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Abstract

For a positive integer m, let f(m) be the maximum value t such that any graph with
m edges has a bipartite subgraph of size at least t, and let g(m) be the minimum value s
such that for any graph G with m edges there exists a bipartition V (G) = V1 ∪ V2 such
that G has at most s edges with both incident vertices in Vi. Alon proved that the limsup
of f(m)− (m/2 +

√
m/8) tends to infinity as m tends to infinity, establishing a conjecture

of Erdős. Bollobás and Scott proposed the following judicious version of Erdős’ conjecture:
the limsup of m/4 +

√
m/32− g(m) tends to infinity as m tends to infinity. In this paper,

we confirm this conjecture. Moreover, we extend this conjecture to k-partitions for all
even integers k. On the other hand, we generalize Alon’s result to multi-partitions, which
should be useful for generalizing the above Bollobás-Scott conjecture to k-partitions for
odd integers k.
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1 Introduction

Let G be a graph and e ∈ E(G). We will use V (e) to denote the set of the vertices of G
incident with e. Let S, T ⊆ V (G). We write eG(S) := |{e ∈ E(G) : V (e) ⊆ S}|, (S, T )G :=
{e ∈ E(G) : V (e) ∩ S 6= ∅ 6= V (e) ∩ T}, and eG(S, T ) := |(S, T )G|. If S = {v}, then we
simply write eG(v, T ) for eG({v}, T ). For any integer k ≥ 2 and any k-partition V1, V2, ..., Vk
of V (G), let eG(V1, V2, ..., Vk) =

∑
1≤i<j≤k e(Vi, Vj). When understood, the reference to G in

the subscript will be dropped.
Again let G be a graph. We write e(G) := |E(G)|. For any integer k ≥ 2, let fk(G) denote

the maximum number of edges in a k-partite subgraph of G. For any integers k ≥ 2 and
m ≥ 1, let fk(m) := min{fk(G) : e(G) = m}. Let f(G) := f2(G) and f(m) := f2(m).

The problem for deciding f(G), known as the Max Cut Problem, is NP-hard, and there
has been extensive work on approximating f(G), see [4, 14–16, 19]. On the other hand, it
is easy to prove that any graph with m edges has a partition V1, V2 with e(V1, V2) ≥ m/2.
Edwards [11,12] improved this lower bound by showing

f(m) ≥ m

2
+

1

4

(√
2m+ 1/4− 1

2

)
= m/2 +

√
m/8 +O(1).

This is best possible, as K2n+1 are extremal graphs. Erdős [13] conjectured that the limsup of

f(m)− (m/2 +
√
m/8)

tends to infinity as m tends to infinity. Alon [1] confirmed this conjecture with the following

Theorem 1.1 (Alon) There exist absolute constants c > 0 and M > 0 such that for every
even integer n > M , if m = n2/2 then

f(m) ≥ m/2 +
√
m/8 + cm1/4.

When m is sufficiently large, the function f(m) was determined exactly in a recursive formula
by Alon and Halperin [3] and Bollobás and Scott [7] independently.

Bollobás and Scott [5] considered problems in which one needs to find a partition of a given
graph or hypergraph to optimize several quantities simultaneously. Such problems are called
judicious partitioning problems, and we refer the reader to [7–9, 17] for more problems and
references.

Let G be a graph and k a positive integer; we use gk(G) to denote the minimal number t
such that there exists a k-partition V (G) = V1 ∪ . . . ∪ Vk satisfying e(Vi) ≤ t for i = 1, ..., k.
For any positive integers k and m, let gk(m) := max{gk(G) : e(G) = m}. Let g(G) := g2(G)
and g(m) := g2(m).

The problem of determining g(G) is known as the Bottleneck Graph Bipartition Problem
and is also NP-hard. The NP-hardness of determining g(G) can be derived from the NP-
hardness of Max Cut: taking a graph G consisting of two disjoint copies of graph H, then one
can see that g(G) = e(H)− f(H). On the other hand, Bollobás and Scott [6] showed that for
any positive integer m

g(m) ≤ m

4
+

1

8
(
√

2m+ 1/4− 1/2) = m/4 +
√
m/32 +O(1).
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This bound is sharp, as K2n+1 are extremal graphs. In fact, the result they proved is stronger,
which states that this bound as well as the Edwards bound can be achieved simultaneously by
some bipartite in every graph with m edges. Bollobás and Scott [7] (also see [17]) proposed
the following judicious version of Erdős’ conjecture.

Conjecture 1.2 (Bollobás and Scott) The limsup of

m/4 +
√
m/32− g(m)

tends to infinity as m tends to infinity.

The main goal of this paper is to prove the coming result which confirms Conjecture 1.2.

Theorem 1.3 There exist absolute constants d > 0 and N > 0 such that for every even
integer n > N , if m = n2/2 then

g(m) ≤ m/4 +
√
m/32− dm1/4.

We describe the main ideas of the proofs as follows. To establish an upper bound of g(m),
i.e., to find a bipartition such that each of its two parts contains a small number of edges, we
start with a maximum cut, say (V1, V2). In light of Theorem 1.1, this already guarantees that
e(V1)+e(V2) is relatively small. We then modify the bipartition by moving some vertices from
the part with more edges (say V1) to the other part until V1 has a small enough number of
edges left, and keeping the number of edges in V2 not growing too much. Therefore, at each
step we wish to choose a vertex in V1 to move such that the number of edges lost in V1 and
the number of new edges added in V2 both are under control. To prove the existence of such
a vertex (say a “good” one), we show that there cannot be too many “bad” vertices. Similar
approaches have been employed in [2, 6, 10], while the challenges for us are to find suitable
measures of “goodness” in all different cases, which are classified by the size of the maximum
cut.

Bollobás and Scott [8] (also see [7]) extended Edwards’ bound to k-partitions of graphs
and proved that for any graph G with m edges has a k-partition V1, . . . , Vk such that

e(V1, . . . , Vk) ≥
k − 1

k
m+

k − 1

2k
(
√

2m+ 1/4− 1/2) +O(k), (1)

with equality when G is the complete graph of order kn + 1, where the O(k) term is (−k2 +
4k − 4)/(8k). Bollobás and Scott [6] also showed that the vertex set of any graph G with m
edges can be partitioned into V1, . . . , Vk such that for i ∈ {1, 2, . . . , k},

e(Vi) ≤
m

k2
+
k − 1

2k2
(
√

2m+ 1/4− 1/2). (2)

Recently, Xu and Yu [18] showed that a k-partition V1, . . . , Vk can be found that satisfies both
inequalities (1) and (2) simultaneously, generalizing an earlier bipartition result of Bollobás
and Scott [6] as mentioned previously.

It is natural to ask whether Theorems 1.1 and 1.3 can be extended to k-partitions. We
show that the generalization of Theorem 1.3 to k-partitions does hold for all even integers k.
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Theorem 1.4 Let k > 0 be an even integer, and let d and m be the same as in Theorem 1.3.
Then,

gk(m) ≤ m

k2
+
k − 1

2k2

√
2m− 4d

k2
·m1/4 +O(k).

We also prove the following generalization of Theorem 1.1, which we think should be useful
for extending Theorem 1.3 to k-partitions for odd integers k.

Theorem 1.5 For any integer k ≥ 2, there exist positive constants c(k) = O(1/
√
k) and

N(k) = O(k3) such that for every even integer n > N(k), if m = n2/2 then

fk(m) ≥ k − 1

k
m+

k − 1

2k

√
2m+ c(k)m1/4.

We organize this paper as follows. In Section 2, we prove Theorem 1.3 by establishing a
sequence of lemmas. In Section 3, we first present the proof of Theorem 1.4, and then prove
Theorem 1.5 by refining Alon’s original proof of Theorem 1.1. In Section 4, we offer some
concluding remarks.

2 Bipartitions

In this section, we prove Theorem 1.3. Our proof is divided into several cases according to
values of f(G) − e(G)/2. Since we will be using maximum bipartite subgraphs to find good
judicious partitions, we need a result from [2] which establishes a connection between f(G) and
g(G); a similar connection between fk(G) and gk(G) can be found in Bollobás and Scott [10].

Lemma 2.1 (Alon, Bollobás, Krivelevich and Sudakov) Let G be a graph with m edges and
f(G) = m/2+δ. If δ ≥ m/30 then there exists an absolute constant D such that, when m ≥ D
there exists a bipartition V (G) = V1 ∪ V2 satisfying

max{e(V1), e(V2)} ≤
m

4
− m

100
. (3)

If δ ≤ m/30, then there exists a partition V (G) = V1 ∪ V2 such that

max{e(V1), e(V2)} ≤
m

4
− δ

2
+

10δ2

m
+ 3
√
m. (4)

The following easy consequence of Lemma 2.1 proves Theorem 1.3 for graphs G with
e(G) = m and f(G)−m/2 ≥ m/104.

Lemma 2.2 There exists an absolute constant M1 > 0 such that the following holds. If G
is a graph with m edges and f(G) = m/2 + δ, m ≥ M1, and δ ≥ m/104, then there exists a
bipartition V (G) = V1 ∪ V2 such that for i = 1, 2,

e(Vi) ≤
m

4
− m

4× 104
.
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Proof. Let D be from Lemma 2.1. Let M1 ≥ D be a sufficiently large constant (here and later
we do not express the constants explicitly to keep the presentation clear). Then by Lemma 2.1,
we may assume that m/104 ≤ δ ≤ m/30, and that there exists a partition V (G) = V1∪V2 such
that (4) holds. As the function h(δ) := −δ/2 + 10δ2/m achieves its maximum at δ = m/40,
we see that e(Vi) ≤ m

4 + h(m/40) + 3
√
m ≤ m/4−m/(4× 104) for each i = 1, 2.

In view of Lemma 2.2, it suffices to prove Theorem 1.3 for graphs G with f(G) −m/2 ≤
m/104. We will find special vertices that we could use to modify existing bipartitions. This will
be done in the next lemma and Lemma 2.5, using the approach described in the introduction.

Lemma 2.3 Let G be a graph with m edges, and assume f(G) = m/2 + δ, where δ ≤ m/104.
Suppose V (G) = V1 ∪ V2 is a partition such that e(v, V1) ≤ e(v, V2) for every v ∈ V1, and
e(V1) ≥ m/4− δ/2. Then there exists v ∈ V1 such that

e(v, V1) ≤
√
m/2 + 3

√
δ and e(v, V2) ≤ (1 + 20

√
δ/m)e(v, V1).

Proof. Let
T = {v ∈ V1 : e(v, V1) >

√
m/2 + 3

√
δ}

and
S = {v ∈ V1 : e(v, V2) >

(
1 + 20

√
δ/m

)
e(v, V1)}.

We will show that
∑

v∈V1 e(v, V1) >
∑

v∈S∪T e(v, V1), from which the existence of the desired
vertex v follows. To this end, we bound

∑
v∈T e(v, V1) and

∑
v∈S e(v, V1).

Since e(v, V1) ≤ e(v, V2) for all v ∈ V1,

e(V1) =
1

2

∑
v∈V1

e(v, V1) ≤
1

2

∑
v∈V1

e(v, V2) =
1

2
e(V1, V2) ≤

f(G)

2
=
m

4
+
δ

2
.

On the other hand,

2e(V1) =
∑
v∈V1

e(v, V1) ≥
∑
v∈T

e(v, V1) >
(√

m/2 + 3
√
δ
)
|T |,

implying that

|T | < 2e(V1)√
m/2 + 3

√
δ
≤ m/2 + δ√

m/2 + 3
√
δ
<
√
m/2− 3

2

√
δ,

where the final inequality holds because δ ≤ m/104. Hence

∑
v∈T

e(v, V1) ≤ e(V1) + e(T ) < e(V1) +
1

2
|T |2 < e(V1) +

1

2

(√
m/2− 3

2

√
δ

)2

.

Since δ ≤ m/104, we have ∑
v∈T

e(v, V1) < e(V1) +
m

4
− 3

4

√
mδ/2. (5)
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Note that e(V1, V2) =
∑

v∈S e(v, V2) +
∑

v∈V1−S e(v, V2), so

e(V1, V2) ≥
(

1 + 20
√
δ/m

)∑
v∈S

e(v, V1) +
∑

v∈V1−S
e(v, V1) = 2e(V1) + 20

√
δ/m

∑
v∈S

e(v, V1).

Together with e(V1) ≥ m/4− δ/2 and e(V1, V2) ≤ f(G) = m/2 + δ, we get∑
v∈S

e(v, V1) <
1

20

√
m/δ · (e(V1, V2)− 2e(V1)) ≤

1

10

√
mδ. (6)

Combining (5) and (6), we have
∑

v∈S∪T e(v, V1) < e(V1) + m
4 −

3
8

√
mδ/2, implying that∑

v∈V1

e(v, V1) = 2e(V1) ≥ e(V1) +
m

4
− δ

2
> e(V1) +

m

4
− 3

8

√
mδ/2 >

∑
v∈S∪T

e(v, V1),

where the first inequality follows from e(V1) ≥ m/4 − δ/2 and the second inequality holds
because δ ≤ m/104. So V1 − (S ∪ T ) 6= ∅, completing the proof.

The following result says that there exists an absolute constant C > 0 such that Theo-
rem 1.3 holds for graphs G with m edges and

√
m/8 + Cm1/4 ≤ f(G)−m/2 ≤ m/104.

Lemma 2.4 Let c be the absolute constant in Theorem 1.1, let d = c/4, and let C := 2(70+d).
There exists an absolute constant M2 > 0 such that the following holds. If G is a graph with
m edges, f(G) = m/2 + δ, m ≥ M2, and

√
m/8 + Cm1/4 ≤ δ ≤ m/104, then there exists a

partition V (G) = V1 ∪ V2 such that for i = 1, 2,

e(Vi) ≤ m/4 +
√
m/32− dm1/4.

Proof. Let M2 > 0 be a sufficiently large constant. Let (U1, U2) be a maximum cut of G, i.e.,

e(U1, U2) = f(G) =
m

2
+ δ.

Without loss of generality we may assume e(U1) ≥ e(U2). Note that e(v, U1) ≤ e(v, U2) for
every v ∈ U1; otherwise, e(U1 − {v}, U2 ∪ {v}) > e(U1, U2) = f(G), a contradiction. Hence

e(U1) =
1

2

∑
v∈U1

e(v, U1) ≤
1

2

∑
v∈U1

e(v, U2) =
1

2
e(U1, U2) =

m

4
+
δ

2
.

We now define a process to move vertices from U1 to U2, using Lemma 2.3, such that in
the end we get the desired bipartition.

• Initially, we set V 0
1 := U1, V

0
2 := U2. Let V i

1 ∪ V i
2 denote the partition of V (G) after the

ith iteration.

• If e(V i
1 ) ≤ m/4− δ/2 + (

√
m/2 + 3

√
δ)/2, set V1 := V i

1 and V2 := V i
2 , and stop.

• If e(V i
1 ) > m/4− δ/2 + (

√
m/2 + 3

√
δ)/2 then by Lemma 2.3, there exists ui ∈ V i

1 such
that

e(ui, V
i
1 ) ≤

√
m/2 + 3

√
δ and e(ui, V

i
2 ) ≤

(
1 + 20

√
δ/m

)
e(ui, V

i
1 ).

Set V i+1
1 := V i

1 − {ui}, V
i+1
2 := V i

2 ∪ {ui}, and repeat the above steps for V i+1
1 , V i+1

2 .
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Note that, after i iterations (for each i), we always have e(v, V i
1 ) ≤ e(v, V i

2 ) for every v ∈ V i
1 ;

so Lemma 2.3 may be applied to V i
1 , V

i
2 . Let V1 = V k

1 , V2 = V k
2 denote the final partition,

after k iterations. Then

e(V1) ≤
m

4
− δ

2
+
√
m/8 +

3

2

√
δ.

Moreover, since V1 is obtained from V k−1
1 by moving uk−1 to V k−1

2 , we have

e(V1) >
m

4
− δ

2
− 1

2
(
√
m/2 + 3

√
δ).

Since e(V1) = e(U1)−
∑k−1

i=0 e(ui, V
i
1 ), we have

k−1∑
i=0

e(ui, V
i
1 ) = e(U1)− e(V1) < e(U1)−

m

4
+
δ

2
+

1

2
(
√
m/2 + 3

√
δ).

Hence, since e(U2) = m − e(U1, U2) − e(U1) = m/2 − δ − e(U1) and e(ui, V
i
2 ) < (1 +

20
√
δ/m)e(ui, V

i
1 ), we have

e(V2) = e(U2) +

k−1∑
i=0

e(ui, V
i
2 )

≤ m

2
− δ − e(U1) + (1 + 20

√
δ/m)

k−1∑
i=0

e(ui, V
i
1 )

≤ m

2
− δ − e(U1) + (1 + 20

√
δ/m)

(
e(U1)−

m

4
+
δ

2
+

1

2

√
m/2 +

3

2

√
δ

)
=
m

4
− δ

2
+

1

2

√
m/2 +

3

2

√
δ + 20

√
δ/m

(
e(U1)−

m

4
+
δ

2
+

1

2

√
m/2 +

3

2

√
δ

)
≤ m

4
− δ

2
+

1

2

√
m/2 +

3

2

√
δ + 20

√
δ/m

(
δ +

1

2

√
m/2 +

3

2

√
δ

)
(since e(U1) ≤ m/4 + δ/2)

=
m

4
− δ

2
+
√
m/8 + (3/2 + 5

√
2)
√
δ + 20

δ3/2√
m

+ 30
δ√
m
.

Therefore,

max{e(V1), e(V2)} ≤
m

4
+
√
m/8 + h(δ),

where

h(δ) := −δ
2

+ (3/2 + 5
√

2)
√
δ + 20

δ3/2√
m

+ 30
δ√
m
.

Since m ≥ M2 is sufficiently large, one can verify that h(δ) is a decreasing function in the
domain

√
m/8 + Cm1/4 ≤ δ ≤ m/104. Therefore,

max{e(V1), e(V2)}

≤m
4

+
√
m/8 + h(

√
m/8 + Cm1/4)

<
m

4
+
√
m/32− C

2
m1/4 + 70m1/4 (since

√
m/8 + Cm1/4 <

√
m)

=
m

4
+
√
m/32− dm1/4 (since C = 2(70 + d)),
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completing the proof of this lemma.

The next result is similar to Lemma 2.3, which will be used to prove Theorem 1.3 for
graphs G with m edges and f(G)−m/2 ≤

√
m/8 + Cm1/4.

Lemma 2.5 Let c be the constant in Theorem 1.1 and d,C be the constants in Lemma 2.4.
There exists an absolute constant M3 > 0 such that the following holds. If

• G is a graph with m ≥M3 edges,

• f(G) = m/2 + δ,

•
√
m/8 + cm1/4 ≤ δ ≤

√
m/8 + Cm1/4,

• V (G) = V1 ∪ V2 is a bipartition such that e(v, V1) ≤ e(v, V2) for every v ∈ V1, and
e(V1) ≥ m/4 +

√
m/32− dm1/4

then there exists v ∈ V1, such that

e(v, V1) ≤
√
m/2 +

c

6

√
δ and e(v, V2) ≤

(
1 +

c

4

√
δ/m

)
e(v, V1).

Proof. Let M3 > 0 be a sufficiently large constant (compared to c, d and C). And let

T =
{
v ∈ V1 : e(v, V1) >

√
m/2 +

c

6

√
δ
}

and
S =

{
v ∈ V1 : e(v, V2) >

(
1 +

c

4

√
δ/m

)
e(v, V1)

}
.

Since e(v, V1) ≤ e(v, V2) for all v ∈ V1, we have

e(V1) ≤
1

2
e(V1, V2) ≤

f(G)

2
=
m

4
+
δ

2
.

On the other hand,

2e(V1) ≥
∑
v∈T

e(v, V1) >
(√

m/2 +
c

6

√
δ
)
|T |.

Thus

|T | < 2e(V1)√
m/2 + c

6

√
δ
≤ m/2 + δ√

m/2 + c
6

√
δ
<
√
m/2− c

12

√
δ,

where the last inequality holds because
√
m/8 + cm1/4 ≤ δ ≤

√
m/8 +Cm1/4 and m ≥M3 is

large enough. From
∑

v∈T e(v, V1) ≤ e(V1) + e(T ), we obtain that∑
v∈T

e(v, V1) ≤ e(V1) +
1

2

(√
m/2− c

12

√
δ
)2
≤ e(V1) +

m

4
− c

24

√
mδ/2. (7)

Since e(V1, V2) =
∑

v∈S e(v, V2) +
∑

v∈V1−S e(v, V2),

e(V1, V2) ≥
(

1 +
c

4

√
δ/m

)∑
v∈S

e(v, V1) +
∑

v∈V1−S
e(v, V1) = 2e(V1) +

c

4

√
δ/m ·

∑
v∈S

e(v, V1).
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Therefore ∑
v∈S

e(v, V1) ≤
4

c

√
m/δ · (e(V1, V2)− 2e(V1)),

which, together with e(V1, V2) ≤ m/2 + δ, e(V1) ≥ m/4 +
√
m/32− dm1/4 and δ ≤

√
m/8 +

Cm1/4, imply that ∑
v∈S

e(v, V1) ≤
4

c
(C + 2d)

√
m/δ ·m1/4. (8)

Again, because e(V1) ≥ m/4 +
√
m/32− dm1/4, we have∑

v∈V1

e(v, V1) = 2e(V1) ≥ e(V1) +m/4 +
√
m/32− dm1/4. (9)

When m ≥M3, in view of δ = Θ(
√
m), we see√

m/32− dm1/4 >
4

c
(C + 2d)

√
m/δ ·m1/4 − c

24

√
mδ/2,

which, combining with (7), (8) and (9), imply that∑
v∈V1

e(v, V1) >
∑

v∈S∪T
e(v, V1).

So we get V1 − (S ∪ T ) 6= ∅ as desired.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let c,M be the absolute constants in Theorem 1.1, and let
M1,M2,M3 be the absolute constants in Lemmas 2.2, 2.4 and 2.5, respectively. Let d := c/4,
M ′ := max{M1,M2,M3}, and N ≥ max{M, (2M ′)1/2} be a sufficiently large constant.

Let m = n2/2, where n ≥ N is even; so n ≥ M and m ≥ Mi for i = 1, 2, 3, and hence we
may apply Theorem 1.1 and Lemmas 2.2 and 2.4 and 2.5.

Let G be a graph with m edges and f(G) = m/2 + δ. By Theorem 1.1, Lemma 2.2 and
2.4, we may assume that √

m/8 + cm1/4 ≤ δ ≤
√
m/8 + Cm1/4. (10)

Let V (G) = U1 ∪ U2, with e(U1, U2) = f(G) = m
2 + δ and e(U1) ≥ e(U2). Then, as before, we

see that e(v, U1) ≤ e(v, U2) for every v ∈ U1.
We now describe a process similar to that in the proof of Lemma 2.4, to obtain the desired

bipartition.

• Set V 0
1 := U1, V

0
2 := U2, and let V (G) = V i

1 ∪ V i
2 be the partition obtained after i

iterations.

• If e(V i
1 ) ≤ m/4 +

√
m/32− dm1/4, then set V1 := V i

1 and V2 := V i
2 , and stop.

9



• If e(V i
1 ) > m/4+

√
m/32−dm1/4 then by Lemma 2.5, there exists a vertex ui ∈ V i

1 such
that

e(ui, V
i
1 ) ≤

√
m/2 +

c

6

√
δ and e(ui, V

i
2 ) ≤

(
1 +

c

4

√
δ/m

)
e(ui, V

i
1 ).

Set V i+1
1 := V i

1 − {ui}, V
i+1
2 := V i

2 ∪ {ui}, and repeat the above steps for V i+1
1 , V i+1

2 .

Note that, in each iteration of the above procedure, we always have e(v, V i
1 ) ≤ e(v, V i

2 ) for
every v ∈ V i

1 ; thus Lemma 2.5 may be applied for V i
1 , V

i
2 . Let V1 = V k

1 , V2 = V k
2 be the final

partition, obtained after k steps. Then

e(V1) ≤ m/4 +
√
m/32− dm1/4,

and
e(V1) > m/4 +

√
m/32− dm1/4 −

(√
m/2 +

c

6

√
δ
)
.

It suffices to show the upper bound of e(V2). Since e(v, U1) ≤ e(v, U2) for every v ∈ U1,

e(U1) ≤
1

2
e(U1, U2) =

m

4
+
δ

2
.

Since e(V1) = e(U1)−
∑k−1

i=0 e(ui, V
i
1 ), we have

k−1∑
i=0

e(ui, V
i
1 ) = e(U1)− e(V1) < e(U1)−m/4−

√
m/32 + dm1/4 +

√
m/2 +

c

6

√
δ.

Then, since e(V2) = e(U2) +
∑k−1

i=0 e(ui, V
i
2 ), e(ui, V

i
2 ) ≤

(
1 + c

4

√
δ
m

)
e(ui, V

i
1 ) and e(U1) ≤

m/4 + δ/2, we have

e(V2) ≤
m

2
− δ − e(U1) +

(
1 +

c

4

√
δ

m

)
k−1∑
i=0

e(ui, V
i
1 )

<
m

2
− δ − e(U1) +

(
1 +

c

4

√
δ/m

)(
e(U1)−

m

4
−
√
m/32 + dm1/4 +

√
m/2 +

c

6

√
δ
)

=
m

4
− δ + 3

√
m/32 + dm1/4 +

c

6

√
δ +

c

4

√
δ/m ·

(
e(U1)−

m

4
+ 3
√
m/32 + dm1/4 +

c

6

√
δ
)

≤ m

4
− δ + 3

√
m/32 + dm1/4 +

c

6

√
δ +

c

4

√
δ/m ·

(
δ

2
+ 3
√
m/32 + dm1/4 +

c

6

√
δ

)
.

By (10), it holds that dm1/4 + (c/6)
√
δ <

√
m/32. Hence,

e(V2) ≤
m

4
+ 3
√
m/32 + dm1/4 + h(δ),

where

h(δ) := −δ +

(
c

6
+

c√
32

)√
δ +

c

8
√
m
δ3/2

10



is a decreasing function in the domain of (10), provided that m ≥ N2/2 is sufficiently large.
Therefore, we have

e(V2) ≤
m

4
+ 3
√
m/32 + dm1/4 + h(

√
m/8 + cm1/4)

≤ m

4
+ 3
√
m/32 + dm1/4 −

√
m/8− c

4
·m1/4 (using

√
m/8 + cm1/4 <

√
m)

=
m

4
+
√
m/32− dm1/4 (since d = c/4).

This completes the proof of Theorem 1.3.

3 k-Partitions

In this section, we first show Theorem 1.4, extending Theorem 1.3 to all multiple partitions
with even parts.

Proof of Theorem 1.4. Write k := 2t for some integer t > 0 and let d,m be the same as in
Theorem 1.3. Consider an arbitrary graph G with m edges. By Theorem 1.3, there exists a
bipartition V (G) = V 1 ∪ V 2 such that for i = 1, 2,

ei := e(V i) ≤ m/4 +
√
m/32− dm1/4.

Using the inequality
√

1 + x ≤ 1 + x
2 for x ≥ −1, we have

√
ei ≤

√
m/4 ·

(
1 + (1/2) · (

√
m/32− dm1/4)/(m/4)

)
=
√
m/2 +O(1).

By the equation (2), each G[V i] has a t-partition V i
1 , . . . , V

i
t such that for j ∈ {1, 2, . . . , t},

e(V i
j ) ≤ ei

t2
+
t− 1

2t2
·
√

2ei +O(t) ≤ m

4t2
+

(
1

8t2
+
t− 1

4t2

)
·
√

2m− d

t2
·m1/4 +O(t)

=
m

k2
+
k − 1

2k2

√
2m− 4d

k2
·m1/4 +O(k).

These two t-partitions together form a desired k-partition of G.

Next we generalize the proof of Alon in [1] to prove Theorem 1.5. We need the following
lemma which appears in several articles, for example, as Lemma 2.1 in [1].

Lemma 3.1 Let G = (V,E) be an s-colorable graph with m edges. Then for any positive
integer k ≤ s,

fk(G) ≥ t(s, k)(
s
2

) m, where t(s, k) =
∑

1≤i<j≤k

⌊
s+ i− 1

k

⌋⌊
s+ j − 1

k

⌋
.

In the coming proof of Theorem 1.5, we will be using Lemma 3.1 for t(ks, k). Note that

t(ks, k) = s2
(
k

2

)
and t(ks, k)/

(
ks

2

)
=
k − 1

k
+
k − 1

k

1

ks− 1
.

11



Proof of Theorem 1.5. Fix k ≥ 2, and let ε = 1
16
√
k
, c(k) = 21/4

8 ε, and N(k) = 322k3. (We

do not attempt to optimize these constants.) Let n be an even integer such that n ≥ N(k).
Consider an arbitrary graph G with m = n2/2 edges. Let s denote the unique integer satisfying
n− ε

√
n+ 1 < ks ≤ n− ε

√
n+ k + 1.

Claim 1. We may assume that χ(G) ≥ ks+ 1.
For, suppose G is ks-colorable. Then

fk(G) ≥ t(ks, k)(
ks
2

) m (by Lemma 3.1)

=
k − 1

k
m+

k − 1

k

m

ks− 1

≥ k − 1

k
m+

k − 1

2k

n2

n− ε
√
n+ k

(since m = n2/2 and ks ≤ n− ε
√
n+ k + 1)

≥ k − 1

k
m+

k − 1

2k

(
n+

ε

2

√
n
)

(since n ≥ N(k) = 322k3 and ε = 1/(16
√
k))

≥ k − 1

k
m+

k − 1

2k

√
2m+

1

8
ε(2m)1/4 (since m = n2/2 and (k − 1)/(4k) ≥ 1/8).

This proves Claim 1.

Let H ⊆ G such that χ(H) = χ(G) and H is vertex-critical. Then

δ(H) ≥ χ(G)− 1 ≥ ks ≥ n− ε
√
n.

Since e(H) ≤ n2/2, |V (H)| ≤ 2e(H)/δ(H) ≤ n + 2ε
√
n. Then there are at least n − 4ε

√
n

color classes of size 1 in any proper coloring of H using χ(G) colors. So there exists a complete
subgraph R of G with |V (R)| := n− r ≥ n− 4ε

√
n.

Note that r ≤ 4ε
√
n and

e(R) =

(
n− r

2

)
=
n2

2
− (2r + 1)

n

2
+
r(r + 1)

2
.

Hence, √
e(R) =

n− r + 1/2√
2

+O(1) ≥
√
m− ε

√
8n+O(1),

where the O(1) term is 1/(2
√

2)− 1/8. Let W := V (G)− V (R). Then

e(W ) + e(R,W ) = m− e(R) = r(n− r) +
n

2
+
r2 − r

2
.

Claim 2. We may assume that e(W ) ≤ n/(8k).
Otherwise, assume e(W ) ≥ n/(8k). By the equation (1), there exist k-partitions W =⋃k

i=1Wi and V (R) =
⋃k
i=1Ri such that

e(W1, ...,Wk) ≥
k − 1

k
e(W ) +

k − 1

2k

√
2e(W ) +O(k)

≥ k − 1

k
e(W ) +

k − 1

4k

√
n/k +O(k),

12



and e(R1, ..., Rk) ≥
k − 1

k
e(R) +

k − 1

2k

√
2e(R) +O(k)

≥ k − 1

k
e(R) +

k − 1

2k

√
2m− k − 1

2k
4ε
√
n+O(k).

For any permutation π ∈ [k], we define e(π) :=
∑k

i=1 e(Wi, Rπ(i)); then∑
π∈[k]

e(π) = (k − 1)! e(W,R).

Thus there exists a permutation π ∈ [k] such that e(π) ≤ (k− 1)! e(W,R)/k! = e(W,R)/k. So

e(W1 ∪Rπ(1), ...,Wk ∪Rπ(k))
=e(W,R)− e(π) + e(W1, ...,Wk) + e(R1, ..., Rk)

≥k − 1

k
e(W,R) +

k − 1

k
e(W ) +

k − 1

4k

√
n/k +

k − 1

k
e(R) +

k − 1

2k

√
2m− k − 1

2k
4ε
√
n+O(k)

=
k − 1

k
m+

k − 1

2k

√
2m+

k − 1

k
(2m)1/4

(
1

4
√
k
− 2

16
√
k

)
+O(k)

≥k − 1

k
m+

k − 1

2k

√
2m+

1

8
√
k

(2m)1/4 +O(k).

Note that the O(k) term here is 2(−k2 + 4k− 4)/(8k) + 1/(2
√

2)− 1/8. Since m > n2/2 >
(322k3)2/2, we see that

e(W1 ∪Rπ(1), ...,Wk ∪Rπ(k)) ≥
k − 1

k
m+

k − 1

2k

√
2m+ c(k)m1/4.

So the assertion of the theorem holds with the partition W1∪Rπ(1), ...,Wk ∪Rπ(k), completing
the proof of Claim 2.

Let v1, v2, ..., vn−r be the vertices of R and let di := |N(vi) ∩W | for 1 ≤ i ≤ n− r, where
d1 ≤ d2 ≤ ... ≤ dn−r. Since R is complete, a balanced k-partition of V (R) (i.e., the sizes
of parts differ by at most 1) gives fk(R). So let V (R) =

⋃k
i=1Ri be a k-partition such that

bn−rk c = |R1| ≤ |R2| ≤ ... ≤ |Rk| = dn−rk e, and let R1 = {v1, ..., vbn−r
k
c}. Then

e(R1, ..., Rk) ≥
k − 1

k
e(R) +

k − 1

2k

√
2e(R) +O(k),

where the O(k) term is (−k2 + 4k − 4)/(8k). Let

D :=

∑
1≤i≤n−r di

n− r
=
e(W,R)

n− r
, and D0 := D − bDc.

Then, since e(W ) + e(R,W ) = r(n− r) + n/2 + (r2 − r)/2, we have

D0 =
n/2 + (r2 − r)/2− e(W )

n− r
.

Since r ≤ 4ε
√
n, n ≥ N(k) and e(W ) ≤ n/(8k), we conclude that

min{D0, 1−D0} ≥
n

5(n− r)
.
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Hence, D differs from an integer by at least n
5(n−r) .

Claim 3. e(W,R2 ∪ ... ∪Rk) ≥ k−1
k e(W,R) + n

5k .
To see this, let us consider two cases. If dbn−r

k
c ≥ D then dbn−r

k
c ≥ D+ n

5(n−r) by integrality;

so Claim 3 follows as

e(W,R2 ∪ ... ∪Rk) =
∑

i>bn−r
k
c

di ≥
k − 1

k
(n− r)

(
D +

n

5(n− r)

)
=
k − 1

k
e(W,R) +

k − 1

5k
n.

Otherwise, dbn−r
k
c ≤ D; then dbn−r

k
c ≤ D −

n
5(n−r) by integrality. Hence

e(W,R1) =
∑

i≤bn−r
k
c

di ≤
n− r
k

(
D − n

5(n− r)

)
≤ 1

k
e(W,R)− n

5k
;

so e(W,R2 ∪ ... ∪Rk) ≥ k−1
k e(W,R) + n

5k , completing the proof of Claim 3.

Now, consider the k-partition W ∪R1, R2, ..., Rk of V (G). Since e(R1, . . . , Rk) ≥ k−1
k e(R)+

k−1
2k

√
2e(R) +O(k) and by Claim 3, We have

e(W ∪R1, R2, . . . , Rk)

=e(R1, R2, . . . , Rk) + e(W,R2 ∪ . . . ∪Rk)

≥k − 1

k
e(R) +

k − 1

2k

√
2e(R) +

k − 1

k
e(W,R) +

n

5k
+O(k)

≥k − 1

k
m− k − 1

k
e(W ) +

k − 1

2k

√
2m− k − 1

2k
4ε
√
n+

n

5k
+O(k) (as

√
e(R) ≥

√
m− ε

√
8m+O(1))

≥k − 1

k
m+

k − 1

2k

√
2m− k − 1

k

√
2m

8k
− k − 1

2k
4ε(2m)1/4 +

√
2m

5k
+O(k) (by Claim 2)

≥k − 1

k
m+

k − 1

2k

√
2m+ c(k)m1/4,

where the last inequality holds because n ≥ N(k) ≥ 322k3 and the O(k) term is (−k2 + 4k −
4)/(8k).

4 Concluding remarks

We point out that Theorem 1.3 is best possible up to the constant d. To see this, let m = n2+1
2 .

The lower bound on f(m) remains unchanged since the proof in [1] works for values of m which
differ from n2/2 by a constant; so our proof also gives the same upper bound on g(m). Let G
be the vertex-disjoint union of Kn and Kk, where n is odd, k is even, and n = k(k − 1) − 1.
Let m := e(G) =

(
n
2

)
+
(
k
2

)
. An easy calculation shows that

g(G) =

(n+1
2

2

)
+

(k
2

2

)
=
m

4
+
√
m/32− (2m)1/4

4
+O(1).

This shows that for m = n2+1
2 , g(m) ≥ m/4 +

√
m/32− (2m)1/4/8 +O(1).
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In our proof of Theorem 1.3, we choose d = c/4, where c is the constant from Theorem 1.1.
The calculation in the end of the proof of Theorem 1.3 in fact only requires that d−c+O(1) ≤
−d, where the O(1) term may be made arbitrarily small when m is sufficient large. So one
can show that for any ε > 0, there exists an integer N = N(ε) such that when n ≥ N ,

g(m) ≤ m

4
+
√
m/32−

( c
2
− ε
)
m1/4.

We do not know if one can get rid of the ε.
Our proofs of Lemmas 2.3 and 2.4 may be modified to show that if G is graph with m edges,

f(G) = m/2+δ, and δ ≤ αm, then for sufficiently large m, there is a partition V (G) = V1∪V2
such that

max{e(V1), e(V2)} ≤
m

4
− δ

2
+
√
m/8 + β

√
δ + γ

δ3/2√
m
,

where α is an absolute constant and β, γ are constants depend on α only. When δ = O(mt),
where t < 2

3 , this bound is better than Lemma 2.1, since
√
m/8 dominates

√
δ, δ3/2/

√
m

(while 3
√
m dominates 10δ2/m in Lemma 2.1).

Another conclusion we may draw from the proofs of Lemmas 2.3 and 2.4 is that: If f(G) ≥
m/2+

√
m/8+α, where α = Θ(mt) and 1

4 < t < 1
2 , then g(G) ≤ m/4+

√
m/32+O(m1/4)−α/2.

We conclude our discussion with the following natural question: Is it also true that for
every integer k, the limsup of

m

k2
+
k − 1

2k2
(
√

2m+ 1/4− 1/2)− gk(m)

tends to infinity when m tends to infinity? Theorem 1.4 has answered this question when k is
even. For the case that k is odd, Theorem 1.5 and results of Bollobás and Scott in [10] seem
to be relevant.
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