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Abstract

In this paper, we investigate extremal problems on the subject of the 4-cycle Cy, which has
played a heuristic important role in the development of extremal graph theory. As a milestone
Fiiredi proved that the extremal number ex(¢*> + ¢ + 1,C4) < 2¢(q + 1)? holds for ¢ > 14. This
matches with the fundamental construction of Erdés-Rényi-Sés and Brown from finite geometry
for prime powers ¢, thus providing one of the very rare exact results in the field.

Our first result is a stability of Fiiredi’s theorem. We prove that for all even ¢, every (¢>+q+1)-
vertex Cy-free graph with at least %q(q +1)% - %q + o(q) edges must be a spanning subgraph of
a unique polarity graph, which is constructed from a finite projective plane. Among others, this
gives an immediate improvement on the upper bound of ex(n, Cy) for infinite many integers n.

A longstanding conjecture of Erdés and Simonovits states that every m-vertex graph with
ex(n,Cy) + 1 edges contains at least (1 + o(1))y/n copies of Cy. Building on the above stabil-
ity, we obtain an exact result in this direction and thus confirm Erddés-Simonovits conjecture for
an infinite sequence of integers n. In fact our result implies a stronger assertion that generally
speaking, whenever n > £ in these circumstances, we can characterize the graphs achieving the ¢t"
least number of Cy’s. This can be extended to more general settings, which provide enhancements
on the supersaturation problem of Cy. We also discuss related problems and formalize a conjecture
on ex(n, Cy), whose affirmation would disprove Erdés-Simonovits conjecture for general n.

1 Introduction

Given a graph F', we say a graph is F'-free if it does not contain F' as a subgraph. The Turdn number
ex(n, F') of F is the maximum number of edges in an n-vertex F-free graph. Turan type and related
extremal problems are the central subjects of extremal graph theory. In this paper, we focus on
extremal problems on one of the basic and perhaps most influential objects in this area — the cycle Cy
of length four. (For indistinct notations appeared below, we shall refer readers to Section 2.)

Proposed by Erdés [8] more than 80 years ago, the study of ex(n,Cy4) has a rich history. In [36]
Reiman showed a general upper bound that ex(n,Cy) < % (1++/4n — 3). However it is known that the
equality never holds by the Friendship Theorem of Erdés, Rényi and Sés [14]. One can also deduce
from the proof of Reiman that if the number of edges in an n-vertex Cy-free graph is close to %ng/ 2
then almost all vertices have roughly /n neighbors and almost all pairs of vertices have one common
neighbor. This suggests that perhaps in principle, the neighborhoods of vertices can be regarded as
lines of certain projective plane. Indeed, using orthogonal polarity graphs constructed from finite
projective planes, Erd6s-Rényi-Sés [14] and Brown [4] proved a lower bound that

1
ex(¢® +q+1,C4) > §q(q +1)? for all prime powers q. (1)
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These two results together imply an asymptotic formula that ex(n,Cy) = (% + 0(1))n3/ 2,

Determining the exact value of ex(n,Cy) in general seems to be extremely difficult and far beyond
reach. On the other hand, Erdés conjectured (e.g. [11]) that the orthogonal polarity graph is optimal;
that is, the inequality in (1) should be replaced with an equality for all prime powers ¢. Fiiredi [18]
first confirmed this for ¢ = 2% in 1983, by showing ex(¢?> +q+1,Cy) < %q(q + 1) holds for all even gq.
In 1996, Fiiredi [20] proved that the same upper bound holds for all ¢ > 14. We summarize his results
as following.

Theorem 1.1 (Fiiredi, [18, 20]). If ¢ ¢ {1,7,9,11,13}, then ex(¢®> +q+1,C4) < 2q(q + 1)%. Hence
for all prime powers q > 14, ex(¢> + ¢+ 1,Cy) = %q(q +1)2.

Fiiredi also proved that extremal graphs for ¢ > ggp must be orthogonal polarity graphs of order ¢
(unpublished, see [21]). More recently, Firke, Kosek, Nash and Williford [23] proved ex(q? + q,Cy) <
%q(q +1)% — ¢ for all even integers ¢, which implies that ex(¢? +¢,Cy) = %q(q +1)2 — g for all g = 2F.
We remark that these results on Cy belong to the category of rather rare exact results (if not only
ones) for the notorious degenerate extremal graph problems (for a comprehensive survey of which, see
Fiiredi-Simonovits [22]).

The first main result in this paper is a stability type theorem, which gives a structural description
for Cy-free graphs whose number of edges is close to the existing extremal graph. Polarity graphs
are natural candidates for these near-extremal graphs of ex(n,Cy). The following result asserts that
under some circumstances, near-extremal graphs must be polarity graphs or their subgraphs.

Theorem 1.2. Let q be even and G be a Cy-free graph on q* +q+ 1 vertices with at least %q(q—i— 1)% -
%q—i— o(q) edges. Then there exists a unique polarity graph of order q, which contains G as a subgraph.

This stability holds in a strong sense, namely, it only adds edges when turning graphs into desired
configurations. On the other hand, there are infinitely many examples showing that the same conclu-
sion can not hold if the number of edges is lowered to %q(q +1)2—q+1. Let g = 2% Then there exists
an orthogonal polarity graph H of order g with %q(q +1)2 edges. Choose non-adjacent u,v € V(H)
with dg(u) = ¢+ 1 and dy(v) = q. Let G be obtained from H by deleting all edges incident to v and
then adding a new edge uv. Clearly G is Cy-free and has %q(q +1)?2 — ¢+ 1 edges. However, G can
not be contained by any polarity graph H' of order g, as dg(u) = ¢+ 2 and A(H') = ¢+ 1.! For more
discussion on this stability result, we direct readers to the concluding remarks.

As a first application of Theorem 1.2, we can derive the following result on ex(n,Cy). Let A(q) be
the maximum number of edges in a polarity graph of order ¢ (if no such graphs exist, set A(q) = 0).

Corollary 1.3. Let g be even. If A(q) > %q(q +1)2 - %q +0(q), then ex(¢®> +q+1,Cy) = Aq), where
the equality holds only for polarity graphs of order q with X(q) edges; otherwise, ex(q*> + q +1,Cy4) <
3a(¢+1)* = 3q+ 0(q). In particular, ex(¢® + ¢+ 1,Cq) < max {A(q), 39(q +1)* — $¢+ o(q) }-

This corollary provides an improvement of Fiiredi’s theorem for even integers q; to be precise, it
improves the upper bound by %q — o(q) for at least infinite many even ¢ (we shall explain why later).
This and some other inference on ex(n,Cy) will be under further discussion in Section 7.

A closely related extremal problem to Turdn numbers is “the problem of supersaturated graphs”
(quoted from [16]). It studies the following function: for a given graph F' and for integers n,t > 1,

hp(n,t) = min{#F(G) : |V(G)| = n, |E(G)| = ex(n, F) + t},

where #F(G) denotes the number of distinct copies of F' in a graph G. A notable example is the
study of the triangle K3. In 1941 Rademacher proved hg,(n,1) = |n/2]. Erdds [9, 10] extended this
by showing that there exists some constant ¢ > 0 such that hg,(n,t) = t|n/2] for all ¢ < cn. The best
possible constant ¢ was proved by Lovész and Simonovits [26] to be ¢ = 1/2, confirming a conjecture

In fact the number of edges can not be lowered to %q(q +1)® — ¢ + 2 (this will be more involved to justify).



of Erdds. Since then, there has been extensive research for the problem of supersaturated graphs. To
just name a few, see [15, 16, 17, 25, 30, 32, 33, 34, 35, 37] and their references.
Returning to our focus, throughout this paper we write

h(n,t) = he,(n,t) and h(n) = h(n,1).

Analogously as Rademacher’s result on the triangle, Erd6s and Simonovits conjectured that any n-
vertex graph with ex(n,Cy) + 1 edges should contain many copies of Cy. This is one of the favourite
problems of Erdds [13] and appears in many literatures. A weak version (see [6], Conjecture 42)
asserted that h(n) > 2 for large n and another form (e.g. in [12, 13]) stated that h(n) > c¢y/n for some
constant ¢ > 0. The strongest version of this conjecture is the following.

Conjecture 1.4. (Erdés and Simonovits [16]) For integers n, h(n) > (14 o(1))y/n.

As indicated in [16], if true, this bound will be sharp (for infinite integers n). We remark that a direct
application of Theorem 1.2 can show that h(¢®> + ¢+ 1) > (% — 0(1))q for ¢ = 2*.
The following supersaturation is another main result of this paper.

Theorem 1.5. Let ¢ > 102 be even and let G be a graph on q*> + q + 1 vertices with %q(q +1)2+1
edges. Then either G contains at least 2q¢—3 copies of Cy, or G is obtained from an orthogonal polarity
graph of order q by adding a new edge. In the latter case, G contains ¢ — 1,q or g+ 1 copies of Cy.

We also can determine these graphs with exactly 2¢ — 3 copies of C4. As a corollary, we can confirm
Conjecture 1.4 for an infinite sequence of n with an exact result.

Corollary 1.6. Let g = 2F for some k > 40. Then h(q®> +q+1) = ¢ — 1, where a graph achieves this
equality if and only if it is obtained from an orthogonal polarity graph of order q by adding a new edge
between (any) two vertices of degree q.

Let £ > 1 be an integer. Enhancing Theorem 1.5, we can further characterize all graphs for which
achieve the %" least number of copies of Cy.

Theorem 1.7. Let ¢ > { and q be even. Let G be a graph on ¢> + q + 1 vertices with %q(q +1)241
edges. Then either G has at least (£ + 1)q — (£ + 1)2 copies of Cy, or there exist some s € {1,2, ..., (}
and an orthogonal polarity graph H of order q such that G can be obtained from H by deleting or
adding 2s — 1 edges. In the latter case, the number of copies of Cy in G is between sq — s> and sq+ s°.

This also indicates that the numbers of copies of Cy among all such graphs are distributed sporadically
(concentrated around sq for small integers s).

For the general supersaturation problem of Cy, the function h(n,t) is known to be ©(¢*/n*) when
t = Q(n3/?) for all n (e.g. see [16]). We show in the following result that for an infinite sequence of
integers n, one can say rather accurately about the function and in particular, one can determine the
order of its magnitude for every positive integer t.

Theorem 1.8. The following statements hold for large ¢ = 2F. (A) For every 1 < t < q1/8/30,
h(q®> + q+ 1,t) = t(q — 1), where the equality holds for graphs G if and only if G is obtained from an
orthogonal polarity graph of order q by adding a matching of size t among vertices of degree q.

(B) For everyt > 1, h(g> +q+ 1,t) > (3 +0(1))tq and h(q*> + g+ 1,t) = O(tq + t*/¢%).

This follows by Theorems 9.1 and 9.2 which are stated in some more general settings. We refer readers
to Section 9 for their precise statements. As for general n, one also can determine the order of the
magnitude of h(n,t) when t = Q(n%?¢) for some € > 0.2375.

Proposition 1.9. Let n be sufficiently large. If t > 3n'262% then h(n,t) = O(t\/n + t*/n?).



The organization of this paper is as follows. Section 2 consists of preliminaries, where we give
notations and collect some results. In Section 3, we outline the proof of Theorem 1.2, which is
divided and completed in Sections 4, 5 and 6. In Section 7, we prove Corollary 1.3 and discuss other
consequences on ex(n, Cy). In Section 8, we consider Conjecture 1.4 and prove Theorem 1.5, Corollary
1.6 and Theorem 1.7. In Section 9, we prove Theorem 1.8 and Proposition 1.9 for the supersaturation
of Cy. In Section 10, we discuss several problems in relation to the results here, e.g., Conjecture 10.2
whose affirmation would disprove Conjecture 1.4 of Erdos-Simonovits. We would like to remark that
though our results often are stated with parity condition, many arguments in the proofs in fact work
without any parity constraints.

2 Preliminaries

2.1 General notations

We follow the notations of Fiiredi (e.g. [19]). A hypergraph H is an ordered pair (V, &), where V is
a finite set consisting of vertices and £ is a collection of subsets (called edges) of V. We use e(H) to
denote the number of edges in H. For x € V', the degree dy(z) of x denotes the number of edges of H
containing x. The mazimum degree of H is denoted by A(H) = max{dy(z) : x € V}. We say H is k-
reqular if all vertices have degree k and k-uniform if all edges have k vertices. A k-uniform hypergraph
is also called a k-graph (and a graph if k = 2). We say H is 1-intersecting if any two distinct edges of
‘H have exactly one common vertex. The incidence matriz of a hypergraph H = (V,€) is an |E| x |V/|
matrix M(H) such that M(E,z) =1if z € E € £ and 0 otherwise.

Let G = (V,€) be a graph. Let z € V and A C V. The neighborhood Ng(x) of = is the set of
vertices y € V with zy € &, while the closed neighborhood N¢|x] is defined by Ng(z) U {z}. Let
Na(z) = Ng(x) N A. Define Ng(A) to be the set of vertices u € V\ A adjacent to some vertex in A
and G[A] to be the subgraph of G induced on A. For a path P, its length |P| denotes the number of
edges it contains. We say P is a k-path if |P| = k. For disjoint sets A, B C V, e(A, B) denotes the
number of edges ab in G with a € A and b € B. A set of edges is called independent if their endpoints
are pairwise-disjoint. For u,v € V, we let dg(u,v) = |[Ng(u) N Ng(v)|. We call {u,v} an uncovered
pair if dg(u,v) = 0 and a covered pair otherwise. Let UP be the set of uncovered pairs of G and let
P> be the set of all 2-paths in G. The adjacency matriz A(G) of G is a |V| x |V| symmetric matrix
such that A(z,y) = 1 if zy € £ and 0 otherwise.

Throughout this paper, the notation (“2“") means the function z(x — 1)/2 for all reals z. For any
positive integer k, we write [k] as the set {1,2,...,k}. For all above notations, we often drop the
subscripts when they are clear from context.

2.2 Projective planes

A finite projective plane of order q, denoted by PG(2,q), is a (¢ + 1)-uniform (q + 1)-regular 1-
intersecting hypergraph H = (P, L) with |P| = ¢*> + ¢ + 1, where P consists of points and L consists
of lines. It also follows that |£| = ¢®> + ¢ + 1 and any two points are contained in a unique line. The
existence of PG(2,q) is well known for all prime powers g. On the other hand, a major conjecture in
this field asserts that the order ¢ of PG(2,q) must be a prime power (known for ¢ < 11 and still open
for ¢ = 12).

A substantial body of our proofs will be involved with projective planes and 1l-intersecting hyper-
graphs. In preparation we now collect some related results. The first two will play important roles
for the constructive nature in our stability result (Theorem 1.2).

Theorem 2.1 ([28]). Let ¢ > 3900 and H be a 1-intersecting (q+1)-hypergraph with ¢*>+q+1 vertices
and more than ¢ — @q +17+/q/5 edges. Then H can be embedded into a projective plane of order
q.



Theorem 2.2 ([7]). Let H be a I-intersecting (q + 1)-hypergraph with ¢*> + q + 1 vertices and more
than ¢*> — q + 1 edges. If H can be embedded into a projective plane of order q, then this projective
plane and the embedding both are unique.

The following celebrated Bruck-Ryser theorem [5] gives a sufficient condition for the non-existence
of projective planes of given order.

Theorem 2.3 ([5]). If ¢ = 1 or 2 mod 4 is an integer which cannot be expressed as a sum of two
square numbers, then there exist no projective planes of order q.

We also need a useful lemma proved by Fiiredi (i.e., Lemma 3.7 in [19]).

Lemma 2.4 ([19]). Let M = (m;;) be the incidence matriz of a projective plane of order q. Suppose
that mi; = mj; whenever 1 < ¢ < @ —q+3o0rl<j<q®—q+3. Then the whole matriz M is
symmetric.

The coming lemma has been used in literatures (e.g. [7]), which will serve as a handy tool for
finding a large 1-intersecting hypergraph in the proof of Theorem 1.2. For completion, we give a proof.

Lemma 2.5 (e.g. [7]). Let H be a 1-intersecting (q+1)-hypergraph on vertex set V with |V | = ¢*+q+1.
Suppose that F is a (q + 1)-uniform hypergraph on the same vertex set V such that F NH = 0 and
for any edge f € F, there exist q edges hi,....,hy € H satisfying that f U hy U..Uhy, =V and
|fNhiN...Nhy|=1. Then HUF is also 1-intersecting.

Proof. We first point out that to show this, it suffices to prove that for any f € F, HU{f} is 1-
intersecting. This is because if we initially set G = H and repeatedly operate by applying this for one
edge f € F at a time and updating G by GU{f}, then in the end we would conclude that G = HU F
is 1-intersecting. Note that this indeed is valid as the conditions in the statement also hold for G
(instead of H) at any given time.

For the above desired statement, suppose on the contrary that there exist f € F and h € H
such that |hN f| = 0 or |hN f| > 2. We know that there are hi,...,hy; € H and u € V such that
fUhU...Uhy =V and fNhiN...Nh, = {u}. By thesize of V, we also see that f\{u}, hi\{u}, ..., he\{u}
must form a partition of V\{u}. It is then clear that h ¢ {f,hi, - ,hg}. If |hN f| = 0, then there
must exist some ¢ € [g] such that |h N h;| > 2, a contradiction to that H is 1-intersecting. Hence we
may assume |h N f| > 2. Suppose u € h. Then u € h N h; for all i € [¢]; since H is 1-interesting, we
conclude that AN (hy U...U hy) = {u} and thus h = f, a contradiction. Now suppose u ¢ h. Then
|h O (f\{u})| > 2 and thus there exists some j € [q] such that |h N (h;\{u})| = 0, which also shows
that |h N hj| =0, a contradiction. We have completed the proof now. ]

2.3 Polarity graphs

A polarity m of a projective plane H = (P, L) is a bijection 7 : PU L — P U L such that
o 72 is the identity function with 7 : P < £, and
e for any pair (z,L) € P x L, if v € L then 7n(L) € n(x).

For a projective plane H = (P, L) of order ¢, where P = {z;} and £ = {L;}, consider a function
¢ : P <> L which maps x; <> Ly(;) for some permutation o on [¢*> + q+1]. Let M(¢) be the incidence
matrix of H, where the rows are listed in the order of x;’s and the columns are listed in the order of
L, (iy’s as i increases. It is worth pointing out that

the function ¢ is a polarity <= the incidence matrix M(¢) is symmetric. (2)

Now let 7 be a polarity of a projective plane H = (P, L) of order gq. The polarity graph G(m) (of
order ¢) is a simple graph on the vertex set P such that zy € E(G(n)) if and only if x € w(y). A



point x € P is called absolute (with respect to ) if z € 7(z). Let a(n) denote the number of absolute
points. In [2], Baer proved that

there exists some integer m, > 0 such that a(7) = ¢+ 1+ my - \/q. (3)

A polarity 7 and its polarity graph G(7) are called orthogonal, if a(w) = ¢+ 1 (i.e., my = 0). It is
known that for any prime power ¢, there always exists an orthogonal polarity graph of order q.
Combining the above facts, it is easy to derive the following for polarity graphs.

Proposition 2.6. Let w be a polarity of order q. Then the polarity graph G(m) is a Cy-free graph on
q> + q+ 1 vertices with exactly %q(q +1)2 - 75=\/q edges such that every vertex has degree q or q + 1.

The following lemma on polarity graphs is well-known (see Baer [1] for a proof).
Lemma 2.7. Any two vertices of degree q in a polarity graph of order q are nonadjacent.
The next lemma will be frequently used in the forthcoming proofs.

Lemma 2.8. Let G be a polarity graph of order q with wv ¢ E(G). Then G U {uv} contains either
q—1,q or q+1 four-cycles, any two of which share uv as the unique common edge. Moreover, GU{uv}
contains q — 1 four-cycles if and only if both u,v have degree q in G.

Proof. Let G be the polarity graph of 7, where 7 is a polarity of some H = PG(2,q). Let uv ¢ E(G).
Then ¢ < dg(u),dg(v) < ¢+ 1. For any u; € 7(u), since H is l-intersecting, there exists a unique
vertex v; in m(u;) N 7w(v). Hence there are exactly ¢ + 1 sequences wu,;v;v satisfying u; € m(u) and
v; € m(u;) Nw(v), where u; # v and v; # u for all i € [g + 1].

First assume that dg(u) = dg(v) = ¢. Among the above ¢+1 sequences, there are special sequences
wuv;v and uujov (which are obviously different). So there are exactly ¢ — 1 sequences uu;v;v satisfy
u # u; and v # v;. We claim that u; # v;. Suppose on the contrary that u; = v;. Then u; € 7(u;),
contradicting Lemma 2.7 as uu; € E(G) and both w,u; have degree ¢ in G. Hence there are exactly
q — 1 paths uu;v;v of length three between v and v in G, which give ¢ — 1 four-cycles in G U {uv}.

Now without loss of generality, let Ng(u) = {u1,...,ug+1}. We claim that there is at most one
index i € [q+ 1] satisfying v; € {u;,v}. To see this, note that if v; € {u;, v}, then u; € Ng(u) N Ng(v).
Therefore two such i, j € [¢ + 1] would force a four-cycle wu;vuju in G, a contradiction. From this
claim, we see the number of paths of length three between u and v in G is either g or ¢ + 1. So there
are g or ¢ + 1 four-cycles in G U {uv}.

To complete the proof, it suffices to show that all the above paths uwu;v;v of length three in G are
edge-disjoint. This follows by the fact that each middle edge u;v; can only appear once. Indeed, if
there are two paths wu;v;v and uv;u;v in G, then this would force a four-cycle uu;vv;u in G. O

We also need a property on orthogonal polarity graphs of even order ¢ from [19].
Proposition 2.9. Let q be even and G be an orthogonal polarity graph of order q. Then there exists
a (unique) vertex w of degree q + 1 such that N(w) consists of all vertices of degree q in G.
2.4 (y-free graphs

We now give out notations arising from Cy-free graphs, and along the way we also establish some
statements for future use.

Throughout this subsection, let G = (V, &) be a Cy-free graph on n = ¢ + ¢ + 1 vertices. For a
vertex v, let do(v) = [{u € V : {u,v} € UP}|.

Proposition 2.10. [UP| = 33" ., do(v) and |P| +|UP| = (}).

Proof. The first equation follows by the definition. Since G is Cy-free, each 2-path corresponds to a
unique covered pair. Thus we have |P2| = (3) — |UP|. O



We now introduce an important notation for our proofs. For any v € V', the deficiency f(v) of v
is defined by
f(v) == max{q + 1 —d(v),0}.

The deficiency of a subset A C V' is f(A) =", c4 f(v). Let S; = {v € V : d(v) =i}.

Proposition 2.11. We have f(N(v)) > q for each v € Sgy2, and if A(G) < g+ 2 then f(V) =
(¢ + Dn —2¢(G) + [Sg42l-

Proof. Consider v € Sy with N(v) = {v1,...,v442}. Since G is Cy-free, N(v;)\{v} are pairwise-
disjoint, which implies that }_, -y, (d(vi) —1) <n —1. Thus we get

FIN@) = > (g+1-d(w)) > (g+2)g— (n—1)=q.
v;EN(v)
Since A(G) < g+ 2, it is straightforward to see that f(V) =" .y max{g+1—d(v),0} = (¢ +1)n —
2%(G) +|Sy12] 0

Lemma 2.12. Let S = {v € V : d(v) < q}. If q is even and A(G) = q+ 1, then any vertex in Sgiq
has a neighbor in S and moreover, |S| > q+ 1.

Proof. Suppose on the contrary that there exists some v € 5,41 and all its neighbors have degree
g+ 1. Let m be the number of edges contained in G[N(v)]. Clearly these edges form a matching
(as otherwise there is a C4) and since ¢ is even, we have m < 4. We count the number M of edges
between N(v) and V\N(v). As G is Cy-free, every vertex in V\N[v] has at most one neighbor in
N(v). Hence, we have that

Cra=n—(q+2)+@+1) =M= Y dz)-2m>(q+1)’—q
€N (v)

This is a contradiction, proving the first assertion. By counting the number of edges between S and
Sqt1, we also see that n — S| = [Sg1] < Y, cqd(z) < q|S]. So (¢ +1)|S| > n = ¢*+ g+ 1, implying
that |S| > g+ 1. O

2.5 Others
We need the following estimation on the distribution of prime numbers given in [3].
Theorem 2.13 ([3]). For sufficiently large x > 0, the interval [z — 2%-5%5 2] contains prime numbers.

At the end of this section, we give an easy-to-use lemma, which is often adopted in replace of
standard Cauchy-Schwarz inequalities.

Lemma 2.14. Let ay, ..., an, be nonnegative integers satisfying > .-, a; > km +r, where m,k,r are
integers with m,k > 0 and r > —m. Then we have > ", (‘;) > m(g) + rk.

Proof. First we see that if 0 < a; < a;j—2, then (%) + (%) > (‘”;1) + (ajgl). Let Y-, a; = tm+x for
integers ¢,z with 0 < z < m. By the above fact, we have -7, (%) > z("}") + (m—=) (%) = m(}) +=t.
By letting A ==Y, (%) — m(g) —rk, we get that

AZm(é)—i—xt—m(];)—rk::%m(t—k)(t—i—k—l)—i—xt—rk. (@)

Since (t+ 1)m > tm+x = >.",a; > km +r > (k —1)m, we obtain t — k > —1. We now
consider the following three cases. If ¢t —k = —1, we have —r > m — 2 > 0 and by (4), A >
(x—m)(k—1)—rk >m —x > 0. If t = k, we have z > r and by (4) it is easy to see that
A > k(x —r) > 0. Lastly, we assume ¢t > k + 1. Since t + k — 1 > 2k and m(t — k) > r — x, by (4),

again we have A > (r —z)k +at —rk=xz(t — k) > 0. O



3 Proof outline of Theorem 1.2

In this section we discuss the proof of Theorem 1.2. For convenience, we restate Theorem 1.2 in the
following thorough version.

Theorem 3.1. For any c € (0,1), there exists some q. such that the following holds for even integers
q > qe. If G is a Cy-free graph on ¢> + q + 1 vertices with at least %q(q +1)2 - 5q edges, then there
exists a unique polarity graph of order q containing G as a subgraph.

We now give a outline of the proof of Theorem 3.1. In a nutshell, it stems from the work of Fiiredi
[18, 19, 20]. Given a Cy-free graph G on g% + q + 1 vertices with many edges, our goal is to construct
a polarity graph of order ¢ containing G as a subgraph. This is achieved in the following three steps.

Step 1. We show that it suffices to consider for A(G) = ¢+ 1.

Step 2. Let R be the family of all subsets Ng(z) where x € V(G) has degree ¢ + 1 and “almost” all
neighbors of x have degree ¢ + 1. Then we show that there exists a projective plane H of
order ¢ defined on V(G) with R C H.

Step 3. We show that there exists a polarity 7 of the above projective plane H such that its polarity
graph G() contains G as a subgraph.

To say more, Step 1 will be handled in Section 4, where we reduce Theorem 3.1 to the following
statement (with restriction A(G) = g+ 1).

Theorem 3.2. For any € € (0,1), there exists some q. such that the following holds for even integers
q > q.. If G is a Cy-free graph on ¢> + q + 1 wvertices with mazimum degree q¢ + 1 and at least
%q(q +1)% - 5q edges, then there exists a unique polarity graph of order q containing G as a subgraph.

Our reduction shows that € = ¢ + o(1) holds for Theorem 3.2 = ¢ holds for Theorem 3.1.

For Theorem 3.2, we will divide its proofs into Sections 5 and 6. In Section 5, we complete Step
2 by establishing Lemma 5.1, which asserts that there exists a l-intersecting (q + 1)-hypergraph H
containing R and at least ¢ lines. This indeed is enough to accomplish Step 2 as we can apply
Theorem 2.1 to enlarge H into a projective plane of order ¢ containing R. The proof of Lemma 5.1 is
involved, where the main technical difficulty lies in accurate analysis on the intricate relations between
neighborhoods of vertices of degree g or ¢+ 1. Finally, we finish Step 3 in Section 6 and thus the proof
of Theorem 3.2. The arguments of this step will heavily rely on the properties of the family R.

The proof of Theorem 1.2 is quite lengthy and involved. On the other hand, we can have a 6-page-
long proof [24] for showing the same stability statement with a weaker bound %q(q +1)2 — ¢q on the
number of edges for some constant ¢ > 0.2. It is worth pointing out that such a weaker stability can
be applied to derive Corollary 1.6. However, we choose to present the current proof for ¢ = % —o(1)
as the limit of our endeavours (there are significant difficulties in all three steps when considering
c> %) For doing so, not only we think the value of ¢ in the stability on its own is an intersecting and
important problem, but also it has impacts on several conjectures and problems in extremal graph
theory as we will discuss in Section 10. We now precess to the proof of Theorem 1.2 in Sections 4, 5
and 6.

4 Reducing to A =¢g+1

In this section, as outlined earlier, we present a proof which reduces Theorem 3.1 to Theorem 3.2.

Proof of Theorem 3.1 (Assuming Theorem 3.2). For any ¢ € (0, 1), we define € to be any real

in (¢,1) and choose ¢, such that ¢+ \/_ < e <1 and g, > max {qe, 525—6()]2 , where ¢, is from Theorem

3.2. Let ¢ > ¢. be an even integer and let G be a Cy-free graph on n = ¢® + ¢ + 1 vertices such that

() 2 yala +1)* - Sa.



We will show that there exists a unique polarity graph of order ¢ containing GG as a subgraph.

Let A denote the maximum degree of G. By the lower bound on e(G), it is easy to see that
A>qg+1. If A=g+1, since e(G) > %q(q +1)2 — 5q> %q(q—i— 1)2 - $q and ¢ > qc > qc, our goal is
accomplished by Theorem 3.2. So we may assume that ¢ +2 < A < ¢®> + q.

Let V(G) = {v1,...,v,}. We now process by showing a sequence of claims.

Claim 4.1. A =g+ 2.

Proof. Suppose that d(v1) = A > g+ 3. We now estimate the number T of 2-paths in G with none
of its endpoints in N(vy). Since any two vertices have at most one common neighbor and any two
vertices in N (v;) are contained in a 2-path, we have

(P03 ) (58 s (T )

Since G is Cy-free, we see |N(v;) \ N(v1)| = d(v;) — d(v;,v1) > d(v;) — 1 for 2 < i < mn. As ¢ > q. being
sufficiently large, we have that

S IN () \ N ()| > 26(G) = A= (n—1) > (¢ + q)(g — 1) + (¢ +2— A).
i=2
As ¢> +2 - A > —(¢® + q), using Lemma 2.14 (with m = n — 1 = ¢®> 4 ¢), we have
2 — - v; v —
<q +q;‘1 A> ZZZQ<‘N( Z);N( 1)’) > (C]2+Q)<q2 1) +(q—1)(q2+2—A)-

After simplification, this is equivalent to that g(A) := A% — (2¢® + 3)A + (2¢® + 5¢% — 5q + 4) > 0,
where ¢ +3 < A < ¢?+¢. It can be verified that g(q +3) and g(¢* + ¢) both are negative. Since g(A)
is quadratic, this shows that g(A) < 0 for all choices of A, a contradiction. This completes the proof
of this claim. O

Claim 4.2. Any two vertices of degree q + 2 have one common neighbor.

Proof. Suppose for a contradiction that there exist vy, v € Sq4o such that N(vy) N N(v2) = (0. Then
for 3 < i < nwehave |[N(v;)\(N(v1)UN(v2))| = |N(v;)|—|N(v;)NN(v1)| = | N (v;) NN (v2)| > d(v;)—
Similarly as above, we estimate the number of 2-paths with none of its endpoints in N(v;) U N (v2).
Using Jensen’s inequality, we get that

(n—2(2q+2)> .S (\Nm) \ (N (o) umm))r) N (n_2)<z T TR

‘ 2
=3

2¢(G)—2(q+2)-2(n—2) q3—3g—cq—2
Z(n—2)< " >2(q2+q < g >

which is equivalent to
(@ +a-1)(*~q-3)(~q-4) 2 (" —3¢—cg—2)(¢’ — ¢’ —4g —cqg - 1).
After further simplification, we can derive that
2c—1)g* +B3—e)@®+ (11 =Tc—cA)g® —3(2+c)g— 14 > 0.
Since 0 < ¢ < 1, this inequality can not hold for large ¢, a contradiction. O

Claim 4.3. Any common neighbor of three vertices of degree q + 2 has degree at most q/2.



Proof. Suppose on the contrary that vi,vs,v3 € Sy42 have a common neighbor v4 such that d =
d(vg) > q/2. Let A = N(vq)\{v1,v2,v3}, B = V\N[vg] and C = N(v1) U N(v2) U N(v3). So
|A| =d -3 and |B| = ¢* + ¢ — d. By similar discussion as before, we have that |N(v)\ C| > d(v) —
for v € A and |N(u) \ C| > d(u) — 3 for u € BU{v4}. Therefore,

> (@) = 1)+ D (d( = (2¢(G) — 3(q +2) — d) — |A| - 3|B|

VEA vEB
>(q(g+1)*—cq) =3¢ —6g+d—3> (¢*+q—3)(qg—2) — (¢/2+9).

Note that —(q/2 +9) > —(¢*> + ¢ — 3). Using Lemma 2.14, if we estimate the number of 2-paths T'
with none of its endpoints in C, then we can derive that

<n—3(q2—{—2)+2> . (d;3>+z<d(v)2—1>+Z<d(v)2—3>

veEA vEB
q/2—3 q—2
> () @ -9 ("57) - -+ 9,
This inequality is equivalent to ¢ — 50¢ + 72 < 0, which contradicts that ¢ is large. U

Claim 4.4. There are at most 7 vertices of degree at most q/2.

Proof. Suppose on the contrary that there are at least 8 vertices of degree at most ¢/2. Recall the
notations in Subsection 2.4. For any v € Sy11_ for k € [g], we have

do(v) =(n—1)= Y (dw)=1)= (¢ +2q+1—-k)— > d(u)

u€eN (v) u€EN (v)
> (@ +2¢+1-k) —(g+2)(q+1—k)=(k—1)(qg+1),

where the inequality holds as A = g + 2. By Proposition 2.10, we have

n 1 1 q—|—1 q
<2> —|P| = UP| =5 > do(v) > Z ~DISqr1-kl 2 "5~ 5 8= 2¢% + 2q.
’UEV k=1

N |

We also have | Po| = 3,y (“0)) and 3,cy d(v) > qg+1)2 —cq = (> + g+ 1)(g+1) — (g +cq +1).
Since —(q +cq +1) > —(¢*> + ¢+ 1), by Lemma 2.14 we get

qg+1

ypz\z(q2+q+1)< )

) —(g+1)(g+eq+1) = (Z) — (g +1)(g+eq+1).
Combining with the above two inequalities, we derive that

20 +2¢— (q+1)(qg+cqg+1) = (g+1)((1 —c)g—1) <0.
Again, this contradicts the fact that ¢ is large and thus completes the proof of Claim 4.4. U
Claim 4.5. [Sg42| < 22,/3.

Proof. Let S" = {v : d(v) < ¢/2} and S} 5 = Sy42\N(5'). By Claim 4.4 we have |S'| < 7, so
|Sq+2 NN (S")| < 7q/2 and [Sy 5| > |Sqra| — 7q/2. Recall S = {v:d(v) < ¢}

We now define a weight functlon w on the edges zy with = € S’ 4+2 and y € S by assigning w(zy)
to be the deficiency f(y). We consider the total weight W of these edges. On the one hand, by
Proposition 2.11, every S’ 4+2 vertex contributes at least ¢ and

F(S) = (V) = (g + n = 2e(G) + [Sgt2| < g+ cq+ 1+ [Sg12l.

10



On the other hand, by Claim 4.3, every vertex in S is adjacent to at most two vertices in S('I 4o and
thus contributes at most twice of its deficiency. Putting these together, we have

q(|Sq+2l = 7q/2) < qlSgia] W < 2f(S) < 2(g + cq + 1 4 [Sg2)), (5)

2

2
from which we derive that |S;42| < w < 4q. For any v € ', let N(v)NSqy2 = {u1, ..., u }.

Since N(u;)\{v} are disjoint for all i € [tT, by Proposition 2.11 it follows that

t

FOV) 2 )+ FIN()\{v}) = f(0) +t(a — f(v)) = (d(v) = D)t~ 1) +q.

i=1
Since d(v) >t and |Sg42| < 4q, by (5) we have
(t=12+q < f(V) S qtoq+1+][Sgsal <6g+1,

implying that |[N(v) N Sqya| =t < /Bg+ 141 <3 /q for any v € §'.
We improve the estimation of [Sg42 N N(S)| < 21,/ and can run the above procedure again.
Since Sy o] > |Sg+2| — 21,/g, we have

a(ISg+2| — 21v/4) < q|Sq 4ol < W < 2£(5) < 2(q + cq + 1 +[Sg+2)-

This shows that |Sg42] < Ww <22,/4. O

We are ready to complete the proof. Since |S, 2| < 22,/q, we can delete at most 22,/q edges from
G to get a subgraph G’ with maximum degree g + 1. By the choice of €, we have

(') 2 e(G) - 223 > sala+ 1)~ 54— 2072 Sala+17 - Sq. (6)

By Theorem 3.2, there exists a unique polarity graph H containing G’ as a subgraph. Let ey, ..., e
be the edges deleted from G, where t < 22,/q. We may assume that ¢ > 1, as otherwise G = G’ is a
subgraph of H. So we have e; = xy ¢ E(H). By Lemma 2.8, H U {e;1} contains at least ¢ — 1 copies
of Cy, all of which contain e; and are edge-disjoint otherwise.

Consider G’ U {e1}, which is a subgraph of G and thus is Cy-free. So any of these Cy’s found in
H U {e1} must have an edge not in G’ U {e1}, which are pairwise-distinct. This shows that e(G’) <
e(H)—(¢—1) < 2q(g+1)* — (¢ —1), which contradicts (6). This finishes the proof of Theorem 3.1. B

We point out that the reduction in this section works for all integers ¢, not necessarily for even q.

5 Finding a large 1-intersecting hypergraph

We prove Theorem 3.2 in the following two sections. The goal of this section is to construct a 1-
intersecting (¢ + 1)-hypergraph, which represents the Cy-free graph considered in Theorem 3.2 (see
Lemma 5.1 below).

Let € and G be from Theorem 3.2 throughout this section. Namely, € € (0,1) is a fixed constant
and G = (V, &) is a Cy-free graph on n = ¢? + ¢ + 1 vertices with maximum degree ¢ + 1 and

1 €
e(G) > ala+1)" = 54, (7)
where ¢ is an even integer. Moreover, we choose ¢ and § = §(€) such that

1

g LKdKl—e (8)

The following notations will play essential roles in the proofs of the coming two sections.
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Definition 5.1. Let B={z € V : [N(z)NS| > dq} and A= Sq1\B. Let R = {N(z):x € A}. We

call any subset in' V' of size ¢+ 1 a line.
Now we are able to state the main result of this section.

Lemma 5.1. There is a I-intersecting (q + 1)-hypergraph on the vertex set V., which contains R and
at least ¢* lines.

The full proof of this is involved, which we break into two subsections. However, Subsection 5.1
is concise and about 3-page long, which indicates that Lemma 5.1 holds for any real € € (0,1/2).2
Subsection 5.2 requires rather technical efforts to show Lemma 5.1 for all € € (0,1). We like to mention
that Subsection 5.2 is not necessary for the stability with a weaker bound such as in [24].

5.1 An initiatory bound

The proof of Lemma 5.1 will process by showing a sequence of claims. Before that, we first collect
some basic properties on G. By Proposition 2.11 and Lemma 2.12, we have

g+ 1<IS| <Y i+ DISg-il = F(V) = (g+ 1)n = 2¢(G) < g+ eq + 1 (9)
1=0

and thus
¢ —€q < |Sq1l < ¢ (10)

For any T C S, it holds that ¢ +eq+1 > f(V) > f(T)+ (IS| = |T|) > f(T) + (¢ + 1 —|T]). This
implies that
f(T)<|T|+eq forany T C S

and in particular, one can derive that
d(z) > (1 —€)g and d(z)+d(y) > (2 —¢€)q for any z,y € V. (11)
We now prove the first claim by deriving some bounds on the sizes of A and B.
Claim 5.1. |B| < 2 and |A] > [Sg1| — |B| = ¢* — eq — 3.

Proof. Let t be the number of adjacent ordered pairs (b, v) withb € Band v € S. We have |B|-6qg <t <
|S|-q < 2¢?, implying that | B| < 2¢/6. Now we consider the subgraph Gy of G induced by the set BUS,
where [BU S| < 2¢/6 + 2q. Since Gy is Cy-free, we derive that 3|B|dég < e(Go) < |[BUS|?/2 = O(¢*/?)
and thus |B| = O(,/q). For any b,0’ € B, we have [Ng(b) N Ng(b')| < 1. By (9) and the inclusion-
exclusion principle, we can obtain

B
4 e+ 12 1512 | e No(0)] = Y INs0)] = 3 INs(0) 1 Ns(¥)] 2 5107 - ().
beB b/ B
Since |B| = O(,/q), we can further derive that |B| < %. This finishes the proof. O

Next we investigate properties on some special vertices of degree ¢ + 1, defined as following. We
remark that by Lemma 2.12, any vertex in S,41 is adjacent to at least one vertex in S.

Definition 5.2. A vertex v € V has property 1, if v € S,y satisfies that |[N(v) N Sqq1| = ¢ and
IN(v) N Sq| =1. Let Vi denote the set of all vertices of property 1 in G.

Claim 5.2. [Vj| > (1 —€)¢® — (1 + 2¢)q.

*Note that Claim 5.8 yields a 1-intersecting (g + 1)-hypergraph containing R and at least ¢ + (1 — 2¢)g + O(1) lines.

12



Proof. For uv € E(G) with u € S and v € Sy11, we assign a weight w(uv) to be the deficiency f(u).
Let W denote the sum of the weights of these edges. We note that any vertex in V; contributes one
to the sum W, while any vertex in Sg41\Vi contributes at least two. Hence, by (9) we can derive that

q
Vi| +2(|Sg+1] = [Val) <Y (g— )i+ DISg-il < q- f(V) < qlg+eq+1).
1=0
Since |Sy41| > ¢ — €q, we have |Vi| > 2|S 41| —q(g+eq+ 1) > (1 — €)g® — (1 + 2¢)q. O

The next claim describes the structure of the neighborhood of a vertex in V4. Suppose v € V4 has
N(v) = {v1,...,v941}. Let
N; = N(v;) \ N[v] for i€ [qg+1].
Claim 5.3. For v € Vi, the sets Ny, ..., Ngy1 form a partition of V\N[v], and G[N(v)] consists of a
matching of size 4 plus an isolated vertex of degree q.

Proof. Assume that the induced graph G[N(v)] contains m edges, which clearly form a matching.
Since G is Cy-free, any = € V\N[v] has at most one neighbor in N(v). By double-counting the
number of edges between N(v) and V\N(v), we have

(@+q+1)—(g+2)+(q+1)> > d@)—2m=q(g+1)+q—2m, (12)
€N (v)
implying that m > £. Since ¢ is even, we derive that m = 4 and moreover, (12) must be an equality.
This further shows that Ny, ..., Nyq; form a partition of V\N{v].
Suppose d(vg4+1) = ¢. It remains to show that v,; is an isolated vertex in G[N(v)]. Suppose for
a contradiction that the edge set of G[N(v)] is {vavs, ..., v4vg41}. Then |Ni| = ¢, |[Ng41| = ¢ —2 and
IN;| = q—1for 2 <i <gq. Since G is Cy-free, every G[N;] contains at most ||N;|/2] edges and there is
no edge between Ny; and Ny;yq for 1 <i < 4. Also, there are at most min{|N;|, |N;|} edges between
N; and Nj for 4,5 € [¢+ 1]. Thus we have

> d(w) < [No| +2[|No|/2] +min{| N[, [Na[} + Y min{|Na|,[Ni|} = (g + 1) No| — 2.
rEN2 4<i<q+1

So f(N2) = (¢+1)[No| = >_,en, d(x) > 2. Similarly, we have f(N;) > 2 for all 2 <4 < g— 1. Together
with (9), we can obtained a contradiction as following

20 —4>q+eq+1> f(V Z f(N;) > 2q — 4.
2<z<q1

This completes the proof of Claim 5.3. U

The following is key for constructing a large (¢ 4+ 1)-uniform 1-interesting hypergraph.

Claim 5.4. Suppose v € Vi has N(v) = {v1, ..., 0941} If u € Sgq1 \ N[v] is adjacent to Sgr1 N N(v),
then |N(u) N N(v;)| =1 for all i € [q + 1].

Proof. By Claim 5.3, we assume that uvy,vivy € E(G) for some v1,v2 € Sgq1. Then u has exactly
one neighbor in N[v] and no neighbors in Ny. By Claim 5.3, Ny, ..., Ng4; form a partition of V\N[v].
Since u € S¢41 has at most one neighbor in each N; for ¢ # 2, it follows that u must have exactly one
neighbor in each N; for ¢ # 2. Since N(u) N N(v2) = {v1}, we see that indeed |N(u) N N(v;)| =1
holds for all i € [¢ + 1]. O

We then show that the neighborhood of any vertex in A contains many vertices of property 1. To
do so, for any x € A we define

S, =N(z)nS and S;=S5,U(N(S;)NN(x)). (13)
Since x € A, we have |S;| < dq. Every vertex in S, has at most one neighbor in N(z), so [S\ S| < |S,|
and thus |SF| < 2|S;| < 2dq.
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Claim 5.5. For x € A, there are at least (1 — e — 39)q + 1 vertices of property 1 in N(z)\S%.

Proof. Let N(x) = {z1,...,x¢g+1} and N; = N(x;) \ N[z] for i € [¢ + 1]. We assert that f(INV;) > 1 for
any z; € N(x)\S%. Indeed by definition, such x; € S;41 and every neighbor of z; in .S must lie outside
of N[z] (that is in N;). Also by Lemma 2.12, z; has at least one neighbor in S which belongs to N;.
So we have f(N;) > 1. From this argument, we also see that z; € N(x)\S} has f(N; U {x;}) = 1 if
and only if z; € V1. If we let m be the number of vertices of property 1 in N(z)\S}, then we have

m+2(d(x) — 85| —m) + S| < > F(NiU{ai}) < F(V) <q+eq+1.
i€[g+1]

Using d(z) = ¢ + 1 and 2|S%| — |S| < 3dq, we can derive that m > (1 —e — 3d)g + 1. O
Claim 5.6. R is a I-intersecting (q + 1)-hypergraph with |R| > ¢* — eq — 2/6.

Proof. Tt is clear that R is (¢+ 1)-uniform and by Claim 5.1, |R| = |A| > ¢*> —eq—2/6. So it is enough
to show that R is 1l-interesting. Suppose that there exist some x,y € A with no common neighbor.
First consider the case zy € F(G). By Claim 5.5, there exists some z € N(z) NV; — {y}. Clearly we
have yz ¢ E(G). Applying Claim 5.4 (by viewing z as the vertex v therein), since y € Sy41\V[z] is
adjacent to z € Sq41 N N(z), we can conclude that |[N(y) N N(x)| = 1, a contradiction.

Now assume that zy ¢ E(G). Let N(x) = {1, ...,zg41}. Let N; = N(z;)\N[z] for i € [¢ + 1] and
Y = V\(N[z]UN;U...UNg1). So we have y € Y. Since each z; has at most one neighbor in N(x),
we get that

g+1 q+1
V] <n—(g+2) =Y (da:) —2) =) fl(w:).
i=1 i=1

Let Ni(x) be the set of vertices in N(z)\S% of property 1. By Claim 5.5, |Ny(x)| > (1 —e—30)q + 1.
Further let No(z) = N(z)\(N1(z)US}). Then, we have f(INV;) =1 for each x; € Ni(z) and f(N;) > 2
for each x; € Na(x). Thus, we can derive that

at1
VI <Y fla) = > fla) <q+eq+1—|Ni(@)] - 2[Na(x)].

Since N(z) = Ni(z) U Na(z) U S%, we see that the number of neighbors of y in those N;’s with
x; € Ni(z) is at least d(y) — (|Y| — 1) — |S%| — |N2(x)|, which is at least

(¢+2) = (g +eqg+ 1)+ |Ni(z)[ + [Na(2)| = |S;] = (1 — € = 40)g + 2 > dg,

where we used the above estimation on |Y| and the facts that ¢ + 1 = |Ny(z)| + |Na(z)| + |SZ],
|S¥] < 20q and § <« 1 —e. Since |N(y) N S| < dq, among those neighbors of y, there is a vertex
z € N(y) N Sg4+1. Suppose that z € N; for some z; € Ni(z) C Vi. Applying Claim 5.4 (by viewing
x; as the vertex v), since y € Sy41\N[z;] is adjacent to z € N(x;) N Sy41, we can derive that y and
x € N(x;) have a common neighbor. Since G is Cy-free,  and y have exactly one common neighbor,
finishing the proof of Claim 5.6. O

Definition 5.3. Let Vi* = Vi\N(B). For v € V}*, let v be the unique vertex in N(v) of degree q. Let
L={N[T:veV'}

It is clear that R N L = 0.

Claim 5.7. For any L € L, there ezist Ry,...,R; € R such that LUR;{U...UR; =V and [LN Ry N
..NRy| =1. Moreover, |L| > (1 —¢€)g — (2+2¢+2/J).
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Proof. Given L € L, there exists a vertex v € Vi* with N(v) = {v1,...,v441} and L = Nvg1]. Since
N(v) N B =0, we see that vy, ...,v, € A and thus N(v1),..., N(vq) € R. By Claim 5.3, it implies that
LUN(v1)U...UN(vq) =V and LNN(v1)N...NN(vy) = {v}, as desired. It remains to show the lower
bound of |£|. By Claims 5.1 and 5.2, we have |V{*| > V4| — |[N(B)| > (1—¢)¢® — (14 2¢)q —2(q+1)/6.
It is obvious that each L € L corresponds to a unique vertex u € S,\B with L = N[u] (as otherwise
it will force a C4), however such a vertex v may be adjacent to at most g vertices in V1\N(B). Thus

V*
we have that [£] > M > 1 (1 - €)¢® — (14 2¢)g — 2(q +1)/6) > (1 — €)q — (2 + 2 + 2/5). O

Using the above claims, we now can construct a 1-intersecting (¢+1)-hypergraph with considerably
many edges.

Claim 5.8. RU L is a I-intersecting (q + 1)-hypergraph based on G with |[RU L] > ¢*> + (1 — 2¢)q —
(24 2e+4/9).

Proof. In view of Lemma 2.5, we see from Claims 5.6 and 5.7 that R U £ is a l-intersecting (q + 1)-
hypergraph. Since R N L = (), we have

IRUL|I> (> —eq—2/8)+ (1 —e)g— (2+2e+2/8) = > + (1 — 2¢)q — (2 + 2¢ + 4/9),

completing the proof. O

5.2 The completion of the proof of Lemma 5.1

Following the sequence of previous claims, we now continue and complete the proof of Lemma 5.1.
By (10), we write
1Sy11] = ¢* — aq for some constant 0 < a < . (14)

Using |V| = Z?;Lé |Si| and 2¢(G) = Z?;Lé i|Si], by (7) and (14) we can conclude that
1Sq| = 2¢(G) = (¢ = DIV] = 2[Sg41] = (2a +1 = €)g + 1. (15)

Definition 5.4. We say a vertex v has property 2, if v € S;11\N(B) satisfies |[N(v)NSqy1| =q—1
and |N(v) N Sq| = 2. Let Va denote the set of all vertices of property 2 in G.

Claim 5.9. Any u € S,\(BUN(V}")) has at least (1 —e —30)q — (1 +6/6) neighbors in Va.

Proof. Let S, = N(u)N S and S} =S, U(N(S,) N N(u)). Since u ¢ B and every vertex in S, has at
most one neighbor in N(u), we have |S3\S,| < |S.| < dq and |S};| < 24q.

Write N(u) = {u1,...,uq} and N; = N(u;) \ N[u] for each i € [g]. Since G is Cy-free, all the
sets N; are disjoint. Note that N(u) N V" = 0. So N(u) N V; € N(u) N N(B). Since each vertex in
B has at most one neighbor in N(u), we have |N(u) N Vi| < |[N(u) N N(B)| < |B| < 2/6 and thus
IN(w)\V1| > ¢ —2/4. Each u; € N(u)\(V1 US}) has degree ¢ + 1 and at least two neighbors in S, all
of which (except u) are in V\N[u]. Hence for such u; € N(u)\(V1 US}), the deficiency f(V;) is at
least 1 with equality if and only if [N (u;) N Sg41| = ¢ — 1 and |N(u;) N Sy| = 2. Let M be the set of
vertices u; € N(u)\(V1 US}) with f(N;) = 1. By counting the deficiency, we have

M+ 2(IN (@)\Vi] = [S5] = [M]) + [Su] <Y F(NiU{ui}) < f(V) < q+eq + 1.
1=1

Using |N(u)\Vi| > q — 2/6, we can derive that |[M| > (1 —e — 36)g — (1 + 4/0). Notice that
M\N(B) C V,. Since M C N(u), each vertex in B has at most one neighbor in M and thus we
have at least |[M\N(B)| > |M|—|B| > (1 —e—3d)qg — (1 +6/9) vertices in N(u) N Va. O

Claim 5.10. Forv € Va, G[N(v)] consists of a matching of size & plus an isolated vertex of degree q.
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Proof. We observe that every v € V5 is in A and every z € N(v) N Sy41 is also in A. By Claim 5.6,
|N(v) N N(x)] = 1. Since v has ¢ — 1 neighbors of degree ¢ + 1 and ¢ is even, it is easy to see that
G[N (v)] must contain exactly % edges which form a matching and moreover, the only isolated vertex
in G[N(v)] has degree q. O

In view of Claim 5.10, we now give some notations in relation to V5, for later use.

Definition 5.5. For v € Vs, we write N(v) = {v1, ..., 0441} such that d(v1) = d(v2) = q and the edge
set of G[N(v)] is {vgivgig1 : 1 <@ < 4}, Let Ny = N(v;)\N[v] for each i, and let the unique vertex
not contained in Ui<i<q+1N [v;] be v*.

Note that the sets N[v], Ny, ..., Ng11 and {v*} form a partition of V. We recall that R = {N(z) :
x € A} is 1-intersecting and subsets in V' of size ¢ + 1 are called lines.

Definition 5.6. Forv € Va, we say v1 and ve are the type-1 vertex and type-11 vertex for v, respectively.
We also say that LY = Nlvi] is the type-I line for v and LY}; = N(vg) U {v*} is the type-II line for
v.3 Furthermore, we say v € Vs is extendable if R U {LYy, LY} is 1-intersecting; otherwise, we call
it non-extendable.

Claim 5.11. For v € Va, we have vs,...,vg41 € A, LY U Lj; U N(v3) U ...U N(vgq1) = V and
LYNLY; N N(vz) N...nN N(vgy1) = {v}. Moreover for each N € R, [N NLY| +|NNLY,| =2.

Proof. 1t is clear that the first conclusion follows by definition. Consider any v € V5 and N € R.
Note that v; € A for 3 <i < g+ 1. If N = N(v;) for some 3 <1i < g+ 1, then the second conclusion
is clear. Otherwise, as R is l-intersecting, we see that |[N N N(v;)| = 1 for 3 < i < ¢+ 1. This also
infers that |[N N (LY U LY;)| = 2, completing the proof. O

Therefore, if v € V5 is non-extendable, then there must be a line N € R with (|NNLY|,|[NNLY,|) €
{(0,2),(2,0)}. This motivates the following definitions.

Definition 5.7. If v € V5 is extendable, we say both vertices vi,va and both lines Ly, LY, are good
(of type-1, type-II respectively) for v. Suppose v € Vo is non-extendable. If there exists N € R with
NN LY =2, then the type-I vertex vy is called bad for v. If there exists N' € R with [N'NLY;| =2,
then the type-1I vertex vs is called bad for v.

We point out that any vertex of type-I or -II for some vertex in V5 belongs to the set S;\B. Recall
that Vi* = VI\N(B) and £ = {N[u] : w € S, N N(V{")} from Definition 5.3.

Claim 5.12. Let u be a vertex of type-I or -1I for some v € Vo. If u € N(Vi*), then N[u] € £ and u
is a good vertex of type-1 for v.

Proof. Suppose that u is adjacent to w € Vi\N(B). Then N[u] € £ and by Claim 5.8, R U {NJu|}
is 1-intersecting. If u is a type-II vertex for v, then there exists some v’ € N(v) N A adjacent to u.
So N(u') € R, but {u,v} C N(u') N Nu|, a contradiction. Hence u is type-I for v. In particular,
LY = N[u]. By Claim 5.11, applying Lemma 2.5 with # = RU{Nu]} and F = {L};}, we derive that
RU{LY,LY,} is 1-intersecting. This shows that v is extendable, finishing the proof. O

We now investigate more properties for general v € S;\B. It seems possible that u can be good or
bad for different vertices in V5 N N(u). Nevertheless, we will show in the following claims that there
are strong restrictions one can say for the goodness/badness.

Claim 5.13. Ifv € V5 is non-extendable, then there always exists N € R with [N N LY| = 2.

3We will also say that, for instance, v1 is the vertex of type-I for v and LY; is the line of type-II for v.
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Proof. Let N; = N(v;)\NJ[v] for ¢ € [¢ 4+ 1]. Suppose not. Then by Claim 5.11, there exists some
N(c) € R with |[N(c) N LY;| = 2. It is clear that v* € N(c). Since ¢ € A, by Claim 5.5 there
are at least (1 — e — 39)¢ + 1 many neighbors of ¢ in Vi\S¥. As G is Cy-free, we can find at least
(1 —€—30)g—2/0+ 1 vertices in (V1 N N(c))\N(B).

Now we take b € (V1NN (c))\ (N (B)UN (v1)UN (v2)UN (v3)UN (v)UN (v*)). Suppose N (b)NN(v) =
{vi} (by Claim 5.6 they intersect). By the choice of b, we may write N (b) = {b1, ..., bg41} with by = v;,
where d(b1) = ¢+ 1 and d(bgy1) = ¢. Since e(N(b), N2 U {v3}) < |[N2 U {vs}| = ¢ — 1, there are at
least two vertices in N (b) with no neighbor in No U {v3}. So there exists a € N(b)\{v;} = N(b)\N(v)
with N(a) N (N2 U {vs}) = 0.

We assert that a € NyU...UNgy1 and N(a) N LY, = (. First, we see that av ¢ E(G) (as otherwise,
a € N(v)NN(b) = {v;}). It then suffices to show v* ¢ N(a). To see this, suppose v* € N(a) and
then one can find a Cy4, namely abcv*a in G, a contradiction.

We also assert that it has to be d(a) = ¢. It is clear that d(a) € {¢,q + 1}. Suppose for a
contradiction that d(a) = ¢ + 1. Since b € V1\N(B), we have a € A and thus N(a) € R. Since
v3,...,0g41 € A, by Claim 5.6 we have |[N(a) N N(v7)] =1 for 3 < ¢ < g+ 1. Then by Claim 5.11,
|N(a) N LY| = 2, contradicting our assumption.

We now further show that a € Nj. Assume for a contradiction that av; ¢ E(G). As avs ¢ E(G),
we have a € No U NgU ... U Ngyq. Suppose a € Np. By Claim 5.3, we see that {b,...,0,} induces a
matching in G[N(b)]; then at least two of {by,...,bs} have no neighbor in Ny U {v3}. Hence we can
choose @’ € {by,...,by}\{v;} with N(a’) N (N U{v3}) = 0. But such a’ has degree g+ 1, contradicting
the previous assertion. Hence we may assume a € N; for some j € {4,...,¢ + 1}. Since b € V;\N(B)
and a € N(b) NS, by Claim 5.8, RU{NJa]} is 1-intersecting. Because v, € A for £ € {3,4,...,q + 1},
we have |N[a] N N(vg)| = 1. This, together with Claim 5.11 and the fact N{a] N LY, = 0, imply that
|IN[a] N LY| > 2. As avy ¢ E(G), we have [N(a) N N(v1)| > 2, a contradiction as it would force a Cy.

Lastly, we observe that for every choice of such b, the above vertex a, which lies in Ny NS, C
N(v1) NSy, must be distinct. This is because if there exist two vertices say by, by corresponding to the
same vertex a, then it provides a Cy such as byabach; in G. There are at least (1 —e —3)g —2/6 — 4
choices for b, implying that |[N(v;) N S,y| > (1 —€ —30)g — 2/6 — 4 > dq, where the last inequality
holds as 1/¢ < § < 1 —e. This shows v; € B, a contradiction to that v € S;41\N(B), completing
the proof. O

Claim 5.14. For any u € S;\B, the number of non-extendable vertices v € Vo N N(u) with u as the
type-1I vertex is at most 44q.

Proof. Suppose on the contrary that there exists u € S;\B such that the set 7' = {non-extendable v €
Vo N N(u) : uis the type-II vertex of v} has size ¢t > 40q. We write T' = {v; : ¢ € [t]} and for each
v; € T, we denote the type-I vertex of v; by w;. It is clear that all u; are distinct (as otherwise it
would force a Cy).

By Claim 5.13, for v; there exists L = N(a) € R such that |[L N L} | = 2. By Claim 5.11,
LN N(u) = (. This shows that exactly one of the following facts holds for L and any other v;’s in T

(1). If LN LY| =|LN L} =1, then v} € L (because L}, = N(u) U {v}} and LN N(u) = 0);
(2). Otherwise |L N L} =2, then u; € L (because L} = N[u;] and |L N N(u;)| < 1).

Let Ty consist of all v; € T with |[L N L}'| = 2. By (2), we see u; € L = N(a) for all v; € T}. Since
a € A and u; € S are distinct, we have |T1| < |[N(a) NS| < dg. Now let L' = N(a’') € R be another
line, other than L, such that |L' N L?! = 2 for some vj; € T\T;. Let T consist of all v; € T\T; with
|L’' N Ly | = 2. Similarly, we also have |T3| < dq.

We also assert that there are at most dq vertices v; € T sharing a common v} (denoted by v*).
Suppose vj, , ..., vj, € T share a common v* and subject to this, s is maximum. We first find a line Ly
with |Lo N L?1| = 2, which also satisfies Lo N (N (u) U {v*}) = (. If Ly satisfies that |Ly N L?j"| =2
for all i € [s], then we can get that s < d¢g as above. So we may assume that there is some v;; such
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that (1) holds. By (1), we then derive that v* € Ly, a contradiction to that Ly N (N (u) U {v*}) = 0.
This proves the assertion.

By our choice, (1) holds for each of L = N(a) and L' = N(a’) and for any v; € T'\(7} UT5). Since
|T\(T1 U Ty)| > 26q and at most dq vertices v; € T\(T7 U T3) share a common v}, we can find two
different v}, say z and y. By (1), we have 2,y € N(a) N N(a’). This forces a Cy in G and finishes the
proof. O

The next claim shows that the type of a good vertex u € S;\B in fact is an invariance (that is,
the type remains the same for all extendable vertices in N (u) N Va).

Claim 5.15. Let u € S;\B. If u is a good vertex of type-I for some vertex in Vs, then u is the good
vertex of type-1 for all vertices in N(u) N V;.

If u is a good vertex of type-1I for some vertex in Vo, then u is a vertex of type-1 (which must be
bad) for at most one vertex in N(u) N Va; moreover, there are at most two good lines of type-II for all
the vertices in N(u) N Va.

Proof. First let us assume that u is a good vertex of type-I for some v € V5. Since v is extendable,
RU{N|u|} is 1-intersecting. Consider any v € N(u)NV2\{v}. Suppose that u is a type-II vertex for v'.
If we let z be the unique vertex in N (v') adjacent to u, then we see N(z) € R and N(z)NN[u] = {u,v'},
a contradiction to that RU{N[u|} is 1-intersecting. Thus u is always type-I for all vertices in N (u)NVa.
Let N(v') = {u, ag, ..., ag41}, where as is type-1I for v’ and as, ..., ag41 € A. Then Claim 5.11 holds for
v analogously, where N(a3), ..., N(az+1) and LY = N[u] are g lines in the I-intersecting hypergraph
RU{N[u]}. By Lemma 2.5, we infer that RU{LY , LY}} is l-intersecting and thus v’ is also extendable.
This shows that w is a good vertex of type-I for all vertices in N(u) N Va.

Now we assume that u is a good vertex of type-1I vertex for v; € Va. Let F' = N(u) U {v]}. Since
vy is extendable, R U {F'} is l-intersecting. Suppose that vy € N(u) N V; is distinct from v; and
u is a type-I vertex for vo. By the first assertion, we see vy is non-extendable and wu is bad for vs.
So N(vg) € R and N(vy) N N(u) = (. Since R U {F'} is l-intersecting, the only possibility is that
vy € N(v2). Thus we have u,vi € N(v2). Now suppose there exists another v € N(u) N Va\{v1,va2}
which has wu as its type-I vertex. Similarly we have u,v] € N(v3), giving uvevivsu as a Cy in G, a
contradiction. Hence by our discussion, u is a vertex of type-I for at most one vertex of N(u) N Vs.

By Claim 5.12, v € S;\(B U N (V}*)). Then the previous paragraph, together with Claims 5.9 and
5.14, show that u appears as a good type-II vertex for at least (1 —€e—3d)g— (1+6/5) — 1 —4dq > 20
vertices w; € N(u) N Va. Suppose that there exist at least three good lines of type-II for these w;’s,
say F1 = N(u)U{wi}, F» = N(u) U{w}} and F3 = N(u)U{wj3}. By renaming notations if necessary,
we may assume that there are at least four w; € N(u) N Va2 whose w} ¢ {w],w3}. We observe that
the type-I vertices u; of these w; are all distinct; indeed, otherwise say w; and w; have the same
type-I vertex u/, then it yields a 4-cycle w;u'wjuw;, a contradiction. Hence, we can further find two
of these w;, say w4, ws € N(u) N Vo, such that their type-I vertices uy,us are distinct and not in
{w},w5}. Now we show wj € N(uyq) by considering the location of w} in the local structure based
on wy. As wy € Va, any v € N(wy) N Sg+1 is in A, so wy is the unique vertex in N(v) N Fy and thus
w} ¢ N(v). Since V = (Upen(wy)ns,. V() ULF* U LY} and wi ¢ L} = N(u) U{w}}, we conclude
that wi € LT* = Nua], which further shows w} € N(u4), as wanted. Analogously, we can derive that
wy,ws € N(uyg) N N(us). This provides a Cy in G, a contradiction. O

Claim 5.15 also indicates that the type of a good vertex u € S,\B is consistent with the type of
all good lines containing N(u). Consequently, just the same as a good vertex, a good line can only
be of one particular type. To further study properties of good lines, we define an auxiliary graph as
following.

Definition 5.8. We denote F by the set of all good lines (of type-1 or type-1I for any vertex in Va).
Let G be the graph with vertex set F, where F, F' € F are adjacent if and only if they are the type-1
and type-1I lines for some extendable vertex in Vs.
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By the above discussion, we see that G is a bipartite graph on two parts (Fr, Frr), where F
consists of all good lines of type-1 and Fjj consists of all good lines of type-II.

Claim 5.16. For two independent edges (LY, LY;) and (LY, LY;) in G, we have vw = (|[LYNLY|,|LyN
LY, LYy, N LY, |LY, N LY]) € {(1,1,1,1),(2,0,0,2),(0,2,2,0),(0,2,2,9)}.

Proof. Clearly v,w € V3 are extendable. We define vy, ..., vg41,v* and wq, ..., wg41,w* according to
Definition 5.5 for v and w, respectively.

First we observe that if any entry in the vector vw is one, then by applications of Lemma 2.5,
we can infer that R U {LY, LY, LY, LY} is 1-intersecting and thus 7w = (1,1,1,1). Hence, we may
assume that none of the entries in w is one.

Suppose v € LY. Then we have v € N(w;) and thus wy € {v1,v2}. If wy = vy, then LY = LY, a
contradiction as the two edges in G are independent. So w; = va. Then {vs,v3} C N(v)NLY, however
{N(v), LY} C RU{LY} is 1-intersecting, a contradiction. Hence we must have v ¢ LY. Also we have
ILY N N(v;)| =1for 3<i<qg+1. So |LYN(LYULY,)| =2. By symmetry between v and w, we also
can get |[LY N (LY ULY,)| =2.

If [LY A LY| = 2, then |LY N L¥| = |L¥, N L¥| = 0. Note that LY, LY,, N (v3), ..
sun-flower with center v and vertex set V. Since LY, NLY = 0 and |LY; NN (v;)| =
we derive that |LY, N LY,| =2, i.e., 7w = (2,0,0, 2).

It remains to con81der |LY N L“’] 0. Then |LYyNLY| = |LYy, NLY| =2. If v ¢ LY, using
the same argument as above, we can easily get 7w = (0,2,2,0). Hence we assume v € LY. If
v = w*, then clearly N(v)NN(w) = ), contradicting that R is 1-intersecting. So v € N(ws), implying
that we € {v1,v2}. If wy = vy, as N(wz) C LY, and N(v;) C LY, we have a contradiction that
2 =|LY;NLY| > q. So wy = vy, which shows elther vw = (0,2,2,q) or LY; = LY, (a contradiction). [

. N(vg41) form a
1for3<i<qg+1,

We say two good lines F, F’ € F are friendly if |FF N F’'| = 1 and two components D and D’ of G
are friendly if there is a friendly pair {F, F'} with F € V(D) and F’' € V(D').

Claim 5.17. If two components D and D' of G are friendly (possibly D = D'), then all pairs in DUD’
are friendly. In particular, any two vertices in the same component of G are friendly.

Proof. First we point out that if two edges say (L1, Ls2) and (L1, L3) in G share a common vertex,
then using Lemma 2.5, one can derive that R U {Lq, Lo, L3} is 1-intersecting.

Assume that there exist F' € V(D) and F’ € V(D') with |FF'N F’'| = 1. To complete the proof, it
suffices to show that for any vertex L € V(D), we have |[LNF’| =1 (unless D = D" and L = F'). We
will prove this by induction on the length dj, of the shortest path between L and F' in D. If d;, = 0,
then L = F and clearly it is true. Now suppose that for any L* € V(D) with dz+ < k, the above
statement holds. Consider any L € V(D) with d;, = k+ 1. Then there exists an edge (L,L*) in D
with dr- = k. By induction, we have |L* N F’| = 1, unless D = D’ and L* = F’. In the latter case,
obviously we have |L N F'| = 1. Therefore |L* N F’| = 1. Fix an edge incident to F’, say (L', F') in
D'. 1If (L, L*) and (L', F') share a common vertex, then D = D’ and by the first paragraph, it is easy
to see that either L = F’ or |[LN F'| = 1. So we may assume (L, L*) and (L, F') are two independent
edges. By Claim 5.16, as |L* N F’| = 1, it infers that |[L N F’| = 1. This finishes the proof. O

Definition 5.9. For each F' € F, let up be the unique vertex in Sq\B satisfying N(up) C F. We
say a component of G is rich if it contains some vertex F with up € N(V}*).

We remark that for each F' € F, there exists some extendable vy € V5 such that up is a good
vertex and F' is a good line for vg of the same type.

Claim 5.18. A rich component of G is friendly with any component of G.

Proof. Let D be a rich component of G and let F' € F be a vertex in D with up € N(V}*). Then up
is a good vertex and F' is a good line for some v € V5 of the same type. By Claim 5.12, up is type-1
for v and F' = N[up| € L. Now consider any component D’ of G and take any vertex L € V(D') N F.
Then RU{L} is l-intersecting. Recall that Claim 5.7 holds for F' € £. By Lemma 2.5, we can derive
that RU{L, F'} is l-intersecting. This shows that D and D’ are friendly. O
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Definition 5.10. If a component of G, which is not rich, contains at least 40 vertices in Fr and at
least 6q vertices in Frr, then we say it is heavy.

Claim 5.19. Let F, and Fy, denote two unions of vertices in rich components and heavy components
of G, respectively. Then |F, U Fp UL| > 2aq + %(1 —€)q.

Proof. We note that £ = {N[u] : u € S;NN(V}*)} and |L]| =[S N N (V).

For u € S;\(BUN (V")) if all vertices in N (u) N V5 are non-extendable, then we say u is poor. Let
P be the set of all poor vertices in S;\(B U N(V}*)). Consider the number M of pairs (v, u), where
v € V3 is non-extendable and u € S,\(B U N (V}")) is the type-I vertex of v. Clearly M is at most the
number of pairs (v,u’), where v € V3 is non-extendable and v’ € S;\B is the type-II vertex of v. By
Claims 5.9 and 5.14, |P|- (1 —€ —3d)qg — (1 +6/6) — 40q) < |M| < |S,\B| - 4dq. This implies that

459 -|S,\B| _ 49q-1S,\B|

[Pl < (1—e—38)qg—(1+6/6) —45q (1—e—178)q— (1+6/0)

(16)

We point out that any u € S;\(B U N(V}*) U P) has an extendable neighbor in V5, which implies at
least one good line (not in £) containing N(u). By Claim 5.15, if u is type-I, then the unique good
line containing N(u) is Nu]. If u is type-II, then there are at most two good lines containing N (u),
say F}* and F3'. We call these good lines as the associated lines of u € S;\(B U N (V{*) U P).

Let F' be any line in F; with up ¢ N(V}¥). Clearly up € S,\(BUN (V}*)) is type-I and F' = Nup].
By Claims 5.9 and 5.15, up is the good vertex of type-I for at least (1 —e — 3d)qg — (1 +6/6) > dq
vertices in N(up) N Va. This shows that there are at least dg good lines of type-II adjacent to F' in G,
i.e., F' has degree at least dq in G.

Consider a type-II vertex u € S;\(B U N (V") U P). As mentioned above, there are at least one
and at most two associated lines say F}* and F3' of u. By Claims 5.9, 5.14 and 5.15, we see that u is
the good vertex of type-II for at least (1 —e —30)g — (1 +6/5) —4dg — 1 > 80 vertices in N(u) N V5.
Thus at least one of F|* and F3' has at least 40 neighbors in F;. By the previous paragraph, we see
that at least one associated line of u is contained in a rich or heavy component of G.

Now we show that the number of type-I vertices u € S;\(BUN(V}*) U P), which has no associated
(e ol
neither rich nor heavy, then each F' € V(D) has urp ¢ N(V;") and it has no more than 40 vertices in
Fr, implying that each F' € V(D) N Fy; has degree at most 40. Let e*,¢; and ¢, denote the numbers
of edges, vertices of F; and vertices of Fj; contained in all components of G which are neither rich
nor heavy, respectively. Then we have ¢ - ((1 —e —30)g — (1 +6/6)) < e* <40- ¢y <40|S,\B|. This
implies what we want.

Therefore we have |(F, U Fp)\L| > [S,\(BUN(V{*) U P)| — 20/5q\ B3| . This, together with

T=c=36)q—(1+6/3)
(16) and |£| = |S; N N(V}")|, imply that

lines in any rich or heavy component of G, is at most If a component D of G is

40/5,\B]
(1—e—30)g—(14+6/9)
46q - |S4\B| 40[5,\B|

2 S\Bl — T 70— (156/0) (A —c—30)q— (16/0)"

FUF UL > IS\(BUN(VY) U P)| — + 1S, N (V)

By (8) and (15), it shows that |F, U Fp U L] > 2aq + %(1 — €)q, completing the proof. O
Claim 5.20. At least half of the lines in Fp, are pair-wise friendly.

Proof. We define H to be a graph whose vertices are heavy components of G, where components
C,D € V(H) are adjacent if and only if they are not friendly. To prove this, we may assume that any
component has a non-friendly component in H (as otherwise, we can delete it and process). By Claim
5.17, it suffices to show that H is a bipartite graph.

Let C and D be two heavy components of G which are not friendly. Take a type-I line F' € V(D).
By Claim 5.16, for any edge e = (L1, L2) in C, c(e) := (|F' N L1, |F N Lg|) is either (0,2) or (2,0).
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Repeatedly applying this, we see that all edges e in C have the same c(e). So for any line F' € V/(D)NF7y,
exactly one of the following holds:

(A). All type-I lines L in C satisfy |F'N L| = 2. Since |N(ur) N N(ur)| <1, we have urup € E(G).

(B). All type-II lines L in C satisfy |F N L| = 2. Suppose L is a type-II line for vy, € Vo. Then
L = N(ur) U{v}} and we have either v] = up, viup € E(G), or urur € E(G).

Suppose (A) holds for some F' € V(D) N F;. Repeatedly applying the above conclusion, one would
derive that in fact any L € V(C) N Fr and any R € V(D) N Fr satisfy |[LN R| =2 and urugr € E(G).
Since all uy,upr are distinct, it is easy to force a C4 in GG, a contradiction.

Hence (B) holds for all type-I lines F' € V(D) and any heavy component C which is not friendly
with D. For every such F, we can partition V(C) N Fy; into three sets X (F'),Y (F) and Z(F),
where X(F) = {L € V(C) N Fir : v = up}, Y(F) = {L € V(C)N Fir : vjur € E(G)} and
Z(F)={L e V(C)N Fy : upup € E(G)}. Let F,F" € V(D) N F; be distinct. Then it is easy to
see that | X(F)NX(F')| =0 and |Z(F)NZ(F")| < 1. If there are L1, Ly € Y(F)NY(F'), then both
vy, and v}  are adjacent to {up,us}. This shows that vy = v} , as otherwise there is a Cy in G.
That is, all lines L € Y(F) NY (F’) have the same v}. By fe(w), we denote the number of all lines
Le V(C) N Frr with ?}z = w.

We first assert that there exists some vertex w with fe(w) > (|[V(C)NFyr|—6)/6. To see this, let us
take four lines Fi, Fy, F3, Fy € V(D) N Fr. We have ‘V(C) ﬂf[[’ > ‘ Ui<i<4 X(FZ)’ = Zl<i<4 ’X(FZ)‘,
and by inclusion-exclusion, o

V) NFul > |Vicica YR = Y [Y(EF) = Y [Y(B)NY(F)
1<i<4 1<i<j<4

and similarly, [V/(C) N Frr| > >0 ;<4 |Z(F;)| — 6. Summing up the above three inequalities, using

| X (F)|+ Y (F)| +|Z(F;)| = |[V(C) N Frr| for each i € [4], we obtain that

V(@) NFul =4V N Ful— Y. [Y(F)NY(F)| 6.

1<i<j<4

Therefore one of Y (F;) NY (F}) contains at least (|V(C) N Frr| —6)/6 lines L, all of which have the
same v} . This proves our assertion.

We further assert that in fact for each heavy component C, there exists a unique vertex we with
fe(we) > 0.6 -|V(C) N Frr]. Let ¢ = |V(C) N Fyrl|, which is at least dq. We choose w such that fe(w)
is maximum. So we have fe(w) > (¢ — 6)/6. Take any 20 lines say Fi, ..., Foo in V(D) N Fr. Then
we have 20¢ = 32 icoo(IX(F3)| + [Y ()| + |Z(F)]) < Xicicn|Y (Fi) + 2¢ + (%), implying that
Y 1<i<oo Y (F)| > 18¢ — (220). Without loss of generality we may assume wup, € F(G) if and only if
i € [s] for some s € [20]. Note that for s < ¢ < 20, we have |Y(F})| < ¢ — fo(w). If s < 10, then
Y o1<i<oo 1Y (F)] £20c—(20—s5)- fe(w) < 20c—10(c—6)/6 < 18¢c— (220), a contradiction. Hence s > 11.
For i € [s], let A; = Ng(up,)\{w} and let f; = > 4 fe(z). We claim that A;’s are disjoint over
i € [s]; as otherwise say x € A N Ay, then both up, ,up, are adjacent to w,z in G, a contradiction. So
> icfs) fi < ¢— fe(w). Then we can derive that 18c — (220) < D icicon Y (F) < s+ fe(w) + 3iepq fi+
(20 —s)c < (s —1)fe(w) + (21 — s)e < 10f¢(w) + 10¢, implying that fe(w) > (8¢ — (220))/10 > 0.6¢,
as desired. Clearly such w is unique, denoted by we.

We say we is the associated vertex of C. We also point out that from the above proof, among
any 20 lines Fy, ..., Fy in V(D) N Fr, the vertex we is adjacent to at least 11 of ug,’s in G. Consider
any two incident edges in H, say CC;1,CCo € E(H). Let wy,ws be the associated vertices of Ci,Ca,
respectively. Take any 20 lines F1, ..., Foo in V/(C) N F;. Then each of w; and ws is adjacent to at least
11 of ug,’s in G. So there are two vertices Ry, UF, adjacent to both wy and wy in G. If wy # we, then
this forces a Cjy, a contradiction. So we conclude that wy = ws.

Now suppose on the contrary that H contains an odd cycle, say C1Cs...C:C1, where t is odd. Let
w; be the associated vertex of C; for each ¢ € [t]. Applying the above conclusion, as ¢ is odd, we can
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derive that these w;’s are the same vertex, say w. Take any Ly € V(Cy) N Frr and Ly € V(C2) N Fr1
with v7 = v}, =w. Then Ly = N(ug,) U {w} and Ly = N(ur,) U {w}, implying 1 < [L; N La| < 2.
If |Ly N Ly| = 1, then C; and Cy are friendly, a contradiction. Hence |L; N Lg| = 2. Let L1 R; be
an edge in C; and LyRy be an edge in Co, where Ry, Ry are type-1. By Claim 5.16, as |L1 N Lo| = 2,
we have |R; N Ra| = 2. So (A) holds for the line Ry € V(C1) N Fr and the heavy component Cy, a
contradiction. This proves that H is bipartite, completing the proof of Claim 5.20. ]

Finally, we show how to add certain good lines into R to make a larger 1-intersecting hypergraph
on the vertex set V. By Claim 5.20, there exists a l-intersecting F; C Fj, with |F;| > |F3|/2. By
Claim 5.18, we see that R U F, U F} is also l-intersecting. Since L € L satisfies Claim 5.7, by Lemma
2.5, we see that R U F, U F; U L remains l-intersecting. Using Claim 5.19, we have

1
[RUF, UF, ULl =|R|+|FUF, ULl > |R|+§|frufhu£|
1
> (¢" —aq+1-2/6) + 5(2aq+ (1 - €)q/2) > ",

This finishes the proof of Lemma 5.1. |

6 Finding a polarity

In this section, we complete the proof of Theorem 3.2. Fix 0 < ¢ < 1 and let ¢ be an even integer
with ¢ > €. Let G = (V, &) be a Cy-free graph on ¢ + g + 1 vertices with maximum degree ¢ + 1 and
at least %q(q +1)2 - 5q edges. We aim to show that there exists a unique polarity graph of order ¢
containing G as a subgraph.

By Lemma 5.1, there exists a 1-intersecting (g+1)-hypergraph R* on the vertex set V with R C R*
and |R*| > ¢%. By Theorem 2.1, R* (and thus R) can be embedded into a projective plane P of order
q. Since |R| = |A| > ¢®> —eq —2/5 > ¢*> — ¢+ 1 (by Claim 5.1), applying Theorem 2.2, we see that
such P and the embedding of R into P both are unique. Let R¢ = P\R. Now let us recall some basic
facts about P: every two lines intersect with exactly one vertex, every two vertices are contained in
exactly one line, and every column or row of any incidence matrix of P has ¢ + 1 1’s as entries.

We say v € V is feasible, if there exists a line L € P with N(v) C L; otherwise, we say v is
non-feasible. For non-feasible v, we say it is near-feasible, if there exist a line L € R¢ and a subset
K, C N(v) such that N(v)\K, C L and |K,| < 5,/g/. In both definitions, we say v and L are
associated with each other. For feasible v, we let K, = (). By (11) and since G is Cy-free, for any two
feasible or near-feasible vertices v and v, we have

(N ()\Ku) U (N(@)\Ko)| > (d(u) = 5/q/8) + (d(v) = 5/q/d) =1 > (2= €)g—10y/g/6 = 1> q+1.

This implies that each line in P is associated with at most one feasible or near-feasible vertex. On
the other hand, if there are two lines in P associated with the same feasible or near-feasible vertex v,
as d(v) > (1 —¢€)g by (11), then it is easy to see that these two lines will intersect with more than two
vertices, a contradiction. So each feasible or near-feasible vertex is associated with a unique line in P.
Next we study some properties on non-feasible vertices v € V. Let N(v) = {vy,...,v4}. Since v is
non-feasible, we see N(v) € L for any L € P and thus v ¢ A. Then any pair {v;,v;} for i,j € [d] is
not contained in any line N(u) € R. This is because that otherwise, we see that v;uvjvv; forms a Cy
in G, a contradiction. So every such pair {v;,v;} is contained in a unique line L € R¢. Let £, be the
family of lines L € P which contains at least two vertices of N(v). Then we have £, C R¢ and thus

Lol IR =IP| = [R[ < (1+€)qg+2/5+1 (17)

We also point out that any vertex in N (v) appears in at least two lines of L,.
We process to show that all non-feasible vertices are near-feasible in the following claims. First
we show any vertex has a neighbor which belongs to many lines in R.
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Claim 6.1. Any vertex v € V has a neighbor v; with dr(v;) = |N(vj) N Al > ¢ — 15 —2/6 — 2.
In addition, if v ¢ B has degree at least %(1 +e+40)qg +6/0 + 1, then v has a neighbor v; with
dR(Uj) Z q— 1.

Proof. Let N(v) = {v1,...,uq}. By (11), we have d = d(v) > (1 —€)q. Let N; = N(v;)\N[v] for i € [d].
Since the sets N; U {v;} are disjoint over i € [d], we have

greq+1>f(V)> > f(N;U{v}) + f(v) = > f(N;U{wi}) + (g +1—d).

i€[d] i€[d]
By averaging, there is some j € [d] with f(N; U {v;}) < & +1 < 1% + 1. Therefore,

dr(vj) > INj N Al > [Nj| = [N; N S| = |B] > (d(v;) = 2) = f(N;) —2/6
=(g—1—=f(vj) = f(N;) =2/6 > q—¢/(1 —€) —2/6 -2,

as desired. Next we consider vertices v ¢ B with d = d(v) > (1 + €+ 46)g + 6/5 + 1. Let
B, = N(v)N(SUB) and B} = B,U(N(B,)NN(v)). Then we have |B,| < |N(v)NS|+|B| < dq+2/6.
Since G is Cy-free, every vertex in B, has at most one neighbor in N(v), implying that |B}| < 2|B,|.
Let T = {v; € N(w)\B} : N;N B = (}. Since N;’s are disjoint and there are at most |B| many
Nj’s containing some vertex in B, we get |T'| > |[N(v)\Bj| — |B] > d —2dq — 6/6. If f(IN;) > 2
for all v; € T, then g+ eq+1 > f(V) > 2|T| > 2(d — 26q — 6/5) > q + €q + 2, a contradiction.
Therefore, there exists a vertex v; € T such that f(IN;) < 1. By the definition of T, we can see that
dr(v;) = |N(v;) N A] > d(v;) — 1 — f(N;) > ¢ — 1. This completes the proof. O

We partition V into three disjoint sets Uy U Uy U Us, where U; consists of all feasible vertices and
Us consists of non-feasible vertices v ¢ B with d(v) > 2(1 + e+ 48)q +6/5 + 1.

Claim 6.2. There exists some w € V such that all v € Uy are near-feasible with K, = {w}.

Proof. For any v € U, by Claim 6.1, there is a neighbor v; of v with dg(v;) > ¢ — 1. By the
above discussion, v; appears in at least two lines in £, C R¢. If dr(vj) > ¢, then dp(vj) > ¢+ 2, a
contradiction. So dr(v;) = ¢—1 and there are exactly two lines, say L and Lo, in £, C R containing
vj. Let Ny = L1 N N(v) and Ny = Ly N N(v). Then we have N; N Ny = {v;} and N1 U Ny = N(v).
Consider any other line L; € L,\{L1, Lo} for i > 3. Set N; = L; N N(v). We see that for any i > 3
and j € {1,2}, ’Nz ﬂNj‘ <1 and ’Nz mNﬂ + ‘Nz N NQ‘ > ‘Nz N (N1 UNQ)‘ = ‘Nz’ > 2. This shows
that for any ¢ > 3, IV; consists of two vertices, one from Ni\{v;} and the other from N\{v;}. Hence,
£al = (N1 = (N2 — 1) + 2.

Let d = d(v). We may assume that d —1 > |Nj| > |[Na| > 2. If |Na| > 3, then we have
|y = (|N1|=1)(|N2| —1)+2 > 2(d—3)4+2 =2d—4 > (14+€+40)q+12/0—2 > (14€)q+2/0+1 > | L],
where the last inequality holds by (17), a contradiction. Thus, |N1| = d — 1 and |N2| = 2, implying
|Ly| = d. Suppose that No = {v;,w}. Then every N; for 2 < ¢ < d contains the vertex w. Also
Nw)\{w} C L; € R¢, implying that v € Us is near-feasible with K, = {w}.

Assume there is another non-feasible vertex v' € Uy with K,y = {w'}, where v’ # w. Let d = d(v)
and d = d(v"). By the above arguments, we see w and w’ appear in d — 1 and d’ — 1 lines in R,
respectively. By (17), we have |[R°|+2 < (1+¢€)g+2/6+3 < (14+e+40)g+12/6 < (d—1)+(d' —1),
which shows that w and w’ appear in at least two lines of R¢ in common. This contradicts that P is
a projective plane. O

Claim 6.3. All non-feasible vertices are near-feasible.

Proof. Let v € V be any non-feasible Vertex We have d( ) > (1—¢€)q. By Claim 6.1, v has a neighbor
u with dr(u) = ¢+ 1 — ={LeL,:ue LNN(v)} We have
|U| <m and Urey Ny = N( ), where NL = LﬂN( ) We assert that for all but at most one L € U,
the size of N is at most 2,/q. Suppose on the contrary that there are Ly, Ly € U with |Nz,| > 2,/q+1
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and |Nr,| > 2,/qg + 1. Then all pairs (z,y) with € N, \{u} and y € Np,\{u} should appear in
distinct lines in £,. By (17), this shows that (14 ¢€)qg+2/0 +1 > |Ly| > (|Nr,| — 1)(|Nz,| — 1) > 4gq,
a contradiction.

Let L; be the line in U with the maximum Ny, and let K, = ULeu\{Ll}(NL\{u})- Then

N@\Ky € Ly € R® with [Ky| < > g, (INL] = 1) < (m—1) -2/ <2 (1%5 +2+ 2) Va1 < %G.
Therefore, v is near-feasible.

We express V' = {v1, ..., v, } such that U; = {v1,...,v.}, Uy = {vat1, ..., 0p} and Us = {vps1, ..., Up }
for 1 < a < b < n. Since all vertices in GG are feasible or near-feasible, by the discussion before Claim
6.1, we can conclude that each v; € V is associated with a unique line denoted by L; in P. Let
m: V < P be a function which maps v; <> L; for every i € [n]. Let M = (m;;) be the incidence
matrix of P with respect to .

Let s := |Us|. We point out that any v € Us either is in B or has d(v) < (1 +¢+4d)g/2+6/6. In
the latter case, we have the deficiency f(v) = ¢+ 1—d(v) > (1 —e—40)q/2 — 6/5. Hence by (9), we

have ) ) .
q+e€q+ *
< = <C
(1—c—40)g/2—6/6 =0 (I—c—40)g/2—6/3 =
where C* is a constant depending on € and § only. Let K be the union of K,’s over all v € V. By
Claims 6.2 and 6.3, we know that K, = () for v € Uy, K, = {w} for v € Uz and |K,| < 5,/q/9 for
v € Us. Hence |K| <1+ s-5,/q/0 = O(,/q).

s <|B|+

Claim 6.4. M s symmetric.

Proof. We assert that if v; € A\K, then m;; = my; for all j € [n]. If m;; = 1, then as v; € A, we
have v; € L; = N(v;) € R. Since v; ¢ K, we see v; € N(vj)\K C N(v;)\K,, € Lj, which shows
that mj; = 1 = m;;. Now we observe that as v; € A, the ¢’th column and the 7’th row of M have
exactly ¢ + 1 many l-entries, and all these 1-entries are in the symmetric positions. This shows that
the 7’th column and the ¢’th row are symmetric, proving the assertion. Since |A\K| > |A| — |K| >
(¢* —eq—2/6) — O(,/q) > ¢* — ¢ + 3, by Lemma 2.4, the whole matrix M is symmetric. O

Hence we see from (2) that the above function 7 : V <> P is a polarity of the projective plane P.
Let H be the polarity graph of w. For any k x ¢ matrices X = (z;;) and Y = (y;;), we say X is at
most Y if x;; < y;; for all 4, j and we express this by & < Y.

Now we are finishing the proof of Theorem 3.2 by showing that G is a subgraph of H. Let A = (a;;)
be the adjacent matrix of the graph G. It suffices to shows that A < M. We call these (i, j)-entries
with a;; = 1 and m;; = 0 problematic. Since both A and M are 0/1 matrices, it is equivalent for us
to show that there is no problematic entries.

For every v; € Uy, as it is feasible, we see that N(v;) C L; and thus the i’th row of A is at most
the ’th row of M. Since both A and M are symmetric, the i’th column of A is also at most the ¢’th
column of M, whenever v; € Uy. Now consider vertices v; € Us. By Claim 6.2, N (v;)\{w} C L;, where
w = vy is fixed. Consider a;; = 1 for possible j which is not . Then we have v; € N(v;)\{w} C L;.
This shows that the i’th row of A is at most the i’th row of M, except the (7, ¢)-entry. By symmetry,
we see that for all v; € Us, the ¢’th column of A is at most the i’th column of M, except the
possible (¢,7)-entry. We also know w is feasible or near-feasible. So |K,| < 5,/¢/0 and the number
of problematic (¢, 7)-entries is clearly at most |K,| < 5,/q/6. This further shows that the number of
problematic (7,5)- or (j,4)-entries for all v; € Us is at most 10,/q/0. Note that |Uz| = s is at most a
constant C* depending on only € and §. Putting all the above together, we see that the number of
problematic (i, j)-entries for 4,j € [n] is at most 10,/g/6 + s> = O(,/q).

Let Ep be the set of v;v; for all problematic (i, j)-entries. It is easy to see that Eq = E(G)\E(H)
and |Eyg| = O(\/q). Suppose that there is some edge say e = vjv; € Ey. By Lemma 2.8, H U {e}
contains at least ¢ — 1 copies of Cy, all of which contain the edge e and are edge-disjoint otherwise.
Hence in order to turn H U {e} into a subgraph of G containing e (which is Cy-free), one needs to
delete at least ¢ — 1 edges in H U {e}. On the other hand, since H is a polarity graph, we have
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e(H) < 3q(q+1)? and |E(H)\E(G)| — |Eo| = e(H) — e(G) < 3eg. So one can delete |E(H)\E(G)| <
%eq + |Ey| < %eq + O(y/q) < q— 1 edges to turn H U {e} into a subgraph of G while preserving the
edge e. This is a contradiction. Therefore, Ey = () and G is a subgraph of H.

It only remains to show that the polarity graph H is unique. Recall that the projective plane P
containing R has been shown to be unique. So it is equivalent to show that the polarity 7 is unique.
Suppose for a contradiction that there exists another polarity @’ : V < P, where 7’ : v; < Ly for
some permutation o on [n]. Let M’ = (mj;) be the incidence matrix of P with respect to «’. By the
same proof as above, we can deduce that A < M’. By (11), we see that any vertex v; € V has degree
at least (1 —€)g > 2. Choose any pair {z;,y;} C N(v;). Since the i’th row of A is at most the ’th
row of M', we see {x;,y;} € N(v;) C L,y € P. Also we have {z;,y;} € N(v;) € L; € P. Since P is
a projective plane, it is clear that L,; = L; for all i € [n]. This shows that 7 = ' and indeed the
polarity graph H is unique. The proof of Theorem 3.2 (and thus Theorem 1.2) is completed. |

We remark that it would suffice to choose ¢. = % in the statement of Theorem 3.2.

7 Turan numbers

In this section, we discuss the consequences of Theorem 1.2 on Turan numbers. First, let us restate
and prove Corollary 1.3. Recall the definition of A(g).

Corollary 7.1. Let q be even. If A(q) > %q(q +1)% - %q—l— o(q), then ex(¢®> +q+1,Cy) = Mq), where
the equality holds only for polarity graphs of order q with X(q) edges; otherwise, ex(q®> + q +1,Cy4) <
%q(q +1)2 - %q +0(q). In particular, ex(¢®> + ¢+ 1,C4) < max {)\(q), %q(q +1)2 - %q + o(q)}.

Proof. Let g be even and G be an extremal graph for ex(¢? + ¢ + 1,Cy). First suppose that A(q) >
Sa(g+1)? — Lg+o(g). As e(G) > A(q) > 3q(qg+ 1) — 1q+ o(g), by Theorem 1.2, there exists a
polarity graph H of order ¢ containing G as a subgraph. Then we have A\(q) < e(G) < e(H) < A(q),
which implies that G = H must be a polarity graph of order ¢ with A(q) edges. Now assume A\(q) <
2q(g+1)? — 1g+o0(q). By Theorem 1.2, it is easy to conclude that e(G) < 3q(q+1)> —2g+o(q). O

A quick inference of this corollary is that: For all even integers ¢ such that there is no projective
planes of order ¢, it holds that

1 1
ex(¢® +q+1,Cy) < Sala+ 1)? — 5@+ 0(q)-

We point out that by Theorem 2.3, there are infinitely many such integers ¢, including all integers
q = 2 mod 4 which cannot be expressed as a sum of two square numbers.
Another inference can be stated related to the existence of orthogonal polarity graphs of order q.

Corollary 7.2. Let q be a large even integer. If there exists an orthogonal polarity graph of order q,
then ex(q® +q+1,Cy) = %q(q + 1)2; otherwise, we have ex(q®> + ¢+ 1,Cy) < %q(q +1)2 - % q and
in addition if q is not a square number, then ex(¢®> + q+1,Cy) < %q(q +1)2 - %q +0(q).

Proof. By Proposition 2.6, any polarity graph of order ¢ has %q(q +1)2 - %m\/a edges for some
integer m > 0. The first assertion follows by Theorem 1.1. Now we may assume that m > 1 for any
polarity graph of order ¢ and thus A(q) < %q(q +1)2 — %\/(_] By Corollary 1.3, ex(¢®> + ¢+ 1,C4) <
max {)\(q), %q(q +1)2 - %q +o(q)} < %q(q—i— 1)2— %\/6 In addition, if ¢ is not a square number, then
this implies that there is no polarity graphs of order ¢ and the conclusion follows easily. ]

We conclude this section with an explicit lower bound of ex(n, Cy) for later use.

Proposition 7.3. For any sufficiently large n, there exists some prime number p with \/n —n%2625 —

1 <p < (=14 +4n —3) such that ex(n,Cy) > ex(p® +p+1,Cy) > $(n'5 — 301265 4 ).

Proof. Let x = %(—1 + v4n — 3). As n is sufficiently large, by Theorem 2.13, there exists a prime
number p € [z — 2%%%° 2]. Son =2+ 2+ 1> p?> +p+ 1, where p > x — 2052 > /n — n0262 _ 1,
By Theorem 1.1, we derive ex(n,Cy) > ex(p? + p+1,C4) = ip(p + 1)2 > 2(n5 — 3p126% +p). O
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8 Supersaturation: one additional edge

8.1 Proof of Theorem 1.5
We devote this subsection to the proofs of Theorem 1.5 and Corollary 1.6.

Proof of Theorem 1.5. Let G be any graph on ¢ + ¢+ 1 vertices with e(G) = %q(q +1)2 41 edges
where ¢ > 10'? is an even integer. Our goal is to show that either G has at least 2¢g — 3 copies of Cy,
or (G is obtained from an orthogonal polarity graph of order ¢ by adding an edge. In the latter case,
by Lemma 2.8, we see that G has ¢ — 1,q or ¢ + 1 copies of Cy.

By #Cy, we denote the number of copies of C4 in G. For v € V := V(G), let ¢(v) be the number
of copies of C4 containing v. In the following, we assume that

#Cy <2g—4 and Z c(v) =4-#Cy < 8. (18)
veV

We say a pair {u,v} C V is opposite if d(u,v) > 2. The deficiency f(v) is defined by f(v) =
max{q + 1 — d(v),0}. So f(v) + d(v) > g+ 1 holds for every v € V.

Recall the definitions of sets UP and P,. For A C V, let UP N A be the set of uncovered pairs
{u,v} C A of G and let P, N A be the set of 2-paths of G with both endpoints in A.

Claim 8.1. For any A CV, we have 2 - #Cy > |Po N A|+|UPNA| — (I‘g‘).
Proof. For any subset A C V, it holds that

2 #Cy > > (d(“é ”)> > 3 (d(u,v) — 1),

covered pairs {u,v}CA covered pairs {u,v}CA

the righthand side of which equals [P, N A|+ |[UP N A| — (“3'). O

Similarly as in earlier sections, we let S; be the set of all vertices of degree 7 in G and let S = U?_,S;.
For v € V, let dy(v) be the number of vertices u € V' with d(u,v) = 0.

Claim 8.2. Ewvery vertex v has c(v) > (d(v) —q— 1)g — f(N(v)) + do(v). If d(v) > q+ 1 and
N(@w)n S =0, then c(v) > 1.

Proof. By counting the 2-paths with the fixed endpoint v, we get

Yo dvu)= > (dw) -1 > > (¢— f(w) =dv)g— f(N(v)). (19)

ueV\{v} weN (v) weN (v)

Then we see that c(v) =3_,c (1) (d(g’”)) is at least
Y (dlv,u) = 1) +do(v) = (d(v) = ¢ = 1)g — fF(N(v)) + do(v).
ueV\{v}

Now consider v € V with d(v) > ¢+ 1 and N(v) NS = 0. Clearly f(N(v)) =0. If d(v) > g+ 2, then
the above inequality immediately implies that ¢(v) > ¢ > 1. So let d(v) = ¢ + 1. Suppose that v is
not contained in any Cy. If dy(v) > 1, then the above inequality again implies that c¢(v) > dp(v) > 1.
So do(v) = 0, that is, every vertex in V\{v} has exactly one common neighbor with v. However this
is impossible, as d(v) = ¢ + 1 is odd and thus G[N(v)] can not consist of a perfect matching. O

We now show that the maximum degree of G is at most ¢ + 3. Let V = {v1, ..., v, }.

Claim 8.3. A(G) <q+3.
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Proof. Suppose for a contradiction that there exists some v; € V(G) with d(vy) = ¢ + k for some
4 <k <¢* Let a; = [N(v1) N N(v;)| for 2 < i <n. There are (%) copies of Cy with the opposite pair

{v1,v;}, so we have
n n
a;
20 —4>c(v) =) <2> > (a; — 1),

i=2 i=2
implying that > 7' 5 a; < q> +3q — 4. Also we have
n n
> (d(vi) — a;) = 2¢(G) Zaz— @+lg-D)+ Q2P +q+2-k—> a),
i=2 =2

where clearly 2¢> +q+2 — k — Yorgai> —(¢%> + q). By Lemma 2.14, we can deduce that

[P0 (VAN (1) [ =) <d(w)2_ ai) > (¢* +9) (q 5 1> +Q2¢ +q+2-k=) a)g—1).

=2 =2

By Claim 8.1, we have 2 - #Cy > |[Po N (VAN (v1)) | — ("ﬂé(vl)). This further implies that

2-#Cy > " —2¢° +2¢— (¢ - 1) Za,—05k2+k(q —q+15)—-2.
=2

When k£ =4 and > ,a; = q®> + 3q — 4, the righthand side of this inequality achieves its minimum
value, which is 5g — 8 > 4¢ — 8. This is a contradiction to (18). O

Using Claim 8.3, we see that the deficiency of V can be expressed as
FV) = (g + 1)n+ |Sgr2| + 2[Sq+3] — 2e(G) = ¢ — 1 + [Sgs2| + 2|Sg+3]- (20)
Claim 8.4. [S;12 U S;43] < 3,/7.

Proof. We show that any two vertices say v, v2 in Sqy2USq+3 with ¢(v1), ¢(v2) < 0.2¢ form an opposite
pair. Suppose for a contradiction that d(vy,ve) < 1. Let d(v1) = ¢+2+46; and d(v2) = g+2+ 02 where
91,02 € {0,1}. Let a; = |N(v;) N (N(v1) U N(vy))] for all 3 < i < n. Then there are at least a; — 2
copies of Cy with the opposite pair {v;,v1} or {v;,v2} in G. First we assume that vy, vy have exactly
one common neighbor say vs. In this case, if v; € N(v3)\{v1,v2}, then there are at least a; — 1 copies
of Cy with the opposite pair {v;, v1} or {v;,v2}. Thus 0.4 > c(v1) +c(v2) > D 7 5(a; —2) +d(vs) —
implying that > ' 5 a; + d(vs) < 2¢* + 2.4¢. Hence we have
n

D (dvi) — a;) = 2e(G) = d(v1) — d(v2) —d(vs) = Y ai = (*+¢—2)(¢—1) + X
=4

=4

where X =2¢*> 429 —4— 6, — 62 — > iy a; — d(v3) > —0.4g — 6 > —(¢> + ¢ — 2). By Claim 8.1 and
Lemma 2.14, if we write V' = V\(IN(v1) U N(v3)), then one can derive

V| Zn d(v;) — a; @ —q—2-06 -0
2‘ > P /_ | > 1 7 _
Fe= oV <2>_i4< 2 2
> (2 qg—1 q2—q—2 _ 2
>(¢“+q—2) 5 —(0.4qg+6)(g—1) — 5 =0.1¢° —4.1¢+ 1 > 4q — 8,

a contradiction to (18). Now we can assume that v1,vy have no common neighbor. By similar
arguments, we have Y ,(a; —2) < 0.4¢ and thus > 5 a; < 2¢* 4+ 2.4¢g — 2. This shows that

n

> (d(v) = ai) = 2¢(G) — d(vy Zaz > (¢* +¢—1)(g —1) + (~14g - 3),

=3
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where —1.4¢ — 3 > —(¢? + ¢ — 1). Using Claim 8.1 and Lemma 2.14 again, we have

! n A S
2-#C4Z\P2mv'\—<“;’)zz<d<“2)2 az>_<q 030 52>

1=3

2
> (q2+q—1)<q;1> — (14g+3)(g—1) — (q _2q_3> —0.6¢2 — 2.6 — 4 > 4q — 8,
a contradiction. This shows that vy, vo form an opposite pair.

If there are more than /8¢ vertices u € Sgyo U Sgqs with c(u) < 0.2¢, then we have at least
(‘/S_gﬂ) > 4q opposite pairs and thus 2¢ copies of Cy, a contradiction. Hence there are at most /8¢
vertices u € Sy12US;43 with c(u) < 0.2¢. Also by (18), there are at most 8¢/0.2¢ = 40 vertices w € V'
with ¢(w) > 0.2¢. So in total we have |Sg42 U Syy3| < /8¢ + 40 < 3,/q, finishing the proof. O

Since |Sq42USg43| < 34/g, by (20) we have |S| < f(V) = ¢—14S 12[4+2[S¢43| < ¢+6,/g—1. Then
|Sq1| = n—|S|=[Sg4+2USg43| > ¢*—9/q. If|S| < g—9, there are at least |Sq41]|—q|S| > 8¢ vertices in
Sq¢+1 with no neighbors in S, by Claim 8.2 each of which is contained in at least one Cy and thus there
are at least 2q copies of Cy in G, a contradiction. Therefore we have ¢—8 < |S| < f(V) < ¢+6,/q—1.
Furthermore, for any set T' C V, it follows ¢ + 6,/g — 1 > f(V) > f(T) + (|S| = [SNT|) > f(T) -
|ISNT|+ (¢ — 8), implying that

f(I)<|SNT|+6y/q+7. (21)

We now improve Claim 8.4 to the following.
Claim 8.5. |Sg42 U Sy43| < 5.

Proof. Suppose on the contrary that there are six vertices vy, v2,v3,v4, V5,6 € Sq2 U Sg43. For any
1 <i<j <6, weknow d(v;,v;) < 2,/q (as otherwise there are at least 2¢ copies of Cy in G). For any

J € (6], by (19) and (21) we see that » ;" - (d(vfé’vi)) is at least

n

> (v 0) =)= Y (d(yjvi) = 1) =10yg > (¢+2)q = F(N(15)) = (n—1) = 10/g
=7 iel\(7)
2q = (I[N (v;) N S|+ 6y/g+7) =10y/g = ¢ = 16y/q = 7~ [N(v;) N 5.

Since each Cy contains two opposite pairs, there are at least %2?21 Yoiz(d(vj,v) — 1) copies of Cy
containing opposite pairs {v;,v;} for 1 < j <6 and 7 <14 < n. This gives

6
49>
j:

Thus 2?21 IN(vj) N S| > 2q — 96,/q — 42. By the inclusion-exclusion principle,

n

6
(d(vj,v:) — 1) > 6 —96,/7 — 42— > [N(v;) N S|.
7 j=1

S| = [Woy (N(uj) N S)| = D IN(u) NSI= Y [N(v) NN (v)| = 2g — 126,/q — 42,
1<5<6 1<i<j<6

where last inequality holds since d(v;,v;) < 2,/q for 1 <14 < j < 6. Since |S| < ¢+ 6,/g— 1 and ¢ is
large, this is a contradiction and finishes the proof of Claim 8.5. U

Equipped with Claim 8.5, the discussion after Claim 8.4 can easily deduce that ¢ — 8 < |S| <
f(V)<gqg+9andforany T CV, f(T) < |SNT|+17. In particular, any v € V has f(v) < 18 and
dlv) >q+1— f(v) >q—17.

Claim 8.6. For any v € V, either [N(v) N S| <20 or |[N(v)NS| > q—28.
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Proof. Let N(v)\S = {vi,...,vt}. Sot =d(v) — |N(v) N S|. Fori € [t], v; € Sg41 U Sgq2 U Syq3 and
we let N; = N(v;)\{v}. If N;, N; have a common vertex z, then vv;zvjv forms a distinct Cy. Since G
has less than 2q copies of Cy, we derive that

t t
U Nl =D INi| —2¢ > gt — 2.
i=1 i=1

Let B; = N; NS and C; be the set of vertices x € N; with ¢(x) = 0. Then C;’s are disjoint over i € [t];
indeed, if x € C; N C}, then vv;zv;v forms a Cy, a contradiction. Thus we have

Y BincCil=| | Bnc) <] |J Bil<ISI<q+09.

1<i<t 1<i<t 1<i<t

We now claim that every x € C;\B; has at least one neighbor in S\N(v). By Claim 8.2, since
d(xz) > q+ 1 and c¢(z) = 0, we see that = has at least one neighbor say y € S. If y € N(v) N S, then
vv;zyv is a Cy, a contradiction. This proves the claim. Also it is clear that every vertex in S\N(v)
has at most one neighbor in C;\B;. Hence |C;\B;| < |S\N(v)| < g+ 9—|SN N(v)|. Totally, we have

U Gil=1 U @\B)+| |J BinC) <tlg+9—|SAN@)|) +q+9.

1<i<t 1<i<t 1<i<t

By definitions of Cj, all vertices in Uj<i<¢(IV;\C;j) are contained in some Cy. Putting the above
inequalities together with (18), we have

8¢ |J W\C)I =1 |J Nil=| |J Gil 2 t(IN(w) NS =9) =3¢ —9

1<i<t 1<i<t 1<i<t

= (d(v) = [N(v) N S]) - (IN(v) N S| = 9) — 3¢ = 9.

Note that d(v) > ¢—17 and q is large. Solving the above inequality, it is easy to infer that |N(v)NS| <
20 or [N(v) N S| > q— 28. O

We point out that there is at most one vertex (say z if it exists) in V with |[N(z) N S| > ¢ — 28.
Indeed, if there are z1,zo with |[N(z;) S| > g — 28 for i € [2], as |S| < g+ 9, we see z1, 29 have at
least ¢ — 65 common neighbors in .S, which would give at least (q_265) > 2q copies of Cy. Hence, any
vertex in V'\{z} has at most 20 neighbors in S.

Let ¢/(v) denote the number of vertices x € N (v) with ¢(z) > 1. We also let W = Sy 19U S, 13U{z}.
So |[W| < 6.

Claim 8.7. If {u,v} is an opposite pair with u € V\W and v € V\{z}, then c¢(u)+19-¢'(v) > q—740.

Proof. We have |SNN(u)| <20 and [SNN(v)| <20. Let d(u) =g+1—a. Then 0 < a <18, f(u) =a
and f(N(u)) <[SNN(u)|+17 < 37. Let V, be the set of vertices z € V with d(x,u) = 0. By Claim
8.2, we get |Vy,| = do(u) < c(u) +ag+ f(N(u)) < c(u) + ag + 37.

Let N(v) = AU B, where A consists of vertices z with ¢(x) = 0 and B consists of vertices y with
¢(y) > 1. Further we let Ny = N(v)NS, No = N(v)NNu], N3 = {z € N(v)\(N1UN2) : |[N(z)NV,| <
a} and Ny = N(v)\(N1UN2UN3). By definition, we know |N;| < 20, No C B (as {u, v} is an opposite
pair) and N3 C Sq+1 U Sq+2 U Sq+3.

We claim N3 C B. Take any x € N3. Any vertex in N(z)\V, has at least one neighbor in
N (u), while v € N(x)\V,, has at least two neighbors in N(u). Thus there are at least |N(x)\V,|+1 =
d(xz)—|N(x)NV,|+1 > (¢+1)—a+1 edges wy with w € N(x) and y € N(u). Since |N(u)| = g+1—a,
there is a vertex y € N(u) with at least two neighbors in N(x). As x ¢ N(u), we see y # = and thus
find a C4 containing z. This shows N3 C B.
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Note that v ¢ V,,. Since every two vertices in A have no common neighbor except v, we deduce that
the sets N (z)NV,, are disjoint over all z € NyNA. For any x € NyNA, we also have [N(x)NV,| > a+1.

Since a > 0, [NyN A| < LL;HI < C(u):%w. This shows

¢0) = 1Bl = d(w) ~ 1A 2 (= 17) — M|~ [Ny ) > 20023 gy

As 0 < a <18, we have c(u)+19-¢ (v) > c(u)+ (a+1)-¢ (v) > ¢—37(a+2) > q¢— 740, as desired. O
Now we choose the integer ¢ = 900 such that 0.014q — (g) -2,/q > 8q.

Claim 8.8. If there are £ opposite pairs {u;,v;} for i € [€] such that u;,v; € VAW and all v; are
distinct, then there is some u; with c(u;) > 0.8q.

Proof. Suppose c(u;) < 0.8¢ for all i € [¢]. For each i € [¢], as the pair {u;,v;} satisfies the conditions
of Claim 8.7, we have c(u;) + 19 - ¢(v;) > ¢ — 740, which implies that ¢/(v;) > 0.01g. We know that
every two vertices v;,v; have at most 2,/q common neighbors. Using inclusion-exclusion, the number
of vertices in U;c[qV (v;) which lie in a copy of Cy is at least 0.014q — (g) - 2,/q > 8q, a contradiction
to (18). O

The next claim shows that deleting just a constant number of edges will result in a subgraph which
contains a bounded number of 4-cycles.

Claim 8.9. There exists an edge set E* C E(G) with |E*| < 105 such that G' = G — E* has at most
0.1q copies of Cy.

Proof. Let A ={v eV :c(v) > 0.8¢q}, and let X = AU W. Then we have that | X| < Oé—gq + 6 = 16.

Let E* = E(G[X]). Then |E*| < (125) = 105. We next show that E* is the edge set we wanted.
Suppose that G’ = G — E* has more than 0.1q copies of Cy. Let the set of 4-cycles in G’ be C.
Suppose first that there exists a vertex x € X contained in more than 0.001¢g copies of Cy in C. Since
each copy of them offers an opposite pair (u;, v;) with u;, v; ¢ X and these opposite pairs span at least
v/0.001q > ¢ vertices in V\ X, we may choose £ opposite pairs among them say {u;,v;} for i € [¢] such
that all v; are distinct. By Claim 8.9, there is a vertex u € V\X with c¢(u) > 0.8¢ which contradicts
the definition of X. Hence we may assume that every x € X is contained in at most 0.001¢g copies
of Cy in C. Since | X| < 15, there are at least 0.085¢ copies of Cy in C disjoint with X. These Cy’s
span at least /8 x 0.085¢ > ¢ vertices in V\X. Using Claim 8.9 again, we can easily find a vertex
u € V\X with ¢(u) > 0.8¢, which contradicts the definition of X. O

By Claim 8.9, we know that e(G’") > e(G) — 105 and G’ has at most 0.1¢q copies of Cy. We further
define a graph G” to be obtained from G’ by deleting one edge from each 4-cycle of G’. Thus we have

e(G") > e(G') — 0.1 > q(q + 1)*/2 — 0.1g — 104.

It is clear that G” is Cy-free. By our stability theorem (Theorem 3.1), as ¢ = 0.21¢ holds when ¢ is
even with ¢ > 10'2, there exists a unique polarity graph H of order ¢ such that G” C H.

We claim that G’ C H. Suppose for a contradiction that G’ € H. Then there exists an edge
e € E(G")\E(G") such that e ¢ E(H). By Lemma 2.8, there are at least ¢ — 1 copies of Cy in
H + e, any two of which share e as their unique common edge. We note that e(H) < q¢(q + 1)2/2 and
G" + e C H +e. Since G” + e C G’ contains at most 0.1q copies of Cy4, while preserving the edge e
one needs to delete at least 0.9¢ — 1 edges from H + e to derive G” + e. Hence

(G =e(G"+e)—1<e(H+e)—(09g—1)—1<q(qg+1)%/2—-0.9q¢+ 1,

which contradicts the above lower bound on e(G"”). This proves that G' C H.
Suppose there are at least three edges from E* which are not in H, say e, ¢’,e¢” € E*\E(H). By
Lemma 2.8, there are 3(q — 1) distinct copies of Cy in H + {e,e’,e”}, ¢ — 1 copies of which are in
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H +{e}, ¢—1 copies of which in H +{e’} and ¢ — 1 copies of which in H 4 {e”}. We see each of edges
in H can appear in at most three of these 3(¢—1) cycles. We have G'+{e, ¢/, e} C H+{e,e,e”} and
e(H+{e,e,e"})—e(G' +{e,e,e"}) < (e(G)+2)— (e(G')+3) < |E*|—1 < 104. So G'+{e, e, e’} can
be obtained from H + {e,¢’,€”} by deleting at most 104 edges. This shows that G D G’ + {e,¢’,€"}
has at least 3(¢ — 1) — 312 > 2¢ copies of C4, a contradiction to (18).

Therefore we have |[E*\E(H)| < 2. Also we have |E(GNH)|+ |E*\E(H)| = |E(G)| > |[E(H)|+1.
This shows that 1 < |[E*\E(H)| < 2 and by Proposition 2.6, e(H) = 1q(q + 1)> and thus H is
orthogonal. If |E*\E(H)| = 1, then we can derive from the above that G is a graph obtained from H
by adding one new edge, as desired. Hence we have |[E*\E(H)| =2 and e(GN H) = e(H) — 1. That
is, G is obtained from H by deleting an edge ¢’ and adding two new edges e, ¢’. First suppose that
both e, e’ are new edges between vertices of degree ¢q. If e, e’ are independent, then by Lemma 2.8,
H + {e, €'} has exactly 2(q — 1) copies of Cy and by Proposition 2.9, any edge in H is contained in at
most one copy of these 4-cycles. This shows that G contains 2¢ — 2 or 2¢ — 3 copies of Cy. Now let
e, e’ share an endpoint. In this case, we can derive that H + {e, e’} has exactly 2¢ — 1 copies of Cy
and then G contains at least 2q — 3 copies of Cy4. It remains to consider the case that at least one of
the endpoints of e and ¢’ has degree ¢ + 1. By Lemma 2.8, H + {e, €’} has at least 2g — 1 copies of
C}4, at most two of which contain the edge ¢”. This proves that G contains at least 2q — 3 copies of
Cy, finishing the proof of Theorem 1.5. |

We are ready to prove Corollary 1.6.

Proof of Corollary 1.6. Let ¢ = 2* where k& > 40. Since ¢ > 2% > 10'2, by Theorem 1.1 and
Theorem 1.5, we can immediately get the result. |

8.2 Strengthening Theorem 1.5

Now we show that using roughly the same proof, Theorem 1.5 can be strengthened as the following.
Clearly this implies Theorem 1.7.

Theorem 8.1. Let q be a large even integer and G be a graph on ¢ +q+ 1 vertices with %q(q—i— 1)2+1
edges. Then either G has at least ¢°/8 /30 copies of Cy, or there exists an orthogonal polarity graph H
of order q such that |E(G)\E(H)| = s and |E(H)\E(G)| = s — 1 for some 1 < s < ¢"/%/30. In the
latter case, the number of copies of Cy in G is between sq — s* and sq + s°.

Proof. We will prove this by following the proof of Theorem 1.5 closely. It should be mentioned
that most claims there can be generalized in this setting easily and thus, in these cases, we often
only mention the modified statements without providing many details. For other cases where extra
arguments are needed, we give self-contained proofs.

Throughout this proof, let t = ql/® /30 and similarly, we may assume that

#Cy < tq and Z c(v) =4-#Cy < 4tq. (22)
veV

We retain Claim 8.1 and Claim 8.2 as they are. By adjusting the proof of Claim 8.3, one can derive
A(G) < g+ 2+ t. Indeed, suppose on the contrary that there is a vertex vy € V' with d(v1) = ¢+ k
for some t + 3 < k < ¢%. Following the proof therein, we can get Yorsa; < ¢®+ (t +1)q and

n
2-#Cy > q° = 20" + 20— (q— 1) > _ a; — 0.5k> + k(¢* — g+ 1.5) — 2.
=2

So we see that when k =¢+3 and > ,a; = ¢ + (t +1)g, the above inequality achieves its minimum
q? — 0.5t — 1.5t — 2, which is a contradiction to (22) for large ¢. This proves A(G) < g+ 2+t. We
then see that the deficiency of V is

t

f(V)=(g+1n+ Z(k + 1)[Sgro4k] —26(G) =g —1+ Z(k + 1)[Sqt2+k]- (23)
k=0 k=0
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Let §" = Sg42 U -+ U Sgya4¢. By a similar proof as Claim 8.4, one can show |S’| < 3,/tq. Following
the deductions after Claim 8.4, one can conclude that ¢ — 4t < |S| < ¢ — 1+ 3(¢t + 1)y/tq and

for any T CV, f(T) < |SNT|+3(t+ 1)y/tq+ 4t — 1. (24)

We also can derive the following analogue of Claim 8.5.

Claim A. >, _o(k +1)[Syrok| < 2t +2.

Proof. For any u,v € V, we have d(u,v) < 2/tq; as otherwise there are at least 2tq copies of Cy, a
contradiction to (22). Choose vy, ...,vs € S’ for s = min{4t, |S’|}. By the inclusion-exclusion principle,

s s
521U ns)> 3 INe)nsi- X INenN@) = Y INw)ns]-2(3) v
Jj=1 1<j<s 1<i<j<s 1<j<s
which implies that >y ;< [N(vj) N S| < ¢+ (3t + 52 4+ 3)y/fq — 1. Since each Cy4 has two opposite

pairs, we see there are at least 1 2;21 D (d(vfé’vi)) copies of Cy containing opposite pairs {vj,v;}
for 1 <j<sand s+1<i<n. Foranyje€ [s], by (19) and (24) we derive

Z (d(?)jé Uz)> > Z (d(vj,v;) —1) > Z (d(vj,v;) — 1) —2(s — 1)y/tq

=t i=st1 iefn\ {5}
>(d(v;) —q—1)q = f(N(vy)) = 2(s = 1)v/tqg > (d(vj) — ¢ — 1)g — [N(v;) N S| = X',

where X' = (3t + 2s + 1)\/tq + 4t — 1. Putting the above together, we have that

S n d ’[)"’[)Z‘ S S
2tq >2#Cy > Z Z < ( j2 )> > Z(d(vj) —q—1)g— Z IN(v;) N S| —sX’
j=1i=s+1 j=1 j=1
t
>q ) (k+ 1) Sqrapr N {ve, v} = (g + (3t + 8% + 3)vEg — 1) — sX,
k=0

Since s/4 <t < ¢*/#/30 and ¢ is large, we can derive 35 _o(k +1)[Sy04x N {v1, ..., vs}| < 2t+2. This
shows that s < 2¢+2 and by the choice of s, we have S" = {vy, ..., vs}. Therefore 3t _(k+1)|S ro1k| <
2t + 2, completing the proof of Claim A. O

Using Claim A and (23), we can easily deduce that ¢ — 4t < |S| < f(V) < ¢+ 2t + 1 and for
any T C V, f(T) < |SNT|+ 6t + 1. In particular, for any v € V, we have f(v) < 6t + 2 and
d(v) >q+1—-f(v) >q—06t—1.

Following the arguments in the proof of Claim 8.6, we can show that for any v € V, either
IN(v)N S| < T7t+2or |[N(v)NS| > q— 11t — 2. Again we note that there is at most one vertex
(denoted by z if it exists) in V' with |[N(z) NS| > ¢ — 11t — 2. Let

W =5 U{z}.

Claim A shows |W| < 2t 4+ 3. Then one can generalize Claim 8.7 into the following: if {u,v} is an
opposite pair with u € V\W and v € V\{z}, then c(u)+(6t+3)-c’ (v) > q—(13t+3)(6t+4) > q—200t>.

Choose £ = ¢'/*/2 such that £q/(100t) — (ﬁ) - 24/tq > 4tq holds for large ¢q. Then Claim 8.8 can be
extended as following.

Claim B. If there are ¢ opposite pairs {u;,v;} for i € [{] such that u;,v; € V\W and all v; are distinct,
then there is some u; with ¢(u;) > 0.8¢.

Let A={veV:c(v) >0.8¢} and X = AUW. So |X| < 4tq/(0.8¢) + 2t + 3 = 7t + 3. One can
easily obtain the following analogue of Claim 8.9.
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Claim C. There exists an edge set E* C E(G) with |E*| < 45t such that G’ = G — E* has at most
0.1¢ copies of Cy.

Having the above, the arguments after Claim 8.9 can be directly converted to show that there
exists an orthogonal polarity graph H of order ¢ such that G’ C H. Let |[E(G)\E(H)| = s. Then
|[E(H)\E(G)| = s—1and 1 < s < |[E(G)\E(G")| = |E*| < 45t%. By Lemma 2.8, there are at least
s(q — 1) copies of Cy in HU (E(G)\E(H)) such that each edge in E(H)\E(G) can appear in at most
s of them. This shows that G has at least s(¢ — 1) — (s — 1)s = sq — s? copies of Cy. If s > ¢+ 1, then
since s < 45t?, G has at least tq copies of Cy, contradicting our assumption. Hence we have 1 < s < t.

It remains to show that the number L of copies of Cy in G is at most sq+s2. Let Cy be the collection
of all Cy’s in G using exactly one edge in E(G)\FE(H) and C; be the collection of the remaining Cy’s
in G. By Lemma 2.8, we have |Cy| < s(¢ + 1). There are three types of Cy’s in Cy, namely using two
edges, three edges or four edges in E(G)\E(H). For each 4-cycle C in C;, we define one or two pairs
of edges in (E(G) N E(C))\E(H) as following. If C' has exactly two edges in E(G)\E(H), then we
take these two edges to form a pair. If C' has three edges in E(G)\E(H) which form a path of length
three, then we take the two non-incident edges to form a pair. Otherwise all four edges in C' are from
E(G)\E(H), then we take two pairs, each of which is formed by two non-incident edges of C. Let us
call all such pairs feasible. It is easy to verify that each feasible pair can be contained in at most two
4-cycles in C;. Thus we have |C1] < 2(3), implying that L = [Co| + [C1] < s(g+ 1)+ s(s — 1) = sq+ s*.
This completes the proof of Theorem 8.1. |

9 Supersaturation: the general case

In this section, we establish two supersaturation results - Theorems 9.1 and 9.2, which together imply
Theorem 1.8. We also give a proof of Proposition 1.9.

9.1 A generalization of Theorem 1.5

We now deduce a supersaturation result for a wider range on the number of edges from Theorem 8.1.
This is also optimal for infinitely many values ¢ (as powers of two).

Theorem 9.1. Let q be a large even integer and t be any integer such that 1 <t < q1/8/30. Let G be
a graph on ¢* + g+ 1 vertices with 1q(q+ 1) +t edges. Then either G has at least (t +1)g — (t +1)?
copies of Cy, or G is obtained from an orthogonal polarity graph of order q by adding t new edges. In
particular, G has at least t(q — 1) copies of Cy.

Proof. Suppose on the contrary that G has less than (t+1)g— (t+1)? copies of Cy. We denote G’ to be
any spanning subgraph of G with 3¢(g+1)2+1 edges. Thus G’ has less than (t+1)g—(t+1)% < ¢%/%/30
copies of C4. By Theorem 8.1, there exists an orthogonal polarity graph H of order ¢ such that
|[E(G'\E(H)| = s and |E(H)\E(G')| = s — 1 for some 1 < s <t.

Let |[E(G)\E(H)| = j. Then j —t = |[E(H)\E(G)| < |[E(H)\E(G")| = s — 1 < t, implying that
t < j <2t So G has at least j(¢ — 1) — (j — t)j copies of Cy. If j > ¢t + 1, then G has at least
(t+1)(g—1)— (t+ 1) copies of Cy, a contradiction. So j =t and G is obtained from H by adding ¢
new edges. By Lemma 2.8, G has at least t(q¢ — 1) edges. This finishes the proof of Theorem 9.1. [

9.2 A half-way bound

Theorem 9.2. Let q be a positive even integer. If G is a graph on ¢ +q+1 vertices with %q(q—i— 12+t
edges for t > 1, then G contains at least %(tq —2.5q — t) copies of Cy.

Proof. As earlier, we let #C}y be the number of copies of Cy in G, ¢(v) be the number of Cy containing
the vertex v, and S; be the set of vertices of degree ¢ in G. We may assume that #Cy < %tq — %q (as
otherwise we have the desired number of Cy’s).

Let V =V(G) = {v1,..., v}, where n = ¢*> + ¢ + 1.
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Claim 9.1. Let v; € V' be any vertex with d(v;) = q+ 2+ k for some k > 0. Then k < 4. Moreover,
if k=0 then c(v;) > t, and otherwise c(v;) > kq.

Proof. Without loss of generality, we consider vy with d(vy) = ¢+ 2+ k for k > 0. First suppose that
t>q+1. Wehave 3 ., d(v) =2¢(G) = (¢* + ¢+ 1)g + (¢° + 2t), where ¢* + 2t > —(¢* + ¢+ 1). By
Claim 8.1 and Lemma 2.14, we see 2 - #C} is at least

S <d(2”)> - <Z> 2(q2+q+1)<g> +q(q® +2t) — <q2+2q+1> =2tq— ¢ —q > tq.

veV

This implies #Cy > %tq, contradicting our assumption. Hence we may assume that ¢ < q.
Let P} be the set of 2-paths in G with none of its endpoints in N(v1). Since each Cy contains two
covered pairs, we see that 2 #C4 > > ¢, v\ N(u) (% d(u, )) + ¢(v1) is at least

> (d(uv) = 1) +c(vr) > |Py| - (”‘f””) + ().

{uv}CVAN(v1)

Let a; = |[N(v;) N N(v1)| — 1 for 2 < i < n. Then we have

Py = Enj (d(”i) L 1) and fja@- < fj <“" ; 1) < (o) <tq/2 < ¢*/2.

i=2 i=2 i=2
On the other hand, we can derive that

n n

> (d(vi) —ai —1) =(2¢(G) —d(v1)) = Y (ai +1) = (¢’ +a)(g — 1) + X.

=2 =2

Here X = ¢ +2t —2 — k‘ S ga; > q*+2t—2—k—c(v) > —(¢* + q), where the inequalities hold
because 1 <t < ¢, k < ¢> —2 and dorga; <c(v) < q?/2. Putting the above all together, by Lemma
2.14, we infer that tq — ¢ > 2 - #C} is at least

n—dv - 2 k-
Pl - ( o ”) +o(vr) 2(¢% + ) (q ) 1) Flg-1X - (q y 1) T (o)
>k(q* —q) — %(/ﬂ%rk) —c(v)(g—2)+2tg—q—2t+1.

Simplifying the above one can derive c¢(vy) > q_% (k(¢> —q) — 3(K* + k) +t(g—2)+1) and

1 1 1 1 kot
c(vy) — §tq > ﬁ<kz(q2 —q) — 5(1{:2 + k) — §tq2 +2t(g—1)+ 1) = gq(— 2).
Suppose # < k < ¢> — 2. Then %(k,t) = —%(q —2)2 < 0 and a_g( ) = —1 < 0. This implies

k2
#Cy — 3tq > c(v1) — 2tqg > min{g(4,q)/(q — 2),9(¢*> — 2,q)/(q — 2)} > 0, a contradiction. Therefore
we obtain that &k < £
If £k =0, then c(vl) (t(g—2)+1)/(q —2) > t, as desired. We also have

h(k,t)
q—2

c(v1) — kg > q_%(k:q— %(k2+k) +t(q—2)+1) =

Consider 1 < k < 4. Since %(k,t) =q—2>0and 8h(k t)=q—k—1 >0, wehave c(v)) — kq >
h(1,1)/(¢ — 2) > 0. This proves the claim. O
Let A(G) = ¢+ 2+ m. By Claim 9.1, we see that m < 1.

Claim 9.2. |Sq+2| < 2(] and Zznzl k|Sq+2+k| < 2t.
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Proof. By Claim 9.1, we see that if v € S;19, then c(v) > t. So 2tq > 4#Cy > t|Sy42|, implying
that [Sy12| < 2¢. For v € Sgio4p with 1 < k < m, by Claim 9.1 we have c(v) > kg. Then

m
2tq > 4#Cy > Y )1 kq - |Sq+o+4k|, which implies that > k[Sgpoyk| < 2t O
k=1

Now we are ready to complete the proof of Theorem 9.2. First let us estimate |UP|, i.e., the
number of uncovered pairs in G. Consider a vertex v € Sy 1, where the maximum degree of the
vertices in N(v) is at most ¢ + 1. We assert that v is contained in at least one uncovered pair.
Otherwise, as ¢ is even, the number e, of edges in G[N(v)] is at least ¢/2 4+ 1 and thus there are at
most (q+1)q—2e, < ¢® —2 vertices adjacent to N[v], which again forces an uncovered pair containing
v. For 1 <k <q¢+1,if v € Syy1_k and the maximum degree of the vertices in N(v) is at most ¢+ 1,
we can get at least

(n=1)= Y (du)-1)=(@+2q+1-k)— > d(u)>kq
ueN (v) uEN (v)

uncovered pairs containing v. If some vertex in N(v) has degree ¢ + 1 4+ ¢ for £ > 1, then the above
number of uncovered pairs containing v will decrease by £. Thus, by double-counting, we can get

q+1 m+1

UP| = 5 (|5q+1| + ZkQ|5q+1 k|l — Z Z k| N (u) ﬂSq+1+k|)
k=1 ueV k=1 (25)
q+1 m+1

(|5q+1| + Z kq|Sqr1-kl = Y kg +1+ k)|5q+1+k|)-
k=1

Next, we give a lower bound on |P,| — (3). Let S' = Sgi9 U+ U Sgio4m. We have

m+1 m+1
> dw) =20(G) = D (a+ 1+ R)ISqarerl = (n— D ISgral)a+ V-
veV\S’ k=1 k=1

m—+

Here Y = 2t+¢° - Z (L+E)|Sqgr14k] > 2t+¢% —2[Sgs2| =3 Z k|Sqr21k| > ¢* —4g—6t > —(n—|9')),
k=

where the second mequahty holds because of Claim 9.2. By Lemma 2.14,

d(v) n ) = q P +q+1
> <2>—<2> Z(q +Q+1_Z|Sq+1+k|) o) T4V — 5
veV\ S/ k=1
m—+1

=2tq—q" —q— Y ((g) +qk+Q)|Sq+1+k|-

k=1
Recall that P, is the set of all 2-paths in G. We have

i ()= (3) e 3 () ()

veV\S’

(26)
m+1
> 2t — " —q+ 5 D Kk +1)[Sparial.
k=1
Let M = 2tq — ¢*> — ¢ + 3|Sq+1|- Combining (25) and (26), by Claim 8.1 we derive that
n q+1
2#Cy >|Po| + [UP| - <2> M — —( Z k|Sqr1+kl — Zk|5q+1 k|) o)
27

=M~ 4 (26(G) ~ (g + 1)n) = tg - §<q2 0= 18411])
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Finally, by Claim 9.2 we have

g+1 m
0>+ ¢ = |Sg1| = Z |Sqr1-k] + [Sg2| + Z |Sqt2+kl — 1
k=1 k=1
m—+1 m
< > (D) = (@+148) - ISqrrerl + 2Sral +2 D klSqrain — 1
k=—(q+1) k=1

<(qg+1)n—2¢(G) +4q +4t — 1 = 5q + 2t.

This together with (27) show that #Cy > 3(tq — 2.5¢ — t). The proof of Theorem 9.2 is finished. M

We point out that Theorem 9.2 only works for ¢ > 3 and becomes invalid when ¢ € {1,2}.

9.3 Proofs of Theorem 1.8 and Proposition 1.9

Before presenting the proofs, we show a upper bound on h(g? 4+ ¢ + 1,t) for any prime power ¢ and
t > 1, using a random construction based on polarity graphs.

Lemma 9.3. Let ¢ be a prime power and t be an integer such that 4t < ¢®(q +1). Then there exists
a graph on ¢> + g+ 1 vertices, which contains at least %q(q +1)2 4t edges and at most 500(tq +t*/q®)
copies of Cy.

Proof. We may assume q > 3 and ¢t > 1. Let H be an orthogonal polarity graph on n = ¢ 4+ ¢+ 1
vertices. Let o = m € [0,1] and let G be obtained from H by adding an edge for each non-adjacent
pair of vertices independently and randomly with probability a. Denote by X the number of new
edges added to H. Since the number of non-adjacent pairs in H is N = (g) —e(H) = %, we have
E[X] = Na = 2t. Here, X is a binomial random variable X ~ Bin(N,a). Then the Chernoff bound
states that P(X < (1—e)Na) < e~ Ne/2. Choosing € = 1/2, we can get that P(X < t) < et < 0.78.

Let Y be the number of copies of Cy’s in G. For 1 < i <4, let Y; be the number of copies of Cy’s
in G consisting of exactly 7 new edges. We estimate E[Y] = Y7, E[Y;] as follows. Note that every
vertex in H has degree q or ¢+ 1. For E[Y;], each of these Cy’s corresponds to a unique path of length
three in H. Thus we have E[Y1] < in(q+ 1)¢® - o < 3tq. For E[Y3], each of these Cy’s contains two
edges in H which are incident or not. Thus we have E[Ys] < in%(¢+1)q-a? + (e(f)) 202 < 202 /2.
Similarly, we can get that E[Y3] < e(H)(}) - 2a® < 60t3/¢° and E[Yy] < n'a*/8 < 50t*/¢®. Since
2/¢> +13/¢° < tq+t*/q®, we can get that E[Y] = Z?:l E[Y;] < 110(tq + t*/¢®).

Since P(X > t) > 0.22, we have E[Y] = P(X > ) - E[Y|X > t|+ P(X <t)-E[Y|X <t] >
0.22 - E[Y|X > t]. So E[Y|X > t] < E[Y]/0.22 < 500(tq + t*/¢®). This shows that there exists an
n-vertex graph with at least 2g(q + 1)? + ¢ edges and at most 500(t\/n + t*/n*) copies of Cy’s. O

In aid of Lemma 9.3, we are ready to derive Theorem 1.8 from Theorems 9.1 and 9.2.

Proof of Theorem 1.8. Let ¢ = 2¥ be sufficiently large. So ex(¢®> +¢+1,Cy) = %q(q +1)2.

First we consider (A). Suppose that 1 <t < ¢'/3/30. Let G be a (¢*> + g + 1)-vertex graph with
ex(¢?+q+1,Cy) +t edges. By Theorem 9.1 and Lemma 2.8, G has at least t(q — 1) copies of Cy, with
equality only if G is obtained from an orthogonal polarity graph of order ¢ by adding ¢ edges between
vertices of degree ¢q. As any two vertices of degree ¢ in a polarity graph has a common neighbor, it
is straightforward to see that when G has exactly (¢ — 1) copies of Cy, these aforementioned ¢ new
edges must form a matching (in fact it is also an induced matching by Lemma 2.7). This proves (A).

For the first assertion of (B), it suffices to consider when ¢ > ¢'/8/30 and this follows from Theorem
9.2 that h(q* + ¢+ 1,t) > 1(tq — 2.5 — t) = (5 + o(1))tg, where o(1) = 0 as ¢ — oo.

Finally we prove the second assertion of (B) that h(q? 4 q+1,t) = O(tq+t*/q®). It is well known
(see [16]) that for any ¢ > 0 there exists some ¢ > 0 such that h(¢? + g+ 1,t) > ¢ - t*/¢® for any
t > cq®. Also as q is large, from the above proof, we have h(¢® +q + 1,t) > (% + 0(1))tq > tq/3 for
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any t > 1. Note that tq > t*/¢% if and only if ¢t < ¢*. Combining the above all together, we see that
there exists some absolute constant d > 0 such that for any ¢t > 1, h(q? + ¢+ 1,t) > d - (tq +t*/¢®).
The upper bound easily follows from Lemma 9.3. The proof of Theorem 1.8 is completed. |

We now complete the proof of Proposition 1.9.

Proof of Proposition 1.9. Let n be sufficiently large and t > 3n!2525. By Proposition 7.3,

there exists some prime p with /n —n%%2 — 1 < p < (=1 + /4n —3) such that ex(n,Cy) >
ex(p? +p+1,04) > (n5 — 3n'-2625 4 p)/2. We first consider the lower bound of h(n,t). Consider
any n-vertex graph G with ex(n, Cy) +t edges. Let s be such that ex(n,Cy) +t = 2(n® +n) +s. So
s>t — %nl'%% > 0.5t. By Jensen’s inequality, we see that the number M of 2-paths in G is at least

5 ()5 (E) (52 (e

veV(Q)

As s > 0.5t, this implies that h(n,t) > #C4(G) > %(M - (g)) > %( %Em (40 (g)) > W0 i
ve
known that if ¢ > n%/2 then h(n,t) > c- t*/n* holds for some ¢ > 0. Combining these facts, we infer
h(n,t) = Q(ty/n + t*/n*) for t > 3n2525, For the upper bound of h(n,t), let r be the integer such
that ex(n,Cy) +t = %p(p—i— 1)2 +7. By our choice of p, we can derive that r < ¢+ %nl'%% < 2t. Using
Lemma 9.3, there exists a graph on p? 4+ p + 1 vertices with p(p + 1)2/2 +r = ex(n, Cy) +t edges and
at most O(rp 4+ r*/p®) = O(t\/n + t*/n?) copies of Cy’s. Since p? + p + 1 < n, this also shows that
h(n,t) = O(ty/n +t*/n*), finishing the proof of Proposition 1.9. [ |

10 Concluding remarks

In this paper, we focus on extremal problems of 4-cycles and prove several stability and supersaturation
theorems. These imply some exact or near-optimal extremal results on Cy for infinite instances. In
what follows we discuss related problems, some of which in fact partially motivate the results here.

Theorem 1.2 provides a stability type result for dense Cy-free graphs G on ¢ + ¢ + 1 vertices
where ¢ is even. It states that if e(G) > 1¢(¢+1)? — g+ 0(g), then G is contained in some (unique)
polarity graph of order q. We wonder if some other form of stability (e.g., in the sense of “edit
distance”, which counts edges adding and deleting between G and the extremal configuration) can
hold for a much weaker condition on the number of edges. This stability also indicates that there
exists some hierarchy on the number of edges for mazimal Cy-free graphs G, in the interval starting
from %q(q +1)2 — %q + o(q). This is because any of these graphs G must be some polarity graph and
according to Proposition 2.6, e(G) = %q(q +1)2 — %m\/a holds for some integer m > 0. We remark
that using the result of Metsch [29] and similar arguments here, one also can establish an analogous
stability result for C4-free balanced bipartite graphs where the size of two parts equals ¢? + ¢ + 1 for
any (even or odd) large integer ¢q. (As a side note here, we would like to mention that recently Nagy
[31] proved some supersaturation results on 4-cycles in the bipartite setting.)

Arguably, Theorem 1.2 provides some (very weak) evidence to the following conjecture of McCuaig.

Conjecture 10.1 (McCuaig, 1985; see [19, 22]). Each extremal graph which achieves the maximum
number ex(n,Cy) is a subgraph of some polarity graph.

On the other hand, one of the authors in [22] “strongly disagrees and he believes just the opposite
that for e.g. n = ¢®> + ¢ + 2 maybe the extremal graphs are obtained by adding an extra vertex and
some edges to a polarity graph”.* Yet, if what is described as above is true, then there are at most
two new edges which can be added to remain Cy-free (this is because any two non-adjacent vertices
in a polarity graph must share a common neighbor). Following this suggestion from [22], we tend to
believe that this indeed is the case for n = ¢> + ¢ + 2 (at least for large ¢ = 2¥).

“We quote this sentence from [22].
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Conjecture 10.2. For large ¢ = 2F, ex(¢®> + ¢ +2,04) = %q(q +1)2 + 2.

We point out that there are many extremal graphs for this problem. Let H be an orthogonal
polarity graph of order ¢ and choose v € V(H) such that Ng(v) is independent (for ¢ = 2k any
vertex of degree ¢ or one special vertex of degree ¢ + 1 satisfies this property; see [19]). Take any
subsets A and B such that AUB = Ny (v) and ANB = {z} for some z. Let G be obtained from H by
deleting v, adding two new vertices x,y and adding new edges in {xa:a € A} U{yb:be€ B} U {zy}.
It is easy to see that G is Cy-free and has ¢® 4 ¢+ 2 vertices and %q(q +1)2+2 edges. Let us note that
this construction works as long as no edges are between A and B (so Ny (v) need not be independent).

A possible approach to attack Conjecture 10.2 is to use the stability on (¢? + ¢+ 1)-vertex graphs.
Observe that the minimum degree of all so-called extremal graphs G of ex(q® 4+ ¢ + 2,C4) defined
in the previous paragraph satisfies 2 < §(G) < 4 + 2. If indeed in some extremal graph G, one
can ensure a vertex u of degree at most £ + o(g), then G — u becomes a (¢* + ¢ + 1)-vertex Cy-free
graph with e(G — u) > %q(q +1)2 - 4 + o(q); so one can apply Theorem 1.2 on G' — u to obtain a
host polarity graph, from which one may derive the structure of G and solve the conjecture. This is
one of the reasons why we make serious efforts to prove the stability statement with the edge-bound
%q(q +1)2 — 2 + o(q). However, having this in mind, we still think to find such a low-degree vertex
requires new ideas. Another possible route for solving Conjecture 10.2 is to extend Theorem 1.2 so
that the same conclusion holds for graphs G with e(G) > %q(q +1)2 — ¢ + 3 (this would be sharp for
the stability statement, as we mentioned earlier that e(G) cannot be lowered to 3¢(q + 1)? — ¢ + 2).

As indicated, Conjecture 10.2 may provide potential counterexamples to Conjecture 10.1. Another
interesting consequence is that the resolution of Conjecture 10.2 would disprove the supersaturation
conjecture of Erdés-Simonovits on Cy (i.e., Conjecture 1.4), even in its weakest version.

Proposition 10.3. If Conjecture 10.2 holds for ¢ = 2, then h(¢> + q+2) = 1.

Proof. Let G be the graph defined in the paragraph following Conjecture 10.2, for which Ng(v) is
independent. If Conjecture 10.2 holds, then G is an extremal graph. If we add an extra edge between
y and any vertex w € A\{z} (or symmetrically between x and any vertex in B\{z}), this will only
create one copy of Cy, namely, zzywz. This shows that h(¢? 4+ ¢ +2) = 1. O

We point out that a result of [38] implies that h(q? 4 q +2) = 1 for ¢ = 4. The above proposition
has further implication to a question asked by Erdés [13] for general graphs.

Question 10.4 (Erdés [13]). For which graphs G is it true that every graph on m vertices and
ex(n,G) + 1 edges contains at least two G’s? Perhaps this is always true.

We see that by definition itself, hg(n,1) > 1 holds for any G. It is natural to ask if hg(n,1) > 2 holds
— this is the question of Erdés. By Proposition 10.3, we see that if Conjecture 10.2 holds, then Cy
would serve as a counterexample and refuse this.

Suggested by orthogonal polarity graphs, the following supersaturation problem seems plausible.

Question 10.5. For large q = 2%, is it true that h(¢®> +q+1,t) = t(q — 1) holds for every 1 <t < 192

Theorem 1.8 confirms this for 1 <t < O(ql/ 8), while its proof perhaps can be generalized further.
Another problem is to determine all integers ¢ > 1 such that every graph achieving the maximum
h(q?> + q + 1,t) contains an orthogonal polarity graph of order q. Regarding to Proposition 1.9, a
similar supersaturation result for Cy perhaps can hold under a more general condition.

Question 10.6. Is there a constant to such that h(n,t) = O(t\/n + t*/n*) holds whenever t > to?

It is known [27] that every n-vertex graph with ex(n, K3) 4+ 1 edges contains an edge that is in at
least n/6 triangles, which is sharp. Inspired by this, one may ask the analogous question for Cy.

Question 10.7. For large ¢ = 2*, what is the mazimum number t such that every (¢®> + q+ 1)-vertex
graph with ex(q?> + q + 1,Cy) + 1 contains an edge that is in at least t copies of Cy?
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We do not even know for sure if ¢ > 2, though we proved that there are many copies of Cy. Let B be
the collection of s copies of C4 that share a common edge. If ¢ > 2 holds, then perhaps it also makes
sense to ask if ex(n,Cy) = ex(n, Bg) holds (for infinite many integers n).

Many problems here only ask for n = ¢*> + ¢+ 1 and ¢ = 2*. Certainly it will be interesting to ask

for other values of n when it is applicable.
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