T1 ∪ T2). Since
|T\(T1 ∪ T2)| > 2δq and at most δq vertices vi ∈ T\(T1 ∪ T2) share a common v⋆i , we can find two
different v⋆i , say x and y. By (1), we have x, y ∈ N(a)∩N(a′). This forces a C4 in G and finishes the
proof.

The next claim shows that the type of a good vertex u ∈ Sq\B in fact is an invariance (that is,
the type remains the same for all extendable vertices in N(u) ∩ V2).

Claim 5.15. Let u ∈ Sq\B. If u is a good vertex of type-I for some vertex in V2, then u is the good
vertex of type-I for all vertices in N(u) ∩ V2.

If u is a good vertex of type-II for some vertex in V2, then u is a vertex of type-I (which must be
bad) for at most one vertex in N(u)∩ V2; moreover, there are at most two good lines of type-II for all
the vertices in N(u) ∩ V2.

Proof. First let us assume that u is a good vertex of type-I for some v ∈ V2. Since v is extendable,
R∪{N [u]} is 1-intersecting. Consider any v′ ∈ N(u)∩V2\{v}. Suppose that u is a type-II vertex for v′.
If we let x be the unique vertex inN(v′) adjacent to u, then we seeN(x) ∈ R andN(x)∩N [u] = {u, v′},
a contradiction to that R∪{N [u]} is 1-intersecting. Thus u is always type-I for all vertices in N(u)∩V2.
Let N(v′) = {u, a2, ..., aq+1}, where a2 is type-II for v′ and a3, ..., aq+1 ∈ A. Then Claim 5.11 holds for
v′ analogously, where N(a3), ..., N(aq+1) and Lv′

I = N [u] are q lines in the 1-intersecting hypergraph
R∪{N [u]}. By Lemma 2.5, we infer that R∪{Lv′

I , L
v′
II} is 1-intersecting and thus v′ is also extendable.

This shows that u is a good vertex of type-I for all vertices in N(u) ∩ V2.
Now we assume that u is a good vertex of type-II vertex for v1 ∈ V2. Let F = N(u) ∪ {v⋆1}. Since

v1 is extendable, R ∪ {F} is 1-intersecting. Suppose that v2 ∈ N(u) ∩ V2 is distinct from v1 and
u is a type-I vertex for v2. By the first assertion, we see v2 is non-extendable and u is bad for v2.
So N(v2) ∈ R and N(v2) ∩ N(u) = ∅. Since R ∪ {F} is 1-intersecting, the only possibility is that
v⋆1 ∈ N(v2). Thus we have u, v⋆1 ∈ N(v2). Now suppose there exists another v3 ∈ N(u) ∩ V2\{v1, v2}
which has u as its type-I vertex. Similarly we have u, v⋆1 ∈ N(v3), giving uv2v

⋆
1v3u as a C4 in G, a

contradiction. Hence by our discussion, u is a vertex of type-I for at most one vertex of N(u) ∩ V2.
By Claim 5.12, u ∈ Sq\(B ∪N(V ∗

1 )). Then the previous paragraph, together with Claims 5.9 and
5.14, show that u appears as a good type-II vertex for at least (1− ǫ− 3δ)q− (1+ 6/δ)− 1− 4δq ≥ 20
vertices wi ∈ N(u) ∩ V2. Suppose that there exist at least three good lines of type-II for these wi’s,
say F1 = N(u)∪{w⋆

1}, F2 = N(u)∪{w⋆
2} and F3 = N(u)∪{w⋆

3}. By renaming notations if necessary,
we may assume that there are at least four wi ∈ N(u) ∩ V2 whose w⋆

i /∈ {w⋆
1, w

⋆
2}. We observe that

the type-I vertices ui of these wi are all distinct; indeed, otherwise say wi and wj have the same
type-I vertex u′, then it yields a 4-cycle wiu

′wjuwi, a contradiction. Hence, we can further find two
of these wi, say w4, w5 ∈ N(u) ∩ V2, such that their type-I vertices u4, u5 are distinct and not in
{w⋆

1, w
⋆
2}. Now we show w⋆

1 ∈ N(u4) by considering the location of w⋆
1 in the local structure based

on w4. As w4 ∈ V2, any v ∈ N(w4) ∩ Sq+1 is in A, so w4 is the unique vertex in N(v) ∩ F1 and thus
w⋆
1 /∈ N(v). Since V =

(

∪v∈N(w4)∩Sq+1
N(v)

)

∪ Lw4

I ∪ Lw4

II and w⋆
1 /∈ Lw4

II = N(u) ∪ {w⋆
4}, we conclude

that w⋆
1 ∈ Lw4

I = N [u4], which further shows w⋆
1 ∈ N(u4), as wanted. Analogously, we can derive that

w⋆
1, w

⋆
2 ∈ N(u4) ∩N(u5). This provides a C4 in G, a contradiction.

Claim 5.15 also indicates that the type of a good vertex u ∈ Sq\B is consistent with the type of
all good lines containing N(u). Consequently, just the same as a good vertex, a good line can only be
of one particular type. To further study good lines, we define an auxiliary graph as following.

Definition 5.8. We denote F by the set of all good lines (of type-I or type-II for any vertex in V2).
Let G be the graph with vertex set F , where F,F ′ ∈ F are adjacent if and only if they are the type-I
and type-II lines for some extendable vertex in V2.

By the above discussion, we see that G is a bipartite graph on two parts (FI ,FII), where FI

consists of all good lines of type-I and FII consists of all good lines of type-II.
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Claim 5.16. For two independent edges (Lv
I , L

v
II) and (Lw

I , L
w
II) in G, we have vw = (|Lv

I ∩Lw
I |, |Lv

I ∩
Lw
II |, |Lv

II ∩ Lw
I |, |Lv

II ∩ Lw
II |) ∈ {(1, 1, 1, 1), (2, 0, 0, 2), (0, 2, 2, 0), (0, 2, 2, q)}.

Proof. Clearly v,w ∈ V2 are extendable. We define v1, ..., vq+1, v
⋆ and w1, ..., wq+1, w

⋆ according to
Definition 5.5 for v and w, respectively.

First we observe that if any entry in the vector vw is one, then by applications of Lemma 2.5,
we can infer that R ∪ {Lv

I , L
v
II , L

w
I , L

w
II} is 1-intersecting and thus vw = (1, 1, 1, 1). Hence, we may

assume that none of the entries in vw is one.
Suppose v ∈ Lw

I . Then we have v ∈ N(w1) and thus w1 ∈ {v1, v2}. If w1 = v1, then Lw
I = Lv

I , a
contradiction as the two edges in G are independent. So w1 = v2. Then {v2, v3} ⊆ N(v)∩Lw

I , however
{N(v), Lw

I } ⊆ R∪ {Lw
I } is 1-intersecting, a contradiction. Hence we must have v /∈ Lw

I . Also we have
|Lw

I ∩N(vi)| = 1 for 3 ≤ i ≤ q +1. So |Lw
I ∩ (Lv

I ∪Lv
II)| = 2. By symmetry between v and w, we also

can get |Lv
I ∩ (Lw

I ∪ Lw
II)| = 2.

If |Lv
I ∩ Lw

I | = 2, then |Lv
I ∩ Lw

II | = |Lv
II ∩ Lw

I | = 0. Note that Lv
I , L

v
II , N(v3), ..., N(vq+1) form a

sun-flower with center v and vertex set V . Since Lw
II ∩Lv

I = ∅ and |Lw
II ∩N(vi)| = 1 for 3 ≤ i ≤ q+1,

we derive that |Lw
II ∩ Lv

II | = 2, i.e., vw = (2, 0, 0, 2).
It remains to consider |Lv

I ∩ Lw
I | = 0. Then |Lv

I ∩ Lw
II | = |Lv

II ∩ Lw
I | = 2. If v /∈ Lw

II , using
the same argument as above, we can easily get vw = (0, 2, 2, 0). Hence we assume v ∈ Lw

II . If
v = w⋆, then clearly N(v)∩N(w) = ∅, contradicting that R is 1-intersecting. So v ∈ N(w2), implying
that w2 ∈ {v1, v2}. If w2 = v1, as N(w2) ⊆ Lw

II and N(v1) ⊆ Lv
I , we have a contradiction that

2 = |Lw
II∩Lv

I | ≥ q. So w2 = v2, which shows either vw = (0, 2, 2, q) or Lw
II = Lv

II (a contradiction).

We say two good lines F,F ′ ∈ F are friendly if |F ∩ F ′| = 1 and two components D and D′ of G
are friendly if there is a friendly pair {F,F ′} with F ∈ V (D) and F ′ ∈ V (D′).

Claim 5.17. If two components D and D′ of G are friendly (possibly D = D′), then all pairs in D∪D′

are friendly. In particular, any two vertices in the same component of G are friendly.

Proof. First we point out that if two edges say (L1, L2) and (L1, L3) in G share a common vertex,
then using Lemma 2.5, one can derive that R ∪ {L1, L2, L3} is 1-intersecting.

Assume that there exist F ∈ V (D) and F ′ ∈ V (D′) with |F ∩ F ′| = 1. To complete the proof, it
suffices to show that for any vertex L ∈ V (D), we have |L ∩ F ′| = 1 (unless D = D′ and L = F ′). We
will prove this by induction on the length dL of the shortest path between L and F in D. If dL = 0,
then L = F and clearly it is true. Now suppose that for any L∗ ∈ V (D) with dL∗ ≤ k, the above
statement holds. Consider any L ∈ V (D) with dL = k + 1. Then there exists an edge (L,L∗) in D
with dL∗ = k. By induction, we have |L∗ ∩ F ′| = 1, unless D = D′ and L∗ = F ′. In the latter case,
obviously we have |L ∩ F ′| = 1. Therefore |L∗ ∩ F ′| = 1. Fix an edge incident to F ′, say (L′, F ′) in
D′. If (L,L∗) and (L′, F ′) share a common vertex, then D = D′ and by the first paragraph, it is easy
to see that either L = F ′ or |L∩F ′| = 1. So we may assume (L,L∗) and (L′, F ′) are two independent
edges. By Claim 5.16, as |L∗ ∩ F ′| = 1, it infers that |L ∩ F ′| = 1. This finishes the proof.

Definition 5.9. For each F ∈ F , let uF be the unique vertex in Sq\B satisfying N(uF ) ⊆ F . We
say a component of G is rich if it contains some vertex F with uF ∈ N(V ∗

1 ).

We remark that for each F ∈ F , there exists some extendable vF ∈ V2 such that uF is a good
vertex and F is a good line for vF of the same type.

Claim 5.18. A rich component of G is friendly with any component of G.

Proof. Let D be a rich component of G and let F ∈ F be a vertex in D with uF ∈ N(V ∗
1 ). Then uF

is a good vertex and F is a good line for some v ∈ V2 of the same type. By Claim 5.12, uF is type-I
for v and F = N [uF ] ∈ L. Now consider any component D′ of G and take any vertex L ∈ V (D′) ∩F .
Then R∪{L} is 1-intersecting. Recall that Claim 5.7 holds for F ∈ L. By Lemma 2.5, we can derive
that R∪ {L,F} is 1-intersecting. This shows that D and D′ are friendly.
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Definition 5.10. If a component of G, which is not rich, contains at least 40 vertices in FI and at
least δq vertices in FII , then we say it is heavy.

Claim 5.19. Let Fr and Fh denote two unions of vertices in rich components and heavy components
of G, respectively. Then |Fr ∪ Fh ∪ L| ≥ 2αq + 1

2(1− ǫ)q.

Proof. We note that L = {N [u] : u ∈ Sq ∩N(V ∗
1 )} and |L| = |Sq ∩N(V ∗

1 )|.
For u ∈ Sq\(B∪N(V ∗

1 )), if all vertices in N(u)∩V2 are non-extendable, then we say u is poor. Let
P be the set of all poor vertices in Sq\(B ∪ N(V ∗

1 )). Consider the number M of pairs (v, u), where
v ∈ V2 is non-extendable and u ∈ Sq\(B ∪N(V ∗

1 )) is the type-I vertex of v. Clearly M is at most the
number of pairs (v, u′), where v ∈ V2 is non-extendable and u′ ∈ Sq\B is the type-II vertex of v. By
Claims 5.9 and 5.14, |P | · ((1− ǫ− 3δ)q − (1 + 6/δ) − 4δq) ≤ |M | ≤ |Sq\B| · 4δq. This implies that

|P | ≤ 4δq · |Sq\B|
(1− ǫ− 3δ)q − (1 + 6/δ) − 4δq

=
4δq · |Sq\B|

(1− ǫ− 7δ)q − (1 + 6/δ)
. (13)

We point out that any u ∈ Sq\(B ∪N(V ∗
1 ) ∪ P ) has an extendable neighbor in V2, which implies at

least one good line (not in L) containing N(u). By Claim 5.15, if u is type-I, then the unique good
line containing N(u) is N [u]. If u is type-II, then there are at most two good lines containing N(u),
say F u

1 and F u
2 . We call these good lines as the associated lines of u ∈ Sq\(B ∪N(V ∗

1 ) ∪ P ).
Let F be any line in FI with uF /∈ N(V ∗

1 ). Clearly uF ∈ Sq\(B∪N(V ∗
1 )) is type-I and F = N [uF ].

By Claims 5.9 and 5.15, uF is the good vertex of type-I for at least (1 − ǫ − 3δ)q − (1 + 6/δ) ≥ δq
vertices in N(uF )∩ V2. This shows that there are at least δq good lines of type-II adjacent to F in G,
i.e., F has degree at least δq in G.

Consider a type-II vertex u ∈ Sq\(B ∪ N(V ∗
1 ) ∪ P ). As mentioned above, there are at least one

and at most two associated lines say F u
1 and F u

2 of u. By Claims 5.9, 5.14 and 5.15, we see that u is
the good vertex of type-II for at least (1− ǫ− 3δ)q − (1 + 6/δ) − 4δq − 1 ≥ 80 vertices in N(u) ∩ V2.
Thus at least one of F u

1 and F u
2 has at least 40 neighbors in FI . By the previous paragraph, we see

that at least one associated line of u is contained in a rich or heavy component of G.
Now we show that the number of type-I vertices u ∈ Sq\(B∪N(V ∗

1 )∪P ), which has no associated

lines in any rich or heavy component of G, is at most
40|Sq\B|

(1−ǫ−3δ)q−(1+6/δ) . If a component D of G is

neither rich nor heavy, then each F ∈ V (D) has uF /∈ N(V ∗
1 ) and it has no more than 40 vertices in

FI , implying that each F ∈ V (D) ∩ FII has degree at most 40. Let e∗, ℓ1 and ℓ2 denote the numbers
of edges, vertices of FI and vertices of FII contained in all components of G which are neither rich
nor heavy, respectively. Then we have ℓ1 · ((1− ǫ− 3δ)q − (1 + 6/δ)) ≤ e∗ ≤ 40 · ℓ2 ≤ 40|Sq\B|. This
implies what we want.

Therefore we have |(Fr ∪Fh)\L| ≥ |Sq\(B ∪N(V ∗
1 ) ∪ P )| − 40|Sq\B|

(1−ǫ−3δ)q−(1+6/δ) . This, together with

(13) and |L| = |Sq ∩N(V ∗
1 )|, imply that

|Fr ∪ Fh ∪ L| ≥ |Sq\(B ∪N(V ∗
1 ) ∪ P )| − 40|Sq\B|

(1− ǫ− 3δ)q − (1 + 6/δ)
+ |Sq ∩N(V ∗

1 )|

≥ |Sq\B| − 4δq · |Sq\B|
(1− ǫ− 7δ)q − (1 + 6/δ)

− 40|Sq\B|
(1− ǫ− 3δ)q − (1 + 6/δ)

.

By (7) and (12), it shows that |Fr ∪ Fh ∪ L| ≥ 2αq + 1
2(1− ǫ)q, completing the proof.

Claim 5.20. At least half of the lines in Fh are pair-wise friendly.

Proof. We define H to be a graph whose vertices are heavy components of G, where components
C,D ∈ V (H) are adjacent if and only if they are not friendly. To prove this, we may assume that any
component has a non-friendly component in H (as otherwise, we can delete it and process). By Claim
5.17, it suffices to show that H is a bipartite graph.

Let C and D be two heavy components of G which are not friendly. Take a type-I line F ∈ V (D).
By Claim 5.16, for any edge e = (L1, L2) in C, c(e) := (|F ∩ L1|, |F ∩ L2|) is either (0, 2) or (2, 0).
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Repeatedly applying this, we see that all edges e in C have the same c(e). So for any line F ∈ V (D)∩FI ,
exactly one of the following holds:

(A). All type-I lines L in C satisfy |F ∩ L| = 2. Since |N(uF ) ∩N(uL)| ≤ 1, we have uLuF ∈ E(G).

(B). All type-II lines L in C satisfy |F ∩ L| = 2. Suppose L is a type-II line for vL ∈ V2. Then
L = N(uL) ∪ {v⋆L} and we have either v⋆L = uF , v

⋆
LuF ∈ E(G), or uLuF ∈ E(G).

Suppose (A) holds for some F ∈ V (D) ∩ FI . Repeatedly applying the above conclusion, one would
derive that in fact any L ∈ V (C) ∩ FI and any R ∈ V (D) ∩ FI satisfy |L ∩R| = 2 and uLuR ∈ E(G).
Since all uL, uR are distinct, it is easy to force a C4 in G, a contradiction.

Hence (B) holds for all type-I lines F ∈ V (D) and any heavy component C which is not friendly
with D. For every such F , we can partition V (C) ∩ FII into three sets X(F ), Y (F ) and Z(F ),
where X(F ) = {L ∈ V (C) ∩ FII : v⋆L = uF }, Y (F ) = {L ∈ V (C) ∩ FII : v⋆LuF ∈ E(G)} and
Z(F ) = {L ∈ V (C) ∩ FII : uLuF ∈ E(G)}. Let F,F ′ ∈ V (D) ∩ FI be distinct. Then it is easy to
see that |X(F ) ∩X(F ′)| = 0 and |Z(F ) ∩ Z(F ′)| ≤ 1. If there are L1, L2 ∈ Y (F ) ∩ Y (F ′), then both
v⋆L1

and v⋆L2
are adjacent to {uF , uF ′}. This shows that v⋆L1

= v⋆L2
, as otherwise there is a C4 in G.

That is, all lines L ∈ Y (F ) ∩ Y (F ′) have the same v⋆L. By fC(w), we denote the number of all lines
L ∈ V (C) ∩ FII with v⋆L = w.

We first assert that there exists some vertex w with fC(w) ≥ (|V (C)∩FII |−6)/6. To see this, let us
take four lines F1, F2, F3, F4 ∈ V (D)∩FI . We have |V (C)∩FII | ≥ | ∪1≤i≤4 X(Fi)| =

∑

1≤i≤4 |X(Fi)|,
and by inclusion-exclusion,

|V (C) ∩ FII | ≥ | ∪1≤i≤4 Y (Fi)| ≥
∑

1≤i≤4

|Y (Fi)| −
∑

1≤i<j≤4

|Y (Fi) ∩ Y (Fj)|

and similarly, |V (C) ∩ FII | ≥
∑

1≤i≤4 |Z(Fi)| − 6. Summing up the above three inequalities, using
|X(Fi)|+ |Y (Fi)|+ |Z(Fi)| = |V (C) ∩ FII | for each i ∈ [4], we obtain that

3|V (C) ∩ FII | ≥ 4|V (C) ∩ FII | −
∑

1≤i<j≤4

|Y (Fi) ∩ Y (Fj)| − 6.

Therefore one of Y (Fi) ∩ Y (Fj) contains at least (|V (C) ∩ FII | − 6)/6 lines L, all of which have the
same v⋆L. This proves our assertion.

We further assert that in fact for each heavy component C, there exists a unique vertex wC with
fC(wC) ≥ 0.6 · |V (C) ∩ FII |. Let c = |V (C) ∩ FII |, which is at least δq. We choose w such that fC(w)
is maximum. So we have fC(w) ≥ (c − 6)/6. Take any 20 lines say F1, ..., F20 in V (D) ∩ FI . Then
we have 20c =

∑

1≤i≤20(|X(Fi)| + |Y (Fi)| + |Z(Fi)|) ≤ ∑

1≤i≤20 |Y (Fi)| + 2c +
(

20
2

)

, implying that
∑

1≤i≤20 |Y (Fi)| ≥ 18c −
(20
2

)

. Without loss of generality we may assume wuFi
∈ E(G) if and only if

i ∈ [s] for some s ∈ [20]. Note that for s < i ≤ 20, we have |Y (Fi)| ≤ c − fc(w). If s ≤ 10, then
∑

1≤i≤20 |Y (Fi)| ≤ 20c−(20−s)·fC(w) ≤ 20c−10(c−6)/6 < 18c−
(20
2

)

, a contradiction. Hence s ≥ 11.
For i ∈ [s], let Ai = NG(uFi

)\{w} and let fi =
∑

x∈Ai
fC(x). We claim that Ai’s are disjoint over

i ∈ [s]; as otherwise say x ∈ A1∩A2, then both uF1
, uF2

are adjacent to w, x in G, a contradiction. So
∑

i∈[s] fi ≤ c− fC(w). Then we can derive that 18c−
(

20
2

)

≤ ∑

1≤i≤20 |Y (Fi)| ≤ s · fC(w) +
∑

i∈[s] fi +

(20 − s)c ≤ (s − 1)fC(w) + (21 − s)c ≤ 10fC(w) + 10c, implying that fC(w) ≥ (8c −
(

20
2

)

)/10 ≥ 0.6c,
as desired. Clearly such w is unique, denoted by wC .

We say wC is the associated vertex of C. We also point out that from the above proof, among
any 20 lines F1, ..., F20 in V (D) ∩ FI , the vertex wC is adjacent to at least 11 of uFi

’s in G. Consider
any two incident edges in H, say CC1, CC2 ∈ E(H). Let w1, w2 be the associated vertices of C1, C2,
respectively. Take any 20 lines F1, ..., F20 in V (C)∩FI . Then each of w1 and w2 is adjacent to at least
11 of uFi

’s in G. So there are two vertices uFi
, uFj

adjacent to both w1 and w2 in G. If w1 6= w2, then
this forces a C4, a contradiction. So we conclude that w1 = w2.

Now suppose on the contrary that H contains an odd cycle, say C1C2...CtC1, where t is odd. Let
wi be the associated vertex of Ci for each i ∈ [t]. Applying the above conclusion, as t is odd, we can
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derive that these wi’s are the same vertex, say w. Take any L1 ∈ V (C1) ∩ FII and L2 ∈ V (C2) ∩ FII

with v⋆L1
= v⋆L2

= w. Then L1 = N(uL1
) ∪ {w} and L2 = N(uL2

) ∪ {w}, implying 1 ≤ |L1 ∩ L2| ≤ 2.
If |L1 ∩ L2| = 1, then C1 and C2 are friendly, a contradiction. Hence |L1 ∩ L2| = 2. Let L1R1 be
an edge in C1 and L2R2 be an edge in C2, where R1, R2 are type-I. By Claim 5.16, as |L1 ∩ L2| = 2,
we have |R1 ∩ R2| = 2. So (A) holds for the line R1 ∈ V (C1) ∩ FI and the heavy component C2, a
contradiction. This proves that H is bipartite, completing the proof of Claim 5.20.

Finally, we show how to add certain good lines into R to make a larger 1-intersecting hypergraph
on the vertex set V . By Claim 5.20, there exists a 1-intersecting F ′

h ⊆ Fh with |F ′
h| ≥ |Fh|/2. By

Claim 5.18, we see that R∪Fr ∪F ′
h is also 1-intersecting. Since L ∈ L satisfies Claim 5.7, by Lemma

2.5, we see that R ∪Fr ∪ F ′
h ∪ L remains 1-intersecting. Using Claim 5.19, we have

|R ∪ Fr ∪ F ′
h ∪ L| = |R|+ |Fr ∪ F ′

h ∪ L| ≥ |R|+ 1

2
|Fr ∪ Fh ∪ L|

≥ (q2 − αq + 1− 2/δ) +
1

2
(2αq + (1− ǫ)q/2) ≥ q2.

This finishes the proof of Lemma 5.1.

6 Finding a polarity

In this section, we complete the proof of Theorem 3.2. Fix 0 < ǫ < 1 and let q be an even integer
with q ≫ ǫ. Let G = (V, E) be a C4-free graph on q2 + q +1 vertices with maximum degree q +1 and
at least 1

2q(q + 1)2 − ǫ
2q edges. We aim to show that there exists a unique polarity graph of order q

containing G as a subgraph.
By Lemma 5.1, there exists a 1-intersecting (q+1)-hypergraphR∗ on the vertex set V withR ⊆ R∗

and |R∗| ≥ q2. By Theorem 2.1, R∗ (and thus R) can be embedded into a projective plane P of order
q. Since |R| = |A| ≥ q2 − ǫq − 2/δ > q2 − q + 1 (by Claim 5.1), applying Theorem 2.2, we see that
such P and the embedding of R into P both are unique. Let Rc = P\R. Now let us recall some basic
facts about P: every two lines intersect with exactly one vertex, every two vertices are contained in
exactly one line, and every column or row of any incidence matrix of P has q + 1 1’s as entries.

We say v ∈ V is feasible, if there exists a line L ∈ P with N(v) ⊆ L; otherwise, we say v is
non-feasible. For non-feasible v, we say it is near-feasible, if there exist a line L ∈ Rc and a subset
Kv ⊆ N(v) such that N(v)\Kv ⊆ L and |Kv| ≤ 5

√
q/δ. In both definitions, we say v and L are

associated with each other. For feasible v, we let Kv = ∅. By (10) and since G is C4-free, for any two
feasible or near-feasible vertices u and v, we have

|(N(u)\Ku) ∪ (N(v)\Kv)| ≥
(

d(u)− 5
√
q/δ

)

+
(

d(v)− 5
√
q/δ

)

− 1 ≥ (2− ǫ)q − 10
√
q/δ − 1 > q + 1.

This implies that each line in P is associated with at most one feasible or near-feasible vertex. On
the other hand, if there are two lines in P associated with the same feasible or near-feasible vertex v,
as d(v) ≥ (1− ǫ)q by (10), then it is easy to see that these two lines will intersect with more than two
vertices, a contradiction. So each feasible or near-feasible vertex is associated with a unique line in P.

Next we study some properties on non-feasible vertices v ∈ V . Let N(v) = {v1, ..., vd}. Since v is
non-feasible, we see N(v) 6⊆ L for any L ∈ P and thus v /∈ A. Then any pair {vi, vj} for i, j ∈ [d] is
not contained in any line N(u) ∈ R. This is because that otherwise, we see that viuvjvvi forms a C4

in G, a contradiction. So every such pair {vi, vj} is contained in a unique line L ∈ Rc. Let Lv be the
family of lines L ∈ P which contains at least two vertices of N(v). Then we have Lv ⊆ Rc and thus

|Lv| ≤ |Rc| = |P| − |R| ≤ (1 + ǫ)q + 2/δ + 1. (14)

We also point out that any vertex in N(v) appears in at least two lines of Lv.
We process to show that all non-feasible vertices are near-feasible in the following claims. First

we show any vertex has a neighbor which belongs to many lines in R.
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Claim 6.1. Any vertex v ∈ V has a neighbor vj with dR(vj) = |N(vj) ∩ A| ≥ q − ǫ
1−ǫ − 2/δ − 2.

In addition, if v /∈ B has degree at least 1
2 (1 + ǫ + 4δ)q + 6/δ + 1, then v has a neighbor vj with

dR(vj) ≥ q − 1.

Proof. Let N(v) = {v1, ..., vd}. By (10), we have d = d(v) ≥ (1− ǫ)q. Let Ni = N(vi)\N [v] for i ∈ [d].
Since the sets Ni ∪ {vi} are disjoint over i ∈ [d], we have

q + ǫq + 1 ≥ f(V ) ≥
∑

i∈[d]
f(Ni ∪ {vi}) + f(v) =

∑

i∈[d]
f(Ni ∪ {vi}) + (q + 1− d).

By averaging, there is some j ∈ [d] with f(Nj ∪ {vj}) ≤ ǫq
d + 1 ≤ ǫ

1−ǫ + 1. Therefore,

dR(vj) ≥ |Nj ∩A| ≥ |Nj | − |Nj ∩ S| − |B| ≥
(

d(vj)− 2
)

− f(Nj)− 2/δ

=
(

q − 1− f(vj)
)

− f(Nj)− 2/δ ≥ q − ǫ/(1 − ǫ)− 2/δ − 2,

as desired. Next we consider vertices v /∈ B with d = d(v) ≥ 1
2 (1 + ǫ + 4δ)q + 6/δ + 1. Let

Bv = N(v)∩(S∪B) and B∗
v = Bv∪(N(Bv)∩N(v)). Then we have |Bv| ≤ |N(v)∩S|+ |B| ≤ δq+2/δ.

Since G is C4-free, every vertex in Bv has at most one neighbor in N(v), implying that |B∗
v | ≤ 2|Bv|.

Let T = {vi ∈ N(v)\B∗
v : Ni ∩ B = ∅}. Since Ni’s are disjoint and there are at most |B| many

Ni’s containing some vertex in B, we get |T | ≥ |N(v)\B∗
v | − |B| ≥ d − 2δq − 6/δ. If f(Nj) ≥ 2

for all vj ∈ T , then q + ǫq + 1 ≥ f(V ) ≥ 2|T | ≥ 2(d − 2δq − 6/δ) ≥ q + ǫq + 2, a contradiction.
Therefore, there exists a vertex vj ∈ T such that f(Nj) ≤ 1. By the definition of T , we can see that
dR(vj) = |N(vj) ∩A| ≥ d(vj)− 1− f(Nj) ≥ q − 1. This completes the proof.

We partition V into three disjoint sets U1 ∪ U2 ∪ U3, where U1 consists of all feasible vertices and
U2 consists of non-feasible vertices v /∈ B with d(v) ≥ 1

2(1 + ǫ+ 4δ)q + 6/δ + 1.

Claim 6.2. There exists some w ∈ V such that all v ∈ U2 are near-feasible with Kv = {w}.

Proof. For any v ∈ U2, by Claim 6.1, there is a neighbor vj of v with dR(vj) ≥ q − 1. By the
above discussion, vj appears in at least two lines in Lv ⊆ Rc. If dR(vj) ≥ q, then dP (vj) ≥ q + 2, a
contradiction. So dR(vj) = q−1 and there are exactly two lines, say L1 and L2, in Lv ⊆ Rc containing
vj. Let N1 = L1 ∩N(v) and N2 = L2 ∩N(v). Then we have N1 ∩ N2 = {vj} and N1 ∪N2 = N(v).
Consider any other line Li ∈ Lv\{L1, L2} for i ≥ 3. Set Ni = Li ∩N(v). We see that for any i ≥ 3
and j ∈ {1, 2}, |Ni ∩ Nj| ≤ 1 and |Ni ∩ N1| + |Ni ∩ N2| ≥ |Ni ∩ (N1 ∪ N2)| = |Ni| ≥ 2. This shows
that for any i ≥ 3, Ni consists of two vertices, one from N1\{vj} and the other from N2\{vj}. Hence,
|Lv| = (|N1| − 1)(|N2| − 1) + 2.

Let d = d(v). We may assume that d − 1 ≥ |N1| ≥ |N2| ≥ 2. If |N2| ≥ 3, then we have
|Lv| = (|N1|−1)(|N2|−1)+2 ≥ 2(d−3)+2 = 2d−4 ≥ (1+ǫ+4δ)q+12/δ−2 > (1+ǫ)q+2/δ+1 ≥ |Lv|,
where the last inequality holds by (14), a contradiction. Thus, |N1| = d − 1 and |N2| = 2, implying
|Lv| = d. Suppose that N2 = {vj , w}. Then every Ni for 2 ≤ i ≤ d contains the vertex w. Also
N(v)\{w} ⊆ L1 ∈ Rc, implying that v ∈ U2 is near-feasible with Kv = {w}.

Assume there is another non-feasible vertex v′ ∈ U2 with Kv′ = {w′}, where w′ 6= w. Let d = d(v)
and d′ = d(v′). By the above arguments, w and w′ appear in d− 1 and d′− 1 lines in Rc, respectively.
By (14), |Rc|+2 ≤ (1+ǫ)q+2/δ+3 ≤ (1+ǫ+4δ)q+12/δ ≤ (d−1)+(d′−1), which shows that w and
w′ appear in at least two lines of Rc in common. This contradicts that P is a projective plane.

Claim 6.3. All non-feasible vertices are near-feasible.

Proof. Let v ∈ V be any non-feasible vertex. We have d(v) ≥ (1− ǫ)q. By Claim 6.1, v has a neighbor
u with dR(u) = q + 1 −m, where m ≤ ǫ

1−ǫ + 2/δ + 3. Let U = {L ∈ Lv : u ∈ L ∩ N(v)}. We have
|U| ≤ m and ∪L∈UNL = N(v), where NL := L ∩N(v). We assert that for all but at most one L ∈ U ,
the size of NL is at most 2

√
q. Suppose on the contrary that there are L1, L2 ∈ U with |NL1

| ≥ 2
√
q+1

and |NL2
| ≥ 2

√
q + 1. Then all pairs (x, y) with x ∈ NL1

\{u} and y ∈ NL2
\{u} should appear in
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distinct lines in Lv. By (14), this shows that (1 + ǫ)q + 2/δ + 1 ≥ |Lv| ≥ (|NL1
| − 1)(|NL2

| − 1) ≥ 4q,
a contradiction.

Let L1 be the line in U with the maximum NL1
and let Kv =

⋃

L∈U\{L1}(NL\{u}). Then

N(v)\Kv ⊆ L1 ∈ Rc with |Kv | ≤
∑

L∈U\{L1}(|NL| − 1) ≤ (m− 1) · 2√q ≤ 2
(

ǫ
1−ǫ +

2
δ + 2

)√
q ≤ 5

√
q

δ .

Therefore, v is near-feasible.

We express V = {v1, ..., vn} such that U1 = {v1, ..., va}, U2 = {va+1, ..., vb} and U3 = {vb+1, ...., vn}
for 1 ≤ a < b ≤ n. Since all vertices in G are feasible or near-feasible, by the discussion before Claim
6.1, we can conclude that each vi ∈ V is associated with a unique line denoted by Li in P. Let
π : V ↔ P be a function which maps vi ↔ Li for every i ∈ [n]. Let M = (mij) be the incidence
matrix of P with respect to π.

Let s := |U3|. We point out that any v ∈ U3 either is in B or has d(v) ≤ (1 + ǫ+4δ)q/2 + 6/δ. In
the latter case, we have the deficiency f(v) = q + 1− d(v) ≥ (1− ǫ− 4δ)q/2 − 6/δ. So by (8), we see

s ≤ |B|+ f(V )

(1− ǫ− 4δ)q/2 − 6/δ
≤ 2

δ
+

q + ǫq + 1

(1− ǫ− 4δ)q/2 − 6/δ
≤ C∗,

where C∗ is a constant depending on ǫ and δ only. Let K be the union of Kv’s over all v ∈ V . By
Claims 6.2 and 6.3, we know that Kv = ∅ for v ∈ U1, Kv = {w} for v ∈ U2 and |Kv| ≤ 5

√
q/δ for

v ∈ U3. Hence |K| ≤ 1 + s · 5√q/δ = O(
√
q).

Claim 6.4. M is symmetric.

Proof. We assert that if vi ∈ A\K, then mij = mji for all j ∈ [n]. If mij = 1, then as vi ∈ A, we
have vj ∈ Li = N(vi) ∈ R. Since vi /∈ K, we see vi ∈ N(vj)\K ⊆ N(vj)\Kvj ⊆ Lj, which shows
that mji = 1 = mij. Now we observe that as vi ∈ A, the i’th column and the i’th row of M have
exactly q + 1 many 1-entries, and all these 1-entries are in the symmetric positions. This shows that
the i’th column and the i’th row are symmetric, proving the assertion. Since |A\K| ≥ |A| − |K| ≥
(q2 − ǫq − 2/δ) −O(

√
q) ≥ q2 − q + 3, by Lemma 2.4, the whole matrix M is symmetric.

Hence we see from (2) that the above function π : V ↔ P is a polarity of the projective plane P.
Let H be the polarity graph of π. For any k × ℓ matrices X = (xij) and Y = (yij), we say X is at
most Y if xij ≤ yij for all i, j and we express this by X ≤ Y.

Now we are finishing the proof of Theorem 3.2 by showing that G is a subgraph of H. Let A = (aij)
be the adjacent matrix of the graph G. It suffices to shows that A ≤ M. We call these (i, j)-entries
with aij = 1 and mij = 0 problematic. Since both A and M are 0/1 matrices, it is equivalent for us
to show that there is no problematic entries.

For every vi ∈ U1, as it is feasible, we see that N(vi) ⊆ Li and thus the i’th row of A is at most
the i’th row of M. Since both A and M are symmetric, the i’th column of A is also at most the i’th
column of M, whenever vi ∈ U1. Now consider vertices vi ∈ U2. By Claim 6.2, N(vi)\{w} ⊆ Li, where
w = vℓ is fixed. Consider aij = 1 for possible j which is not ℓ. Then we have vj ∈ N(vi)\{w} ⊆ Li.
This shows that the i’th row of A is at most the i’th row of M, except the (i, ℓ)-entry. By symmetry,
we see that for all vi ∈ U2, the i’th column of A is at most the i’th column of M, except the
possible (ℓ, i)-entry. We also know w is feasible or near-feasible. So |Kw| ≤ 5

√
q/δ and the number

of problematic (ℓ, i)-entries is clearly at most |Kw| ≤ 5
√
q/δ. This further shows that the number of

problematic (i, j)- or (j, i)-entries for all vi ∈ U2 is at most 10
√
q/δ. Note that |U3| = s is at most a

constant C∗ depending on only ǫ and δ. Putting all the above together, we see that the number of
problematic (i, j)-entries for i, j ∈ [n] is at most 10

√
q/δ + s2 = O(

√
q).

Let E0 be the set of vivj for all problematic (i, j)-entries. It is easy to see that E0 = E(G)\E(H)
and |E0| = O(

√
q). Suppose that there is some edge say e = vivj ∈ E0. By Lemma 2.8, H ∪ {e}

contains at least q − 1 copies of C4, all of which contain the edge e and are edge-disjoint otherwise.
Hence in order to turn H ∪ {e} into a subgraph of G containing e (which is C4-free), one needs to
delete at least q − 1 edges in H ∪ {e}. On the other hand, since H is a polarity graph, we have
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e(H) ≤ 1
2q(q + 1)2 and |E(H)\E(G)| − |E0| = e(H)− e(G) ≤ 1

2ǫq. So one can delete |E(H)\E(G)| ≤
1
2ǫq + |E0| ≤ 1

2ǫq + O(
√
q) < q − 1 edges to turn H ∪ {e} into a subgraph of G while preserving the

edge e. This is a contradiction. Therefore, E0 = ∅ and G is a subgraph of H.
It only remains to show that the polarity graph H is unique. Recall that the projective plane P

containing R has been shown to be unique. So it is equivalent to show that the polarity π is unique.
Suppose for a contradiction that there exists another polarity π′ : V ↔ P, where π′ : vi ↔ Lσ(i) for
some permutation σ on [n]. Let M′ = (m′

ij) be the incidence matrix of P with respect to π′. By the
same proof as above, we can deduce that A ≤ M′. By (10), we see that any vertex vi ∈ V has degree
at least (1 − ǫ)q ≥ 2. Choose any pair {xi, yi} ⊆ N(vi). Since the i’th row of A is at most the i’th
row of M′, we see {xi, yi} ⊆ N(vi) ⊆ Lσ(i) ∈ P. Also we have {xi, yi} ⊆ N(vi) ⊆ Li ∈ P. Since P is
a projective plane, it is clear that Lσ(i) = Li for all i ∈ [n]. This shows that π = π′ and indeed the
polarity graph H is unique. The proof of Theorem 3.2 (and thus Theorem 1.3) is completed.

We remark that it would suffice to choose qǫ =
1010

(1−ǫ)6
in the statement of Theorem 3.2.

7 Turán numbers

In this section, we discuss the consequences of Theorem 1.3 on Turán numbers. First, let us restate
and prove Corollary 1.4. Recall the definition of λ(q).

Corollary 7.1. Let q be even. If λ(q) ≥ 1
2q(q+1)2 − 1

2q+ o(q), then ex(q2 + q+1, C4) = λ(q), where
the equality holds only for polarity graphs of order q with λ(q) edges; otherwise, ex(q2 + q + 1, C4) <
1
2q(q + 1)2 − 1

2q + o(q). In particular, ex(q2 + q + 1, C4) ≤ max
{

λ(q), 12q(q + 1)2 − 1
2q + o(q)

}

.

Proof. Let q be even and G be an extremal graph for ex(q2 + q + 1, C4). First suppose that λ(q) ≥
1
2q(q + 1)2 − 1

2q + o(q). As e(G) ≥ λ(q) ≥ 1
2q(q + 1)2 − 1

2q + o(q), by Theorem 1.3, there exists a
polarity graph H of order q containing G as a subgraph. Then we have λ(q) ≤ e(G) ≤ e(H) ≤ λ(q),
which implies that G = H must be a polarity graph of order q with λ(q) edges. Now assume λ(q) <
1
2q(q+1)2− 1

2q+ o(q). By Theorem 1.3, it is easy to conclude that e(G) < 1
2q(q+1)2 − 1

2q+ o(q).

A quick inference of this corollary is that: For all even integers q such that there is no projective
planes of order q, it holds that

ex(q2 + q + 1, C4) ≤
1

2
q(q + 1)2 − 1

2
q + o(q).

We point out that by Theorem 2.3, there are infinitely many such integers q, including all integers
q ≡ 2 mod 4 which cannot be expressed as a sum of two square numbers.

Another inference can be stated related to the existence of orthogonal polarity graphs of order q.

Corollary 7.2. Let q be a large even integer. If there exists an orthogonal polarity graph of order q,
then ex(q2 + q + 1, C4) =

1
2q(q + 1)2; otherwise, we have ex(q2 + q + 1, C4) ≤ 1

2q(q + 1)2 − 1
2

√
q and

in addition if q is not a square number, then ex(q2 + q + 1, C4) ≤ 1
2q(q + 1)2 − 1

2q + o(q).

Proof. By Proposition 2.6, any polarity graph of order q has 1
2q(q + 1)2 − 1

2m
√
q edges for some

integer m ≥ 0. The first assertion follows by Theorem 1.1. Now we may assume that m ≥ 1 for any
polarity graph of order q and thus λ(q) ≤ 1

2q(q + 1)2 − 1
2

√
q. By Corollary 1.4, ex(q2 + q + 1, C4) ≤

max
{

λ(q), 12q(q + 1)2 − 1
2q + o(q)

}

≤ 1
2q(q+1)2− 1

2

√
q. In addition, if q is not a square number, then

this implies that there is no polarity graphs of order q and the conclusion follows easily.

We conclude this section with an explicit lower bound of ex(n,C4) for later use.

Proposition 7.3. For any sufficiently large n, there exists some prime number p with
√
n−n0.2625−

1 ≤ p ≤ 1
2 (−1 +

√
4n− 3) such that ex(n,C4) ≥ ex(p2 + p+ 1, C4) ≥ 1

2(n
1.5 − 3n1.2625 + n).

Proof. Let x = 1
2(−1 +

√
4n− 3). As n is sufficiently large, by Theorem 2.13, there exists a prime

number p ∈ [x− x0.525, x]. So n = x2 + x+ 1 ≥ p2 + p + 1, where p ≥ x− x0.525 ≥ √
n− n0.2625 − 1.

By Theorem 1.1, we derive ex(n,C4) ≥ ex(p2 + p+ 1, C4) =
1
2p(p+ 1)2 ≥ 1

2(n
1.5 − 3n1.2625 + n).
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8 Supersaturation: one additional edge

Here, we extend Theorem 1.6 to Theorem 8.1, which implies Theorem 1.8 clearly.

Theorem 8.1. Let q be a large even integer and G be a graph on q2+q+1 vertices with 1
2q(q+1)2+1

edges. Then either G has at least q9/8/30 copies of C4, or there exists an orthogonal polarity graph H
of order q such that |E(G)\E(H)| = s and |E(H)\E(G)| = s − 1 for some 1 ≤ s ≤ q1/8/30. In the
latter case, the number of copies of C4 in G is between sq − s2 and sq + s2.

Proof. We will prove this by following the proof of Theorem 1.3 in [20] closely. It should be mentioned
that most claims there can be generalized in this setting easily and thus, in these cases, we often
only mention the modified statements without providing many details. For other cases where extra
arguments are needed, we give self-contained proofs.

By #C4, we denote the number of copies of C4 in G. For v ∈ V := V (G), let c(v) be the number
of copies of C4 containing v. Throughout this proof, let t = q1/8/30, we may assume that

#C4 < tq and
∑

v∈V
c(v) = 4 ·#C4 < 4tq. (15)

We say a pair {u, v} ⊆ V is opposite if d(u, v) ≥ 2. The deficiency f(v) is defined by f(v) =
max{q + 1− d(v), 0}. So f(v) + d(v) ≥ q + 1 holds for every v ∈ V .

Recall the definitions of sets UP and P2. For A ⊆ V , let UP ∩ A be the set of uncovered pairs
{u, v} ⊆ A of G and let P2 ∩A be the set of 2-paths of G with both endpoints in A.

First, we can get the following claim about the lower bound of #C4 (see Proposition 2.5 in [20]).

Claim 8.1 ([20]). Let G be a graph with A ⊆ V (G). Then 2#C4 ≥ |P2 ∩A|+ |UP ∩A| −
(|A|

2

)

.

Similarly as in earlier sections, we let Si be the set of all vertices of degree i in G and let S = ∪q
i=0Si.

For v ∈ V , let d0(v) be the number of vertices u ∈ V with d(u, v) = 0. We retain Claim 4.1 in [20].

Claim 8.2 ([20]). Any vertex v satisfies c(v) ≥ (d(v)− q− 1)q− f(N(v))+ d0(v), and if d(v) ≥ q+1
and N(v) ∩ S = ∅ then c(v) ≥ 1.

By adjusting the proof of Claim 4.2 in [20], one can derive ∆(G) ≤ q + 2 + t. Indeed, suppose on
the contrary that there is a vertex v1 ∈ V with d(v1) = q + k for some t+ 3 ≤ k ≤ q2. Following the
proof therein, we can get

∑n
i=2 ai ≤ q2 + (t+ 1)q and

2 ·#C4 ≥ q3 − 2q2 + 2q − (q − 1)

n
∑

i=2

ai − 0.5k2 + k(q2 − q + 1.5) − 2.

So we see that when k = t+3 and
∑n

i=2 ai = q2+(t+1)q, the above inequality achieves its minimum
q2 − 0.5t2 − 1.5t − 2, which is a contradiction to (15) for large q. This proves ∆(G) ≤ q + 2 + t. We
then see that the deficiency of V is

f(V ) = (q + 1)n+
t

∑

k=0

(k + 1)|Sq+2+k| − 2e(G) = q − 1 +
t

∑

k=0

(k + 1)|Sq+2+k|. (16)

Let S′ = Sq+2 ∪ · · · ∪ Sq+2+t. By a similar proof as Claim 4.3 in [20], one can show |S′| ≤ 3
√
tq.

Following the deductions of Claim 4.3 in [20], one can conclude q− 4t ≤ |S| ≤ q− 1+3(t+1)
√
tq and

f(T ) ≤ |S ∩ T |+ 3(t+ 1)
√
tq + 4t− 1 for any T ⊆ V. (17)

We also can derive the following analogue of Claim 4.3 in [20].

Claim 8.3.
∑t

k=0(k + 1)|Sq+2+k| ≤ 2t+ 2.
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Proof. For any u, v ∈ V , we have d(u, v) ≤ 2
√
tq; as otherwise there are at least 2tq copies of C4, a

contradiction to (15). Choose v1, ..., vs ∈ S′ for s = min{4t, |S′|}. By the inclusion-exclusion principle,

|S| ≥ |
s
⋃

j=1

(N(vj) ∩ S)| ≥
∑

1≤j≤s

|N(vj) ∩ S| −
∑

1≤i<j≤s

|N(vi) ∩N(vj)| ≥
∑

1≤j≤s

|N(vj) ∩ S| − 2

(

s

2

)√
tq

which implies that
∑

1≤j≤s |N(vj) ∩ S| ≤ q + (3t + s2 + 3)
√
tq − 1. Since each C4 has two opposite

pairs, we see there are at least 1
2

∑s
j=1

∑n
i=s+1

(d(vj ,vi)
2

)

copies of C4 containing opposite pairs {vj , vi}
for 1 ≤ j ≤ s and s + 1 ≤ i ≤ n. For any j ∈ [s], by the inequality (9) of Claim 4.1 in [20] and (17)
we derive

n
∑

i=s+1

(

d(vj , vi)

2

)

≥
n
∑

i=s+1

(d(vj , vi)− 1) ≥
∑

i∈[n]\{j}
(d(vj , vi)− 1)− 2(s− 1)

√
tq

≥(d(vj)− q − 1)q − f(N(vj))− 2(s − 1)
√
tq ≥ (d(vj)− q − 1)q − |N(vj) ∩ S| −X ′,

where X ′ = (3t+ 2s + 1)
√
tq + 4t− 1. Putting the above together, we have that

2tq >2#C4 ≥
s

∑

j=1

n
∑

i=s+1

(

d(vj , vi)

2

)

≥
s

∑

j=1

(d(vj)− q − 1)q −
s

∑

j=1

|N(vj) ∩ S| − sX ′

≥q

t
∑

k=0

(k + 1)|Sq+2+k ∩ {v1, ..., vs}| −
(

q + (3t+ s2 + 3)
√
tq − 1

)

− sX ′.

Since s/4 ≤ t ≤ q1/8/30 and q is large, we can derive
∑t

k=0(k+1)|Sq+2+k ∩{v1, ..., vs}| ≤ 2t+2. This
shows that s ≤ 2t+2 and by the choice of s, we have S′ = {v1, ..., vs}. Therefore

∑t
k=0(k+1)|Sq+2+k| ≤

2t+ 2, completing the proof of Claim 8.3.

Using Claim 8.3 and (16), we can easily deduce that q − 4t ≤ |S| ≤ f(V ) ≤ q + 2t + 1 and for
any T ⊆ V , f(T ) ≤ |S ∩ T | + 6t + 1. In particular, for any v ∈ V , we have f(v) ≤ 6t + 2 and
d(v) ≥ q + 1 − f(v) ≥ q − 6t − 1. Following the arguments in the proof of Claim 4.4 in [20], we can
show that for any v ∈ V , either |N(v) ∩ S| ≤ 7t + 2 or |N(v) ∩ S| ≥ q − 11t − 2. Again we note
that there is at most one vertex (denoted by z if it exists) in V with |N(z) ∩ S| ≥ q − 11t − 2. Let
W = S′ ∪ {z}. Claim 8.3 shows |W | ≤ 2t+ 3.

Let c′(v) denote the number of vertices x ∈ N(v) with c(x) ≥ 1. Then one can generalize the
proof of Claim 4.5 in [20] and get the following: if {u, v} is an opposite pair with u ∈ V \W and
v ∈ V \{z}, then c(u)+ (6t+3) · c′(v) ≥ q− (13t+3)(6t+4) > q− 200t2. Choose ℓ = q1/4/2 such that
ℓq/(100t) −

(ℓ
2

)

· 2√tq > 4tq holds for large q. Then Claim 4.5 in [20] can be extended as following.

Claim 8.4. If there are ℓ opposite pairs {ui, vi} for i ∈ [ℓ] such that ui, vi ∈ V \W and all vi are
distinct, then there is some ui with c(ui) > 0.8q.

Let A = {v ∈ V : c(v) > 0.8q} and X = A ∪W . So |X| < 4tq/(0.8q) + 2t+ 3 = 7t+ 3. According
to the arguments after Claim 4.5 in [20], one can obtain that there exists an edge set E∗ ⊆ E(G) with
|E∗| ≤ 45t2 such that G′ = G−E∗ has at most 0.1q copies of C4.

Having the above, the arguments after Claim 4.5 in [20] can be directly converted to show that
there exists an orthogonal polarity graph H of order q such that G′ ⊆ H. Let |E(G)\E(H)| = s. Then
|E(H)\E(G)| = s − 1 and 1 ≤ s ≤ |E(G)\E(G′)| = |E∗| ≤ 45t2. By Lemma 2.8, there are at least
s(q− 1) copies of C4 in H ∪ (E(G)\E(H)) such that each edge in E(H)\E(G) can appear in at most
s of them. This shows that G has at least s(q− 1)− (s− 1)s = sq− s2 copies of C4. If s ≥ t+1, then
since s ≤ 45t2, G has at least tq copies of C4, contradicting our assumption. Hence we have 1 ≤ s ≤ t.

It remains to show that the number L of copies of C4 in G is at most sq+s2. Let C0 be the collection
of all C4’s in G using exactly one edge in E(G)\E(H) and C1 be the collection of the remaining C4’s
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in G. By Lemma 2.8, we have |C0| ≤ s(q + 1). There are three types of C4’s in C1, namely using two
edges, three edges or four edges in E(G)\E(H). For each 4-cycle C in C1, we define one or two pairs
of edges in (E(G) ∩ E(C))\E(H) as following. If C has exactly two edges in E(G)\E(H), then we
take these two edges to form a pair. If C has three edges in E(G)\E(H) which form a path of length
three, then we take the two non-incident edges to form a pair. Otherwise all four edges in C are from
E(G)\E(H), then we take two pairs, each of which is formed by two non-incident edges of C. Let us
call all such pairs feasible. It is easy to verify that each feasible pair can be contained in at most two
4-cycles in C1. Thus we have |C1| ≤ 2

(s
2

)

, implying that L = |C0|+ |C1| ≤ s(q+1)+ s(s− 1) = sq+ s2.
This completes the proof of Theorem 8.1.

9 Supersaturation: the general case

In this section, we establish two supersaturation results - Theorems 9.1 and 9.2, which together imply
Theorem 1.9. We also give a proof of Proposition 1.10.

9.1 A generalization of Theorem 1.6

We now deduce a supersaturation result for a wider range on the number of edges from Theorem 8.1.
This is also optimal for infinitely many values q (as powers of two).

Theorem 9.1. Let q be a large even integer and t be any integer such that 1 ≤ t < q1/8/30. Let G be
a graph on q2 + q+1 vertices with 1

2q(q+ 1)2 + t edges. Then either G has at least (t+1)q − (t+1)2

copies of C4, or G is obtained from an orthogonal polarity graph of order q by adding t new edges. In
particular, G has at least t(q − 1) copies of C4.

Proof. Suppose on the contrary that G has less than (t+1)q−(t+1)2 copies of C4. We denote G′ to be
any spanning subgraph of G with 1

2q(q+1)2+1 edges. Thus G′ has less than (t+1)q−(t+1)2 < q9/8/30
copies of C4. By Theorem 8.1, there exists an orthogonal polarity graph H of order q such that
|E(G′)\E(H)| = s and |E(H)\E(G′)| = s− 1 for some 1 ≤ s ≤ t.

Let |E(G)\E(H)| = j. Then j − t = |E(H)\E(G)| ≤ |E(H)\E(G′)| = s − 1 ≤ t, implying that
t ≤ j ≤ 2t. So G has at least j(q − 1) − (j − t)j copies of C4. If j ≥ t + 1, then G has at least
(t+ 1)(q − 1)− (t+ 1) copies of C4, a contradiction. So j = t and G is obtained from H by adding t
new edges. By Lemma 2.8, G has at least t(q − 1) edges. This finishes the proof of Theorem 9.1.

9.2 A half-way bound

Theorem 9.2. Let q be a positive even integer. If G is a graph on q2+q+1 vertices with 1
2q(q+1)2+t

edges for t ≥ 1, then G contains at least 1
2(tq − 2.5q − t) copies of C4.

Proof. As earlier, we let #C4 be the number of copies of C4 in G, c(v) be the number of C4 containing
the vertex v, and Si be the set of vertices of degree i in G. We may assume that #C4 ≤ 1

2tq − 1
2q (as

otherwise we have the desired number of C4’s). Let V = V (G) = {v1, ..., vn}, where n = q2 + q + 1.

Claim 9.1. Let vi ∈ V be any vertex with d(vi) = q + 2 + k for some k ≥ 0. Then k ≤ q
2 . Moreover,

if k = 0 then c(vi) > t, and otherwise c(vi) > kq.

Proof. Without loss of generality, we consider v1 with d(v1) = q+2+ k for k ≥ 0. First suppose that
t ≥ q+1. We have

∑

v∈V d(v) = 2e(G) = (q2 + q+1)q + (q2 +2t), where q2 +2t ≥ −(q2 + q+1). By
Claim 8.1 and Lemma 2.14, we see 2 ·#C4 is at least

∑

v∈V

(

d(v)

2

)

−
(

n

2

)

≥ (q2 + q + 1)

(

q

2

)

+ q(q2 + 2t)−
(

q2 + q + 1

2

)

= 2tq − q2 − q ≥ tq.

This implies #C4 ≥ 1
2 tq, contradicting our assumption. Hence we may assume that t ≤ q.
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Let P ′
2 be the set of 2-paths in G with none of its endpoints in N(v1). Since each C4 contains two

covered pairs, we see that 2 ·#C4 ≥
∑

{u,v}⊆V \N(v1)

(d(u,v)
2

)

+ c(v1) is at least

∑

{u,v}⊆V \N(v1)

(

d(u, v) − 1
)

+ c(v1) ≥ |P ′
2| −

(

n− d(v1)

2

)

+ c(v1).

Let ai = |N(vi) ∩N(v1)| − 1 for 2 ≤ i ≤ n. Then we have

|P ′
2| =

n
∑

i=2

(

d(vi)− ai − 1

2

)

and

n
∑

i=2

ai ≤
n
∑

i=2

(

ai + 1

2

)

≤ c(v1) ≤ tq/2 ≤ q2/2.

On the other hand, we can derive that

n
∑

i=2

(d(vi)− ai − 1) =
(

2e(G) − d(v1)
)

−
n
∑

i=2

(ai + 1) = (q2 + q)(q − 1) +X.

Here X = q2 +2t− 2− k−∑n
i=2 ai ≥ q2 +2t− 2− k− c(v1) ≥ −(q2 + q), where the inequalities hold

because 1 ≤ t ≤ q, k ≤ q2 − 2 and
∑n

i=2 ai ≤ c(v1) ≤ q2/2. Putting the above all together, by Lemma
2.14, we infer that tq − q ≥ 2 ·#C4 is at least

|P ′
2| −

(

n− d(v1)

2

)

+ c(v1) ≥(q2 + q)

(

q − 1

2

)

+ (q − 1)X −
(

q2 − k − 1

2

)

+ c(v1)

≥k(q2 − q)− 1

2
(k2 + k)− c(v1)(q − 2) + 2tq − q − 2t+ 1.

Simplifying the above one can derive c(v1) ≥ 1
q−2

(

k(q2 − q)− 1
2(k

2 + k) + t(q − 2) + 1
)

and

c(v1)−
1

2
tq ≥ 1

q − 2

(

k(q2 − q)− 1

2
(k2 + k)− 1

2
tq2 + 2t(q − 1) + 1

)

:=
g(k, t)

q − 2
.

Suppose q
2 < k ≤ q2 − 2. Then ∂g

∂t (k, t) = −1
2(q − 2)2 < 0 and ∂2g

∂k2 (k, t) = −1 < 0. This implies
#C4 − 1

2tq ≥ c(v1)− 1
2 tq ≥ min{g( q2 , q)/(q − 2), g(q2 − 2, q)/(q − 2)} > 0, a contradiction. Therefore

we obtain that k ≤ q
2 .

If k = 0, then c(v1) ≥ (t(q − 2) + 1)/(q − 2) > t, as desired. We also have

c(v1)− kq ≥ 1

q − 2

(

kq − 1

2
(k2 + k) + t(q − 2) + 1

)

:=
h(k, t)

q − 2
.

Consider 1 ≤ k ≤ q
2 . Since ∂h

∂t (k, t) = q − 2 > 0 and ∂h
∂k (k, t) = q − k − 1

2 > 0, we have c(v1) − kq ≥
h(1, 1)/(q − 2) > 0. This proves the claim.

Let ∆(G) = q + 2 +m. By Claim 9.1, we see that m ≤ q
2 .

Claim 9.2. |Sq+2| < 2q and
∑m

k=1 k|Sq+2+k| < 2t.

Proof. By Claim 9.1, we see that if v ∈ Sq+2, then c(v) > t. So 2tq > 4#C4 > t|Sq+2|, implying
that |Sq+2| < 2q. For v ∈ Sq+2+k with 1 ≤ k ≤ m, by Claim 9.1 we have c(v) > kq. Then

2tq > 4#C4 >
∑m

k=1 kq · |Sq+2+k|, which implies that
m
∑

k=1

k|Sq+2+k| < 2t.

Now we are ready to complete the proof of Theorem 9.2. First let us estimate |UP |, i.e., the
number of uncovered pairs in G. Consider a vertex v ∈ Sq+1, where the maximum degree of the
vertices in N(v) is at most q + 1. We assert that v is contained in at least one uncovered pair.
Otherwise, as q is even, the number ev of edges in G[N(v)] is at least q/2 + 1 and thus there are at
most (q+1)q−2ev ≤ q2−2 vertices adjacent to N [v], which again forces an uncovered pair containing
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v. For 1 ≤ k ≤ q + 1, if v ∈ Sq+1−k and the maximum degree of the vertices in N(v) is at most q+ 1,
we can get at least

(n− 1)−
∑

u∈N(v)

(d(u)− 1) = (q2 + 2q + 1− k)−
∑

u∈N(v)

d(u) ≥ kq

uncovered pairs containing v. If some vertex in N(v) has degree q + 1 + ℓ for ℓ ≥ 1, then the above
number of uncovered pairs containing v will decrease by ℓ. Thus, by double-counting, we can get

|UP | ≥ 1

2

(

|Sq+1|+
q+1
∑

k=1

kq|Sq+1−k| −
∑

u∈V

m+1
∑

k=1

k|N(u) ∩ Sq+1+k|
)

=
1

2

(

|Sq+1|+
q+1
∑

k=1

kq|Sq+1−k| −
m+1
∑

k=1

k(q + 1 + k)|Sq+1+k|
)

.

(18)

Next, we give a lower bound on |P2| −
(n
2

)

. Let S′ = Sq+2 ∪ · · · ∪ Sq+2+m. We have

∑

v∈V \S′

d(v) = 2e(G) −
m+1
∑

k=1

(q + 1 + k)|Sq+1+k| =
(

n−
m+1
∑

k=1

|Sq+1+k|
)

q + Y.

Here Y = 2t+q2−
m+1
∑

k=1

(1+k)|Sq+1+k| ≥ 2t+q2−2|Sq+2|−3
m
∑

k=1

k|Sq+2+k| ≥ q2−4q−6t > −(n−|S′|),
where the second inequality holds because of Claim 9.2. By Lemma 2.14,

∑

v∈V \S′

(

d(v)

2

)

−
(

n

2

)

≥
(

q2 + q + 1−
m+1
∑

k=1

|Sq+1+k|
)

(

q

2

)

+ qY −
(

q2 + q + 1

2

)

=2tq − q2 − q −
m+1
∑

k=1

(

(

q

2

)

+ qk + q
)

|Sq+1+k|.

Recall that P2 is the set of all 2-paths in G. We have

|P2| −
(

n

2

)

=

m+1
∑

k=1

|Sq+1+k|
(

q + 1 + k

2

)

+
∑

v∈V \S′

(

d(v)

2

)

−
(

n

2

)

≥ 2tq − q2 − q +
1

2

m+1
∑

k=1

k(k + 1)|Sq+1+k|.
(19)

Let M = 2tq − q2 − q + 1
2 |Sq+1|. Combining (18) and (19), by Claim 8.1 we derive that

2#C4 ≥|P2|+ |UP | −
(

n

2

)

≥ M − q

2

(

m+1
∑

k=1

k|Sq+1+k| −
q+1
∑

k=1

k|Sq+1−k|
)

=M − q

2

(

2e(G) − (q + 1)n
)

= tq − 1

2
(q2 + q − |Sq+1|).

(20)

Finally, by Claim 9.2 we have

q2 + q − |Sq+1| =
q+1
∑

k=1

|Sq+1−k|+ |Sq+2|+
m
∑

k=1

|Sq+2+k| − 1

≤
m+1
∑

k=−(q+1)

(

(q + 1)− (q + 1 + k)
)

· |Sq+1+k|+ 2|Sq+2|+ 2

m
∑

k=1

k|Sq+2+k| − 1

≤ (q + 1)n− 2e(G) + 4q + 4t− 1 = 5q + 2t.

This together with (20) show that #C4 ≥ 1
2(tq − 2.5q − t). The proof of Theorem 9.2 is finished.

We point out that Theorem 9.2 only works for t ≥ 3 and becomes invalid when t ∈ {1, 2}.
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9.3 Proofs of Theorem 1.9 and Proposition 1.10

Before presenting the proofs, we show a upper bound on h(q2 + q + 1, t) for any prime power q and
t ≥ 1, using a random construction based on polarity graphs.

Lemma 9.3. Let q be a prime power and t be an integer such that 4t ≤ q3(q + 1). Then there exists
a graph on q2+ q+1 vertices, which contains at least 1

2q(q+1)2 + t edges and at most 500(tq+ t4/q8)
copies of C4.

Proof. We may assume q ≥ 3 and t ≥ 1. Let H be an orthogonal polarity graph on n = q2 + q + 1
vertices. Let α = 4t

q3(q+1)
∈ [0, 1] and let G be obtained fromH by adding an edge for each non-adjacent

pair of vertices independently and randomly with probability α. Denote by X the number of new

edges added to H. Since the number of non-adjacent pairs in H is N =
(n
2

)

− e(H) = q3(q+1)
2 , we have

E[X] = Nα = 2t. Here, X is a binomial random variable X ∼ Bin(N,α). Then the Chernoff bound

states that P (X < (1−ǫ)Nα) ≤ e−ǫ2Nα/2. Choosing ǫ = 1/2, we can get that P (X < t) ≤ e−
t
4 ≤ 0.78.

Let Y be the number of copies of C4’s in G. For 1 ≤ i ≤ 4, let Yi be the number of copies of C4’s
in G consisting of exactly i new edges. We estimate E[Y ] =

∑4
i=1 E[Yi] as follows. Note that every

vertex in H has degree q or q+1. For E[Y1], each of these C4’s corresponds to a unique path of length
three in H. Thus we have E[Y1] ≤ 1

2n(q + 1)q2 · α ≤ 3tq. For E[Y2], each of these C4’s contains two

edges in H which are incident or not. Thus we have E[Y2] ≤ 1
2n

2(q+1)q ·α2 +
(e(H)

2

)

· 2α2 ≤ 20t2/q2.
Similarly, we can get that E[Y3] ≤ e(H)

(n
2

)

· 2α3 ≤ 60t3/q5 and E[Y4] ≤ n4α4/8 ≤ 50t4/q8. Since

t2/q2 + t3/q5 ≤ tq + t4/q8, we can get that E[Y ] =
∑4

i=1E[Yi] ≤ 110(tq + t4/q8).
Since P (X ≥ t) ≥ 0.22, we have E[Y ] = P (X ≥ t) · E[Y |X ≥ t] + P (X < t) · E[Y |X < t] ≥

0.22 · E[Y |X ≥ t]. So E[Y |X ≥ t] ≤ E[Y ]/0.22 ≤ 500(tq + t4/q8). This shows that there exists an
n-vertex graph with at least 1

2q(q + 1)2 + t edges and at most 500(t
√
n+ t4/n4) copies of C4’s.

In aid of Lemma 9.3, we are ready to derive Theorem 1.9 from Theorems 9.1 and 9.2.

Proof of Theorem 1.9. Let q = 2k be sufficiently large. So ex(q2 + q + 1, C4) =
1
2q(q + 1)2.

First we consider (A). Suppose that 1 ≤ t < q1/8/30. Let G be a (q2 + q + 1)-vertex graph with
ex(q2+ q+1, C4)+ t edges. By Theorem 9.1 and Lemma 2.8, G has at least t(q−1) copies of C4, with
equality only if G is obtained from an orthogonal polarity graph of order q by adding t edges between
vertices of degree q. As any two vertices of degree q in a polarity graph has a common neighbor, it
is straightforward to see that when G has exactly t(q − 1) copies of C4, these aforementioned t new
edges must form a matching (in fact it is also an induced matching by Lemma 2.7). This proves (A).

For the first assertion of (B), it suffices to consider when t ≥ q1/8/30 and this follows from Theorem
9.2 that h(q2 + q + 1, t) ≥ 1

2(tq − 2.5q − t) =
(

1
2 + o(1)

)

tq, where o(1) → 0 as q → ∞.
Finally we prove the second assertion of (B) that h(q2 + q+1, t) = Θ(tq+ t4/q8). It is well known

(see [13]) that for any c > 0 there exists some c′ > 0 such that h(q2 + q + 1, t) ≥ c′ · t4/q8 for any
t ≥ cq3. Also as q is large, from the above proof, we have h(q2 + q + 1, t) ≥

(

1
2 + o(1)

)

tq ≥ tq/3 for
any t ≥ 1. Note that tq ≥ t4/q8 if and only if t ≤ q3. Combining the above all together, we see that
there exists some absolute constant d > 0 such that for any t ≥ 1, h(q2 + q + 1, t) ≥ d · (tq + t4/q8).
The upper bound easily follows from Lemma 9.3. The proof of Theorem 1.9 is completed.

We now complete the proof of Proposition 1.10.

Proof of Proposition 1.10. Let n be sufficiently large and t ≥ 3n1.2625. By Proposition 7.3,
there exists some prime p with

√
n − n0.2625 − 1 ≤ p ≤ 1

2(−1 +
√
4n− 3) such that ex(n,C4) ≥

ex(p2 + p + 1, C4) ≥ (n1.5 − 3n1.2625 + n)/2. We first consider the lower bound of h(n, t). Consider
any n-vertex graph G with ex(n,C4) + t edges. Let s be such that ex(n,C4) + t = 1

2(n
1.5 + n) + s. So

s ≥ t− 3
2n

1.2625 ≥ 0.5t. By Jensen’s inequality, we see that the number M of 2-paths in G is at least

∑

v∈V (G)

(

d(v)

2

)

≥ n

(

∑
d(v)
n

2

)

= n

(n1.5+n+2s
n

2

)

≥
(

n

2

)

+ 2s
√
n+

2s2

n
.
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As s ≥ 0.5t, this implies that h(n, t) ≥ #C4(G) ≥ 1
2

(

M −
(n
2

)

)

≥ 1
2

(

∑

v∈V (G)

(d(v)
2

)

−
(n
2

)

)

≥ t
√
n

2 .

It is known that if t ≥ n3/2, then h(n, t) ≥ c · t4/n4 holds for some c > 0. Combining these facts, we
infer h(n, t) = Ω(t

√
n + t4/n4) for t ≥ 3n1.2625. For the upper bound of h(n, t), let r be the integer

such that ex(n,C4) + t = 1
2p(p+1)2 + r. By our choice of p, we can derive that r ≤ t+ 3

2n
1.2625 ≤ 2t.

Using Lemma 9.3, there exists a graph on p2+p+1 vertices with p(p+1)2/2+ r = ex(n,C4)+ t edges
and at most O(rp + r4/p8) = O(t

√
n + t4/n4) copies of C4’s. Since p2 + p + 1 ≤ n, this also shows

that h(n, t) = O(t
√
n+ t4/n4), finishing the proof of Proposition 1.10.

10 Concluding remarks

In this paper, we focus on extremal problems of 4-cycles and prove several stability and supersaturation
theorems. These imply some exact or near-optimal extremal results on C4 for infinite instances. In
what follows we discuss related problems, some of which in fact partially motivate the results here.

Theorem 1.3 provides a stability type result for dense C4-free graphs G on q2 + q + 1 vertices
where q is even. It states that if e(G) ≥ 1

2q(q +1)2 − 1
2q + o(q), then G is contained in some (unique)

polarity graph of order q. We wonder if some other form of stability (e.g., in the sense of “edit
distance”, which counts edges adding and deleting between G and the extremal configuration) can
hold for a much weaker condition on the number of edges. This stability also indicates that there
exists some hierarchy on the number of edges for maximal C4-free graphs G, in the interval starting
from 1

2q(q + 1)2 − 1
2q + o(q). This is because any of these graphs G must be some polarity graph and

according to Proposition 2.6, e(G) = 1
2q(q + 1)2 − 1

2m
√
q holds for some integer m ≥ 0. We remark

that using the result of Metsch [22] and similar arguments here, one also can establish an analogous
stability result for C4-free balanced bipartite graphs where the size of two parts equals q2 + q + 1 for
any (even or odd) large integer q. (As a side note here, we would like to mention that recently Nagy
[23] proved some supersaturation results on 4-cycles in the bipartite setting.)

Arguably, Theorem 1.3 provides some (very weak) evidence to the following conjecture of McCuaig.

Conjecture 10.1 (McCuaig, 1985; see [15, 18]). Each extremal graph which achieves the maximum
number ex(n,C4) is a subgraph of some polarity graph.

Suggested by orthogonal polarity graphs, the following supersaturation problem seems plausible:
For large q = 2k, is it true that h(q2+q+1, t) = t(q−1) holds for every 1 ≤ t ≤ q

2? Theorem 1.9 confirms

this for 1 ≤ t ≤ O(q1/8), while its proof perhaps can be generalized further. Another problem is to
determine all integers t ≥ 1 such that every graph achieving the maximum h(q2 + q + 1, t) contains
an orthogonal polarity graph of order q. Regarding to Proposition 1.10, a similar supersaturation
result for C4 perhaps can hold under a more general condition: Is there a constant t0 such that
h(n, t) = Θ(t

√
n+ t4/n4) holds whenever t ≥ t0?
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[15] Z. Füredi, Quadrilateral-free graphs with maximum number of edges, preprint 1988,
http://www.math.uiuc.edu/~z-furedi/PUBS/furedi_C4from1988.pdf
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