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Abstract

For an integer o and a graph G, the «-disintegration of G is the graph obtained from G by
recursively deleting vertices of degree at most a until that the resulting graph has no such vertex.
Pésa proved that if a 2-connected graph contains a path on m > k vertices with end-vertices
in its [(k — 1)/2]-disintegration, then G contains a cycle of length at least k. We prove that
if a 2-connected graph contains a path on m > k vertices with end-vertices in its |(k — 3)/2]-
disintegration, then G contains either a cycle of length at least k or a specific family of graphs.
As an application, we strengthen the Erdos-Gallai stablity theorem of Fiiredi, Kostochka, Luo and
Verstraéte.

1 Introduction

The circumference ¢(G) of a graph G is the length of a longest cycle in G. For an integer o and a
graph G, the a-disintegration of G, denoted by H (G, «), is the graph obtained from G by recursively
deleting vertices of degree at most « until that the resulting graph has no such vertex. We also call
H(G, ) the a-core of G, and moreover this core is unique for every a.! Pésa [12] proved the following
well-known lemma which is widely used in graph theory.

Lemma 1.1 (Pésa [12]). Let £ = [(k —1)/2] and k > 5. Let G be a 2-connected graph and H be
the (-disintegration of G. If the longest H-path in G has m > k wvertices, then G contains a cycle of
length at least k.

The following theorem, which combines the ideas of Pésa’s lemma [12] and Kopylov’s work [8], is
the main result of this paper. Denote by K3+ 3 the graph obtained from taking a copy of K33 and a
new edge zy and joining each of x,y to the same two vertices in one part of K3 3.

Theorem 1.2. Let ¢ = [(k—1)/2] and k > 5. Let G be a 2-connected graph with ¢(G) < k and H be
the (¢ — 1)-disintegration of G. Let m be the number of vertices in a largest H-path in G. If m >k,
then G contains a subgraph F € F(m, k,r) for some r < or a copy of K:}:?) when m =k+1=09.

Remark. We give the definition of the graph family F(m, k,r) in Section 2. The graph Kgr 4 contains
a copy of F' € F(8,8,1).

For integers n > k > 2a, let H(n, k,a) be the n-vertex graph whose vertex set is partitioned into
three sets A, B,C such that |A| = a,|B| = n —k+ a, |C| = k — 2a and whose edge set consists of
all edges between A and B together with all edges in A U C (see Figure 1, the subgraphs induced
by A and C are complete graphs and the subgraph induced by B contains no edge). Note that any
path/cycle in H(n,k,a) cannot contain consecutive vertices in B. One may check that the longest
path in H(n,k,a) contains k vertices and the longest cycle in H(n, k,a) contains k — 1 vertices.
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Figure 1. H(17,16,7).
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The celebrated Erdés-Gallai theorem [2] states that any m-vertex graph G with ¢(G) < k has
at most (k — 1)(n — 1)/2 edges. This was improved by Kopylov [8] by showing that any n-vertex
2-connected graph G with ¢(G) < k has at most max{h(n, k,2), h(n,k, [(k—1)/2])} edges. Combined
with the results in [5], Fiiredi, Kostochka, Luo and Verstraéte [6] proved a stability version of Kopylov’s
theorem, which says that for any 2-connected graph G with ¢(G) < k, if ¢(G) is close to the above
maximum number from Kopylov’s theorem, then G must be a subgraph of some well-specified graphs.

h(n,k,a) :=e(H(n,k,a)) = ( > +(n—k+a)a. (1)

Theorem 1.3 (Firedi, Kostochka, Luo and Verstraéte [5,6]). Let G be an n-vertex 2-connected graph
with ¢(G) < k. Let { = |(k—1)/2|. Then

e(G) < max{h(n,k, ¢ —1),h(n,k,3)}
unless
(a) k=20+1,k+#7, and G C H(n,k,l);
(b)) k=20+2ork="17, and G — A is a star forest for some A C V(G) of size at most £;*> or
(c) G C H(n,k,2).

The proof of Theorem 1.3 is mainly based on contracting edges and the following fact. If a graph
contains a cycle of length at least k and is obtained from another graph by contracting edges, then
that other graph also contains a cycle of length at least k. Theorem 1.3 was further extended in [10].

The aim of this paper is to study a new approach and provide some potential tools in this line of
research. In order to explain our main idea of this paper, we restate Kopylov’s theorem as follows. If
an n-vertex 2-connected graph G has more than max{h(n,k,2)),h(n,k, |(k —1)/2])} edges, then G
contains a copy of graph F' € C, where Cy, is the set of cycles of length at least k. Roughly speaking,
our proof shows that if an n-vertex 2-connected graph G has more than max{h(n, k, 3)), h(n, k, | (k —
1)/2] — 1)} edges, then G contains a copy of graph F' € (C, U F), where F is a set of special graphs
(see Subsection 2.2). From this generalization of Kopylov’s theorem, we can deduce that if an n-vertex
2-connected graph contains a copy of F' € F with ¢(G) < k, then G is a subgraph of some graphs
in Theorem 1.3. As an application, we get the following theorem strengthening Theorem 1.3 for odd
k>09.

Theorem 1.4. Let k = 20+ 1 > 5 be an odd integer and n > k. Let G be an n-verter 2-connected
graph with ¢(G) < k. Then e¢(G) < max{h(n,k,3), h(n,k,¢ — 1)} unless

(a) G is a subgraph of H(n,k,2);
(b) G is a subgraph of H(n,k,f);

2A star forest is a graph in which every component is a star.



(¢) G=H(n,k,3);
(d) G=H(n,k,t—1); or
(e) G — A is a star forest for some A C V(G) of size at most two for k =17.

Remark. Although Theorem 1.4 improves Theorem 1.3 only for odd k > 9 with the case e(G) =
max{h(n, k,3),h(n,k,¢ — 1)}, it will be used to prove [13] a longstanding conjecture of Erdés, Si-
monovits and S6s [3] (determining the maximum number of edge colors in a complete graph such that
there is no rainbow path of given length). We will prove Theorem 1.3 for even k in [11].

The organization of this paper is as follows. In Section 2, we give a formal definition of a family
of graphs for the use of our characterization. In Section 3, we prove our main result which builds on
an integration of Pdsa’s rotation lemma and Kopylov’s proof in [8]. In Section 4, as an application,
we strengthen Theorem 1.3 for odd k& > 9.

2 Notation and a family of graphs

2.1 Notation

The general notation used in this paper is standard (see, e.g., [1]). For disjoint subsets A, B C V(G), we
denote G(A, B) to be the induced bipartite subgraph of G with parts A, B. Let E(A, B) = E(G(A, B))
for short. When defining a graph, we will only specify these adjacent pairs of vertices. That is if a
pair {a,b} is not discussed as a possible edge, then it is assumed to be a non-edge.

Denote by Ng(z) the set of neighbors of  in G and let dg(x) be the size of Ng(z). For U C V(G),
let Ny(z) = Ng(x) NU and dy(x) = |Ny(x)|. Let P = zjx9- -z, be a path in G and call P and
an (z1, Ty, )-path or an x;-path (a path starting from z1). For x € V(G), let Np(z) = Ng(x) NV (P)
and Np[z] = Np(x) U {z}, with dp(z) = |Np(z)|. For z;,z; € V(P), we use z;Px; to denote the
subpath of P between z; and z;. For x € V(P), denote 2~ and 2™ to be the immediate predecessor
and immediate successor of x on P, respectively. For S C V(P), let ST = {27 : z € S} and
ST ={z7 2 e S}. Wecall (z;,z;)p a crossing pair of P if i < j, x; € Np(xp,) and z; € Np(x1). If
there is no ambiguity, we write this pair as (i, j) for short. We call a path a crossing path if it has a
crossing pair. For a crossing pair (i, 7), let £(i,j) = 7 —i — 1 and call £(, j) the length of the minimal
crossing pair (7, j). A crossing pair (7, ) is minimal in P if ), ¢ Np(x1) U Np(x,,) for each i < h < j.
For S C V(G), we call P = x1x9 - - - 2, an S-path if x1,x,, € S. For a graph G, let w(G) be the order
of a maximum clique in G.

2.2 A family of graphs

Let m > k> 5and 1 <r < /£ be integers. We now devote the rest of this subsection to the definition of
a family of m-vertex graphs F(m, k,r) 3. We divide F(m, k,r) into the following four classes, namely
Types I, II, IIT and IV (see Figures 2, 3, 4 and 5).

Type I: Each graph F' € F(m,k,r) of Type I satisfies:

e k=20+1,r</{—1,and ¢(F) < k;

e F contains a Hamiltonian path vivs ... vy, such that A = {v1,...,v.}; B = {Um—rt1,---,Um};
and either
—m=k,r<{—1 and C = {vy41,Vr43, .., Vm—r—2, Um—p }; OF

—m2>k,r={(—1and C = {Ur+lavm—r} = {’Uéyvm7€+1}§

3For the parameter r, roughly speaking we may view it as something close to w(F), though its own meaning will
be clear in the proof of Theorem 1.2. Readers may treat the coming lengthy definition as a handout and skip to next
sections.



e cach vertex in A has degree exactly ¢ in F[A U C] and each vertex in B has degree exactly ¢ in
F[BuUC].

V4 Vg Vg

V1 V2 U3 U5 Ug U7 Vg V1o V11 V1 V2 V3  Us U7 Vg V1g V11
Figure 2. Graphs of Type 1.
Type II: Each graph F € F(m,k,r) of Type II satisfies:
o k=20+2,r<{¢—1,and ¢(F) < k;
e F contains a Hamiltonian path vivs ... v, such that B = {v—r41,...,0n}; and either

—m=k,r<{l-1,A={vi,...,vo.}and C = {vp11,0r43, ..., Up2i41, Ur+2itds- - - s Um—r—2, Um—r |,
where 0 <1i < (m — 2r — 4)/2 (Figure 3(a));

-—m=k+1,r=0-2>2 A={vy,...,v.}, and C = {vp41, Vp44, vr47} (Figure 3(b));

-—m=k r</l-—1, A= {v,...,041}, and C = {vp42,Vr44, ..., Vm—r—2,Um—r} (Figure
3(c));
-—m>k,r=0—1 A={v1,...,vp41}, and C = {vr42,Um—r} = {Vr4+1, Um—r41}; OF

-—m2= ka r=4{— 17 A= {”Ul, s )UT}) and C' = {UT+17UTTL—T’} = {W:Um—e-i-l};

e cach vertex in A has degree exactly ¢ in F[A U C] such that there are two independent edges
between {v,12,V,_r} and A when |A] = r + 1 % and each vertex in B has degree exactly £ in
F[BUC].

V4 Vg V8

A%
X

TN

U1 V2 V3 U5 U7 Ug V10V11V12 U1 V2 V3 U5 Vg Ug Vg V11V12V13 V1 V2 V3 U5 Ur V9 V10

(a) (b) (c)
Figure 3. Graphs of Type II.

Type III: Each graph F' € F(m,k,r) of Type III satisfies:
o k=20+2,r</{—1,and ¢(F) < k;
e F contains a Hamiltonian path vivs ... v, such that when B = {vy,—y41,...,0n}; and either
— m = k‘, r < - 1, C = {U3,U5, co o s V14265 Up4-24-245 Up44+4245 « -+ ,’Um,T,Q,’Um,T}, and A =
{v1, V342i, Vay2iy - -, Upr142i} where 1 < i < ¢ —r (Figure 4(a));
-—m=k,r<fl—1, A= {v,v3,...,041}, and C = {v,42,Vp44, .., Um—r—2,Vm—r} (Figure
4(b));
-—m=k,r<l—1, A={v1,...,v.}, and C = {v,42,Vr44, ..., Um—r—2,Um—r} (Figure 4(c));

-—m>k,r=0—1, A={v1,v3,...,0041}, and C = {v,19,Vm—r} = {Vr41, Vm—r¢+1} (similar
as Figure 4(b)); or

4This condition ensure the graphs in Type II are 2-connected and have some other good properties for the proofs in
the forthcoming paper [11].



-—m>kr=0—1 A=A{v,...,v.}, and C = {v42,Vm—r} = {Vrs1, Vm_r¢s+1}(similar as
Figure 4(c));

e cach vertex in A has degree exactly ¢ in F[A U C] and each vertex in B has degree exactly ¢ in
F[BUC].

(a) (b) (c)
Figure 4. Graphs of Type IIIL.

Type IV: Each graph F' € F(m,k,r) of Type IV satisfies:
e k=242, r=/{ and c¢(F) < k;
e F contains a Hamiltonian path vivy ... v, with A ={vy,...,v.} and B = {vpm—ri1,..-,Um};

e cach vertex in A has degree exactly ¢ in F[AU{v,11,v;}] and each vertex in B has degree exactly
¢in FIBU{vpm—_r,v;}], where r +3 <i<m—r—2.

V1 U2 U3 V11 V12 V13
Figure 5. F € F(13,10,4) of Type IV

3 A generalization of Pésa’s lemma

The following well-known lemma is due to Pésa [12] and is extensively used in extremal graph theory.

Lemma 3.1 (Pésa [12]). Let G be a 2-connected graph and P = x1x9 - Ty, be a path in G. Then G
contains a cycle of length at least min{m, dp(z1) + dp(zm)} containing Nplx1] U Np[x,,]. Moreover,
if P is a mnon-crossing path with Np(x1) N Np(x,,) = 0, then G contains a cycle of length at least
min{m, dp(x1)+dp(zm)+2}. If P is a non-crossing path with Np(x1) \Np(zy) # 0, then G contains
a cycle of length at least min{m,dp(z1) + dp(zy) + 1}.

Now we give the proof of our main result.

Proof of Theorem 1.2. Let G be a 2-connected graph with ¢(G) < k and H be the (¢ — 1)-
disintegration of G. Suppose to the contrary that G does not contain any subgraph in F(m, k,r) with
m > k and r < /4. Let P be the family of all longest H-paths in G. We proceed by showing a sequence
of claims in what follows.

Claim 1. Fvery P = z1x2-- -y € P satisfies the following properties.
(i) Ng(xz1) € Np(x1) and Ng(zm) € Np(zm),
(1i) dp(z1) > dg(z1) >0 and dp(zy,) > dg(z,) > ¢, and

(iii) Np(z1) N Nplzm] =0 and N (2,,) N Nplzi]) = 0.



Proof. (i). Suppose to the contrary that there exists a vertex y € (Ng(x1) \ Np(z1)). Then yziPx,,
is an H-path longer than P, a contradiction. Therefore, we have Ny (z1) C Np(x1). Similarly, we
have Ny (z,) € Np(xm,).

(7). Note that H is the (¢ — 1)-disintegration of G. FEach vertex of H has degree at least ¢
in H, that is dg(x1) > ¢ and dg(z,) > £. It follows from (i) that dp(z1) > dg(x1) > ¢ and

(i17). Suppose to the contrary that Ny (z1) N Np[zy] # 0. Let x; be a vertex in N (z1) N Np[2ym,),
i.e., x1 is adjacent to z;y1 and z,, is adjacent to x;. Thus, x1 Px;x, Px;1121 is a cycle of length m > k
in G, a contradiction to ¢(G) < k. Therefore, we have N (z1) N Np[zy,] = 0. Similarly, we have
Njg(:nm) N Np[z1] = 0. O

Given a path P with a crossing pair (i, 7), let
Ui = Nplar] U (V7 (@) \ {1 }) and Vy = Npfa] U (V7 (@) \ {aj1}).

Claim 2. Let P = x1x9 - - Xy, be a crossing path in P and (i,7) be any minimal crossing pair of P.
Then the following properties hold.

(1) dp(x1) +dp(xm) = Uil = |Vj| = 2,

)
(it) U; C V(z1Px;) UV (xjPxy,), V; C V(21 Px;) UV (x;Pry),
(t19) m—k+1<4L(i,5) <m —2¢, d.e, 20 <|V(x1Px;) UV (x;Pry)| < k—1, and
)

(iv) [(V(z1Pz;) UV (xjPxy)) \ Uil = |(V(21Pz;) UV (xjPxy)) \ V;| < 1. Moreover, if
— k is odd,
— dp(z1) +dp(xm) =20+1 or
— L(i,j) =m — 20,

then V(x1Px;) UV (x;Pxy,) = U; = Vj.

Proof. By Claim 1(iii) we have Np[z1] N (N7 (2) \ {zi+1}) = 0. Hence we have |U;| = dp(z1) + 1+
dp(xm) —1 = dp(x1) + dp(xy,). Similarly, we have |V;| = dp(z1) + dp(zy,). It follows from Claim
1(i7) that |U;| = |V;| > 2¢.

By the definition of a minimal crossing pair, we can easily obtain U; C V(x1 Pz;) UV (z;Px,,) and
V; C V(z1Px;) UV (xjPxy,), proving (ii).

Since ¢(G) < k and 1 Px;xy, Pz is a cycle of length m — £(4, j), we have m — £(i, j) < k, i.e.,
m —k+1</£(i,j). By (i) and (ii) we have 2¢ < |V;| < |V (21 Px;) UV (z;Pxp,)|. Therefore, we have
0(i,5) =m — |V(x1Px;) UV (2;Pxy,)| < m — 2(, proving (#4i).

Lastly, from (@) (i) and (iii) we have |(V (z1Px;) UV (2jPxy,)) \ Ui| = |(V (21 Pz;)) UV (2 Pzim)) \
Vil <k—1-2¢ <1. If k = 2¢+1is odd, then [(V (z1 Pz;)UV (z; Pz ))\Ui| = |(V (21 Px;)UV (z;Pzp))\
Vil <2041-1-20=0,ie., V(21 Pz;) UV (2jPxy,) = U; = V. If dp(x1) +dp(zm) = 20+ 1, then by
(¢) we have |U;| = |Vj| = 2¢+1, and hence V(21 Px;) UV (2 Pxy,) = U; = Vj. If £(i, j) = m — 2{, then
|V (z1Pz;) UV (xjPxp,)| = 2¢, and hence by (i) and (i) we have V(z1Pz;) UV (z;Pxy,) = U; = Vj.
The proof of the claim is complete. O

Given a path P with a crossing pair (i, 7), let
Uf = Nulz1] U (Ng(zm) \ {zit1}) and V} = Ny [n] U (Ng(21) \ {zj-1})-

Claim 2*. Let P = z1x2 -+ Xy, be a crossing path in P and (i,7) be any minimal crossing pair of P.
Then the following properties hold.

(1) du(z1) +du(zn) = (U] = [V} = 2¢,



() U CV(21Px;) UV (zjPry) and Vi C V(21Pz;) UV (2 Prm),
(@i) |(V(z1Pz;) UV (2;Prm)) \ U] = |(V(21Px;) UV (2 Prp)) \ V[ < 1 and
() if

— k is odd,
—dy(x1) +dg(xm) =20+ 1 or
— L(i,j) =m — 20,

then V(z1Pxz;) UV (z;Pry) = U =V}, Ng(x1) = Np(z1) and Ng(zm) = Np(zm).

Proof. By Claim 1(i), we have U} C U; and V;® C Vj. Similar to the proof of Claim 2, we can easily
prove (i), (i) and (#41).

If k = 2¢+1 is odd, then it follows from Claim 2 that dp(z1)+dp(zp) = |V (21 Px;)UV (2 Pxy,)| =
2¢, and hence by (i) and (ii) we have V(21 Pz;) UV (2 Pxy,) = U = V7, implying dy (1) +dp(vm) =
|V (x1Px;) UV (xjPxy)| > dp(x1) + dp(zp). Thus by Claim 1(7) we have Ny(x1) = Np(z1) and
Ni(zm) = Np(2zp). The rest of the proof is similar and omitted. O

The following Figure 6 shows the neighbors of x; and x,, in a crossing path P with a minimal
crossing pair (7,7) (at most one blue or red edges are missing when k is even, dp(x1) + dp(z,,) = 2¢
and £(i,j) =m — 20 —1).

—— N

I Ty Ty Tm

Figure 6. The neighbors of 1 and x,, in the crossing path P

Next we consider the neighbors of end-vertices of a path with a crossing pair. The following claim
strengthens Claims 1 and 2 and will be used many times throughout the proof.
Let Ni' (zm) = Nj () and N (2,) = (NF D (@) * for i > 2.

Claim 3. Let P = x1x2- - Ty be a crossing path in G with dp(x1) > ¢, dp(xyy) > £ and m’ > k.
Let X = V(P)\ (U?;/l_kJrl Nz ) U{21}). Then the following holds.

(¢) If k is even, then x1 is adjacent to all vertices but at most one of X.
(13) If k is odd or dp(x1) = |X|, then x1 is adjacent to each vertex of X.

Proof. Clearly, since ¢(G) < k, we have Np(z1) C V(P) \ (UZZ;ICH N (@) U{z1}) = X. Since P
has a minimal crossing pair, say (i,7), by Claim 2(i7i) we have £(i,7) > m' — k + 1. Thus z; is not
adjacent to Zit1,...,Titm/—k+1 (see Figure 7, x1 can not be adjacent to the red empty vertices and
adjacent to all but at most one vertices of the black vertices). Hence we have

1X|<m —(dp(zpy)—1)—(m' —k+1)—1=k—1—dp(zm).

If K =20+ 2 is even, then since dp(z,,) > ¢, we have | X| < ¢+ 1. Hence, using dp(z1) > ¢, 1 must
be adjacent to all vertices but at most one in X. The proof for the rest of Claim 3 is similar and
omitted. O

T ZT; € g T

Figure 7. The possible neighbors of z; in P



Remark. In Claim 3, the length of P may be less than m and the end-vertices of P may not belong
to H.

For P = z129 -+ Ty € P, let sp = min{h : x4,1 € Np(2,,)} and tp = max{h : 2;,_; € Np(z1)}.?

Claim 4. Let P = x1x2 - - - Ty, be a crossing path in P with a minimal crossing pair (i,7). If vs € V(H)
and xs41 € Np(x1), then

e Nplzs] = Np[x1], or k is even and x4 is adjacent to all but at most one vertex in Np|xi];
e z1 cannot be adjacent to two consecutive vertices of x;Px,—1 and Nplzs] C Nplx1].
Similar result holds when x¢ € V(H) and x1—1 € Np(zy,).

Proof. By symmetry between x; and z,,, we will prove the first statement. We consider the path
R = z,Px1x541Pxyy. Tt follows from x4, x,, € V(H) that R € P. We have Ny[zxs] C V(R) by the
maximality of m and Ng[zy,] C V(2541 Rxy,) by the definition of s. Hence, R has a crossing pair, as
otherwise we have |V (xz1Pz,)| > |Ng[zs]| > ¢ + 1 and hence z1Pz;x,, Pxjz, is a cycle of length at
least |V (21 P2si1)| + |N# (2m) \ {zi1}| + {2 2g41}| = £+ 1+ ¢ —1+2 > k, a contradiction. By
Claim 3, we have Np[zs] € Np[z1], whence Np[xs] = Np[xi], or k is even and z; is adjacent to all
but at most one vertex in Np[z1].

Now, suppose to the contrary that z; is adjacent to x, and x441 for some j < g <t — 2. Note
that x4, 2441 € Nplz1] C V(P)\ Ule Np'(zm), where § = m — k + 1. Thus by Claim 3, x5 must
be adjacent to one of x4, x4+1. If x5 is adjacent to x4, then xsxqPrsi1TmPror171 P, is a cycle of
length m; If z, is adjacent to x441, then xsxq11 Prpmxsy1 Prqr1Prs is a cycle of length m, both are

contradictions. This completes the proof of the claim. O
I Ts LTs+1 Tq Tg+1 T

P=xPx.xsi 1Py

P

T 1 Tst+1 Tg Tg+1 Tm
R=xz;Px1x511Pxp,
Figure 8. The structure of the crossing path P and R

Now according to the parity of k, we divide the remaining proof into two subsections. First, we
consider the odd case, whose proof is comparably easier, yet reveals essential ideas of our arguments.

3.1 £ is odd.

In this subsection, we have k = 2¢ + 1. From Claim 2*, we have Ng(x1) = Np(z1) and Ny (z,,) =
Np(zp,).

Claim 5. There exists a crossing path in P.

Proof. Suppose to the contrary that all paths in P are non-crossing. Then thisis a P = xjz9 -2y, €
P. By Lemma 3.1, G contains a cycle of length at least min{m, 2¢ + 1} > k, a contradiction. O

®When there is no ambiguity, we often omit the subscript index in sp and tp (such as in the coming claim).



By Claim 5, there is a crossing path P € P. Within P, let (i1,j1) and (i2,j2) be two minimal
crossing pairs of P such that i; is as small as possible and j, is as large as possible.”

Claim 6. P has a unique minimal crossing pair (i,j) with (i, j) = m—2¢ when m > k+1. Moreover,
if m =k, then each minimal crossing pair (i',j") in P satisfies that €(¢',5") = 1.

Proof. Let m > k + 1. Suppose to the contrary that there exist two minimal crossing pairs in P, say
i1 < j1 <2 < jo. By Claim 2(i7i), we have £(i1,71) > m—k+1 > 2 and £(ig, j2) > m—k+1 > 2. Then
we have contradicted Claim 2(ii) since zj,41 € V (2, Pxy,) but xi,11 ¢ Np(zp,) and 4,42 ¢ Np(x1).
Let m = k. Then by Claim 2(iii) again, each minimal crossing pair (i, ;') satisfies 1 =k —k +1 <
0(i',j") < k —2¢ =1. The proof of Claim 6 is complete. O

Claim 7. i1 =s+1 and jo =t — 1.

Proof. We may assume that jo < ¢t — 1. By the definition of s,t, we have xsy; € Np(z,,) and
z¢—1 € Np(z1). Since k is odd, by Claim 2*(iv) we have U} = V' = V(z1Px;) UV (xj, Pry), and
hence x5, 2511 € Ng(x1). Thus it follows from Claim 4 that z; is not adjacent to x;—o which implies
that jo <t —2. By U, = V! = V(21 Pz;,) UV (zj, Pry,) again, z., is adjacent to ;3. Therefore,
(t —3,t — 1) is a minimal crossing pair in P, contradicting the choice of j2. Thus we have jo =t — 1.
Similarly, we have iy = s + 1. O

Now we are ready to finish the proof of Theorem 1.2 when k is odd. For each minimal crossing
pair, by Claim 2(7ii) we have
|V($1P£L’1) U V(IL‘JP;Em)| = 2/. (2)

By Claim 2*(iv), we have V(z1Px;) UV (z;Pxy) = U = V[, Ny(x1) = Np(21) and Ny(zy,) =
Np(zy,), and hence we have (note that x5 ¢ Ny (zy,) and z; ¢ Ng(x1))

V(z1Pxs1+1) C Nylx1] and V(x4—1 Pzp,) C Nyglzp,]- (3)
Moreover, we have
dH(xl) = dp(l’l) = /{ and dH(.Tm) = dp(.fvm) = /. (4)
By Claim 7, we derive that iy = s+ 1 and jo =t — 1. If (i1,71) = (i2, j2), then let C = {xs11, 241},
otherwise let C' = {xs41,Ts43, -, T1—3,24—1}. Let

A=V(x1Pxs), B=V(xtPxy), D=V(P)\(AUBUC).

If m > k+1, then by Claim 6, P has a unique minimal crossing pair (4, j), and hence by Claim 7 we have
(i,7) = (s+1,t—1). Hence, by (3) and the definitions of s and ¢, we have Ny[z1] = AU{Zs11,21—1},
Nylzm] = BU{xs41, 241} and |A| = |B| = {—1. From (3), Ry, = 4 Px12y41 Py, is an H-path on m
vertices for 2 < < s and hence dg, (z,) > ¢ and dg. (z,) > £. If R, is not a crossing path, then by
Lemma 3.1 we have ¢(G) > min{m,2¢ + 1} = k, a contradiction. Thus R, is a crossing path, and by
Claim 3(ii) x~ is adjacent to each vertex of (AU{xs11,2¢—1})\{z~}. Thus we have Ng[z,] = Nglz1].
Similarly, we have Ng[x)] = Nglxy,] for t < A < m. Hence G[A] and G[B] are complete graphs.
Therefore, it is easy to check that G[V (P)] gives a copy in F(m,k, s) of Type I, a contradiction (see

Figure 9).

I Ls+1 Ti—1 Tm
Figure 9. The structure of the crossing path P with m > k + 1

SNote that it is possible that (i1, 1) = (42, j2)-



Let m = k. From (3), we have x5, 2511 € Ny(x1) and 24,241 € Ng(x,,). By Claim 4, x is
not adjacent to consecutive vertices of V(z;, Px;—1) and z,, is not adjacent to consecutive vertices
of V(zs41Px;,). Since x,, is adjacent to xsy1, we have that z,, is not adjacent to xsy2, whence 1
is not adjacent to xsio by Claim 1(ii7). By Claim 6, x; is adjacent to zs43. Consider the minimal
crossing pair (s +1,s+3). By Claim 2*(iv), we have V(21 Pzs41) UV (2543Pxy) = Ul = V3, and
hence x,, is adjacent to xs+3. Repeating the above arguments, we have z; and x,, are adjacent to
Ts45, TstTy -, Ti—1, and hence we have Ny[z1] = AU C and Ng|x,,] = BUC. Consider the paths
R, = zyPx12y41Pxy, for 2 < v < 's. Since ¢(G) < k, R, € P is a crossing path by Lemma 3.1.
By Claim 3(ii), the neighbors of z, in H are determined by the neighbors of z,, in R,, that is
Nylzy] = Nglzq]. Similarly, Ng[z)] = Nglay,] for t < A < m. Thus G[A] and G[B] are complete
graphs. Now it is straightforward to check that G[V(P)] gives a copy in F(m,k,s) of Type I, a
contradiction (see Figure 10). This completes the proof of Theorem 1.2 for odd k.

———————x

z1 Ts+1 Ti—1 Tm
Figure 10. The structure of the crossing path P when m = k

3.2 £k is even.

In this subsection, we have k = 2¢ + 2.
Claim 8. There exists a crossing path in P.

Proof. Suppose to the contrary that all paths in P are non-crossing. Let P = x1x2 -z, € P. Let «
be the maximum integer such that z, is adjacent to 1 and 3 be the minimum integer such that zg
is adjacent to xz,,. Note that a < .

If « < S, then by Lemma 3.1, G contains a cycle of length at least min{m,2¢ + 2} > k, a
contradiction. Therefore, we have a« = p. Since G is 2-connected, there exists a path @ in G
with V(Q) N V(P) = {zy,zp} for 1 <u < a < v <m. Let p=min{h : h > u,xp, € Np(z1)}
and ¢ = max{h : h < v,z € Np(zp)}. Then Cy = z1Px,QryPrpmr,Pryx; is a cycle containing
Nplz1] U Np[zy,]. By Claim 1, Cj has length at least k — 1. Note that ¢(G) < k. This forces that Cy
has length k —1. It follows that dy(z1) = dg(2m) = ¢, Nu(z1) = V(z2Pz,) UV (2pPxy), Nu(zm) =
V(zqPxq) UV (xyPrm—-1), V(Co) = Nulz1]U Nglzy,] and Q = z,2,.

For any 2 < < u — 1, we consider the path R, = x,Px12,4+1Pxp,. Since x, € Ng(z1) C V(H),
R, € P is an H-path. Also, by our assumption, R, is non-crossing. It follows that Ng[z,] C
V(z1Pxo). Suppose that ., has a neighbor y in V(2y41Pxp—1). Then oy Pr12y 11 P2y Quy PryxePyz,
is a cycle of length at least k + 1, a contradiction. Therefore, we have

Nglz]) = Nglai] for any 2 <y <wu—1. (5)

By symmetry, we have
Nglz] = Ngla,] forany v+1 <y <m— 1. (6)

Suppose that p < « or ¢ > a. By symmetry, we may assume that p < a. Then we have
ZTa—1 € Np(x1). Now, we consider the path L = z, Pxq—121 PTy—124 P2y, (since Nglz,—1] = Ng[z1],
Zy—1 is adjacent to x,). Clearly, L € P. Note that =, € Np(zy), o € Np(2,) and z, precedes z,
in L. It follows that L is a crossing path in P, a contradiction.

The last paragraph implies that p = « and ¢ = «. Suppose that v = o — 1 or v = a + 1.
By symmetry, we may assume v = « — 1. Then z,x, € E(P). Now we consider the path M =
Ty Px1260 Pxyy. Clearly, M € P. Note that z, € Ny (zy), o € Ny(zh,) and z, precedes x,, in M. It
follows that M is a crossing path in P, a contradiction.
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Thus, we may suppose that u < o — 1 and v > a+ 1. Let
A=V(x1Pxy), B=V(xyPx,)and C =V (P)\ (AU B).

By (5) and (6), G[A] and G[B] are complete graphs. Hence, it is easy to check that G[V(P)] gives a
copy in F(m, k,?) of Type IV (with k = 20+ 2, w = 24 and {wy, w2} = {xy, z,}), a contradiction. [

e

X1 Ty Lo Ty Tm

Figure 11. The structure of the non-crossing path P

We choose a longest H-path P = x1 Pz, € P satisfying the following.
(a) du(x1) + du(xy,) is as large as possible;
(b) subject to (a), £(i,j) is as large as possible, where (i, ) is a minimal crossing pair (i, j) in P;
(c) and subject to (a) and (b), P has as many minimal crossing pairs as possible.

Within P, let (i1, j1) and (i2, j2) be two minimal crossing pairs of P such that i; is as small as possible
and jo is as large as possible. ”

Claim 9. The followings hold for the crossing pairs of P.
o There is a unique minimal crossing pair in P when m > k + 2,
e there are at most two minimal crossing pairs in P when m =k + 1 and
e cach minimal crossing pair (i',j') # (i,7) in P satisfies £(i',j') = 1 when m = k.

Proof. Let m > k+ 2. Suppose to the contrary that there exist two minimal crossing pairs in P, that
is i1 < 71 <y < jo. By Claim 2(iii), we have £(i1,71) > m—k+ 1> 3 and £(i2,j2) >m—k+1> 3.
Note that V(2i,41P2j,-2) N (Np (1) \ {zj;-1}) U Nplam]) = 0, [V (2ip41Prjy—2)| = iz, j2) — 1 > 2
and [(Np (1) \ {zj,—1}) U Nplaw]| = |V},| > 2¢ by Claim 2(i) and Claim 2(i7i) (recall the definitions
of U; and Vj). It follows that x1 Px;, 2., Pz, x1 is a cycle of length at least 2042 = k, a contradiction.

Let m = k+1. Suppose to the contrary that there exist three minimal crossing pairs (aq, 1), (a2, 82)
and (as,B3) in P. Without loss of generality, we may assume that a1 < 81 < ag < 2 < az < fs.
Note that

(V(Zart1Prs,—2) UV (Tag41Prg;—2)) 0 (Np (21) \ {Tay-1}) U Nplm]) = 0,

V(a1 Pagyo] = IV (@ags1 Pag2)| = 1 and [(Nj (@1) \ {2,-1}) U Nplam]| = [Vj] 2 2¢ by Claim
2(). Then x1Pxqo, xmPxg 21 is a cycle of length at least 20 + 1+ 1 = k, a contradiction.

Finally, let m = k. By Claim 2(iii), we have £(i,5) = 1 or £(i,j) = 2. We may assume that
0(i,7) = 2 = m—2/, since otherwise the result follows by the choice of (7, j). Hence Claim 2(iv) implies
V(x1Px;) UV (x;Pry) = U; = V. Suppose to the contrary that there exists a minimal crossing pair
(',4") other than (4,7) in P with £(i/, j') = 2. Tt is clear that V(xy41Pxj—2) N ((Np (x1) \ {zj—1}) U
Nplzm]) =0 and |V (zy411Pxj_2)| = 1, contradicting V (z1 Px;) UV (zjPxyp,) = Uy = Vj. O

There are two possibilities for the size of m: m > k + 1 or m = k. We now split the rest of the
proof into two cases based on these two possibilities.

"It is possible that (i1,751) = (42, j2).
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3.21 m>k+1.

Since m > k + 1, by Claim 9, there are at most two minimal crossing pairs in P. Suppose that there
are two minimal crossing pairs (i1, j1), (i2,j2) in P. By Claim 9 again, we have m = k + 1. By Claim
2(ii1), we have 2 = m—k+1 < l(i1, j1),(i2,j2) < m—2¢ =2(+2+41—2¢ = 3. Consider the crossing
pair (i1,j1). From Claim 2(iv) we have |(V(z1Px;,) U V(zj, Pxy,)) \ Us| < 1 implying (recall the
definition of U;,) |V (x4, Pxj,)| < 4, i.e., £(i2, j2) < 2. Similarly, we have £(i1, j1) < 2. Thus we obtain
0(i1, j1) = L(i2, j2) = 2. Consider the crossing pair (i1, ji1). We have z;,19 ¢ U;, (recall the definition
of U;,). Hence, by Claim 2(i7) and (iv), we have

Uiy = (V(21Pzyy) UV (25, Poy)) \ {Tiyt2} (7)

and hence Claim 2(7) and (i¢¢) imply that |U;,| = 2¢. Moreover, by Claim 2*(iv), we have Np(z1) =
Ny(z1), Np(xm) = Ng(xy) and dp(x1) = dp(xy) = dg(x1) = dg(xy,) = €. Hence from the
definition of s and ¢, we have xg, 2511 € Ny(x1) and 41,21 € Ng(zp,).

Assume that jo < t — 1. Since xs, 2541 € Ng(x1) and 1 is adjacent to x;—; by the definition of
t, it follows from Claim 4 that z; is not adjacent to z;_o and hence jo <t — 3. Thus, by (7), z,, is
adjacent to z;_3. Therefore, (t — 3,¢ — 1) is minimal crossing pair in P with jo < ¢ — 3, contradicting
that there are two minimal crossing pairs. Hence, we have jo = ¢ — 1. Similarly, we have i; = s + 1.
Note that x; is not adjacent to x;,+2 and z,, is not adjacent to x;,11. Consider the crossing pair
(s +1,51) = (i1,51). We have xj,12 ¢ U/. By Claim 2*(iii), we have

(V(z1Pzsi1) UV (25 Prm)) \ Ui, = {Zis+2}- (8)

By Claim 4, z; is not adjacent to ;1 and hence by (8) z,, is adjacent to z;,. By Claim 4 again,
T is not adjacent to x;, 41 implying j1 = i2. Let

A=V (x1Pxy_3), B=V(xp16Pris1), and C = {zg_1,Tr42,Try5}

Combing the above arguments, we have Ny[z1] = AUC, Ny[z,| = BUC and |A| > 2. Consider the
paths &y Px12y41 Py, for 2 <y <l—2and z)Prj1xr—1 Pxy for £+6 < X < k. Since |V (z1Pxo—1)| =
(=1, |V(zmPxoys)| =€—1, 2 € V(H) and z\ € V(H), x4 is adjacent to some vertex of V(¢ Pxj1)
and x) is adjacent to some vertex of V(1 Pxsy4). Thus those paths are crossing H-paths. By Claim 3,
we can determine the neighbors of z, and ) in H, that is Ny |z1] = Nglz,] and Ng[zg+1] = Nulzy].
Hence G[A] and G[B] are complete graphs, G[V (P)] gives a copy of F(k+ 1,k,¢ —2) of Type II with
|A| > 2, a contradiction (see Figure 12.).

x1 Te—1 Lo+2 Te45 Tg41
Figure 12. The structure of the crossing path P with two crossing pairs when m =k + 1

Thus, we may assume that there is a unique minimal crossing pair (7,j) in P.
Claim 10. Consider the crossing pair (i,j7). We have i =s+1 and j =t — 1.

Proof. If dg(z1) + dg(xm) > 20 + 1, then by Claim 2(éi7) and Claim 2*(3), (i), we have dg(z1) +
du(zm) = 20+ 1. Hence by Claim 2*(iv), we have V(z1Pz;) UV (z;Pxy) = Ul = V', Np(z1) =
Ny(z1) and Np(zy,) = Nyg(zp). If m — £(i,j) = 2¢, by Claim 2*(iv), we also have V(x1Px;) U
V(zjPrm) = U’ =V}, Np(z1) = Ny(21) and Np(zmm) = Np(zm). Therefore, we have xg,z511 €
Ng(z1), and hence by Claim 4, z; is not adjacent to consecutive vertices of V(x;jPx;_1). Since z is
adjacent to z;, x1 is not adjacent to z;11. Then by V(21 Px;) UV (2 Pxy,) = U =V}, xp, is adjacent
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to ;. Since there is a unique minimal crossing pair, z1 is not adjacent to any vertex of V(z41Pxm),
implying j =t — 1. By symmetry we have ¢ = s + 1.

Now, suppose that m — £(i,j) = 20 + 1 and dy(z1) + dg(xm) = 24, ie., dg(r1) = dg(xm,) = L.
Then by Claim 2*(i4), there exists a unique vertex z, € V(x1Pz;) UV (z;Pzy,) such that

{z,} VU] = V(z1Px;) UV (zjPay,). (9)
By symmetry between x1 and x,,, we may assume that 1 < p <. Then we have
V(xzjPzy) C U, (10)

implying that x4, x;—1 € Ng(x,) (m # t by m > k + 1). Suppose to the contrary that i > s + 1.
Since x¢,x4—1 € Ng(xm), ; € Ng(zm), by Claim 4, we have z;—1 ¢ Np(x,,). Since there is only
one minimal crossing pair in P, with Claim 1(iii), we have V(zs41Px;) N Np(xz1) = 0. Thus by
zi—1 ¢ Np(zp) and z; ¢ Np(x1), x; does not belongs to U, i.e., p = i. Since z; is not adjacent
to z;—1 (by i —1 > s+ 1), by (9) we have x;_2 € Npg(z,,) and hence x;_3 is not adjacent to z,
by ¢, x¢—1 € Ng(xy,) and Claim 4. Thus by (9) and p = 4, z1 is adjacent z;_5. Since there is a
unique minimal crossing pair, we have s = ¢ — 3. Hence, we have V(z1Pz,) C U/, implying that
Ts, Tor1 € Np(x1) by m > k + 1 (see Figure 13.). By Claim 4, z; is not adjacent to ;1. From
(10), z,, is adjacent to z;, and since there is a unique minimal crossing pair, from (10) we deduce
that V(z;Prpm-1) € Ng(vm). We consider the path Ry = z;Pxy,xi—1Pxy. Since zy € V(H), we
have dg, (z¢) > dg(z;) > L. Note that |V (xiPxy)| < dg(xm) —1 =€ —1. Thus z; is adjacent to
some vertices of V(x1Pz;_2). Since x; is adjacent to x;—1, Ry € P is a crossing path. Hence by
Claim 3, x; must be adjacent to one of x;_2,z;—1 (;_2,z;—1 are possible neighbors of z; in R;). Then
xyPr12i—1 Pxi2,, Pri2, is a cycle of length at least m —1 > k, where v € {i—2,i—1}, a contradiction.
This contradiction shows that i = s + 1.

T T; Tj  Tt—1 Tm
Figure 13. P = 21 Pxsx511 Py, with dg(z1) = dg(xy,) =€ and m — £(i,j) = 24

Next, we will show that j =t — 1. First, we suppose that z;;1 € Np(z1) (see Figure 14.). Then
we have

|V(£L‘1P:BZ)’ Sﬂ—l. (11)

By Claim 4, we have x5 ¢ V(H) or xs41 ¢ Np(z1). If 25 ¢ V(H), then x5 ¢ Ny(z1). Since x5 is
not adjacent to x,, by the definition of s, then we have z, = xp, i.e., p =i — 1. If 541 ¢ Np(z1),
then z,11 ¢ Np(z1). Sine x, is not adjacent to x,, by the definition of s, then we have z,11 = ),
i.e., p =1i. Hence, we can consider the following two cases.

Case 10.1. p =i = s+ 1. Then z; is not adjacent to z;. It follows from (9) that V(x1Pz;—1) C
Nylz1]. If i < 3, then z12;Px;xy P21 is a cycle of length m — 1 > k, a contradiction. Therefore,
we have i > 4. Then we consider the path Rs = x;_9Pz1x;—1Px,,. Since x;,_9 € V(H) (by (9)), by
(11) m;—o is adjacent to at least one vertex of V(x;1R3zy,), and hence Rs € P is a crossing path.
Hence by Claim 3, z;_2 must be adjacent to at least one vertex in {z;,z;41} (as in the proof of
Claim 4). If z;_5 is adjacent to x;, then x1Px;_ox;Px;x,, Prjf121 is a cycle of length m —1 > k,
a contradiction. Similarly, if x;_o is adjacent to x;i1, then x1Px;_sx;y1Pxyx;Pxjz is a cycle of
length m — 1 > k, a contradiction.

Case 10.2. p = i—1 = s. Then z; € Ng(x1) and x;—1 ¢ V(H). Clearly, by (9) we have
xi—1 ¢ Np(x1) and x;_9 € Ng(x1). Suppose that x;_ has a neighbor y € V(H) not in P. Then
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we consider the H-path Ry = yz; oPx1x;Px,, on m vertices. Since R4 is a longest H-path, we
have dg,(y) > du(y) > ¢. From (11) we have |V (yz;—2Px1)| = |V (x1Px;)] —1 < £ —2. Thus y is
adjacent to at least one vertex of V(x;1R4xy,), and hence Ry € P is a crossing path. Therefore,
by Claim 3, y must be adjacent to one of {z;,z;1} (as in the proof of Claim 4). If y is adjacent
to x; (or xjy1), then z1Px;_oyxj Prjxy Prji12z1 (or x1Pri_oyxjp1 PryziPrjzy) is a cycle of length
at least k, a contradiction. Therefore, we have Ng(z;—2) C V(P). Then we consider the path Rs =
r;_oPz12;Pr,;,.8 Clearly, we have dg, (vi—2) > dy(xi—2) > € (z;—1 ¢ V(H)) and dg, (zm) > £ (zm €
V(H) is not adjacent to z;—; by Claim 4 and x;_1,2; € Ng(zy)). By (11), we have |V (z;—oPz1)| =
|V (x1Px;)| —2 < £ —3. Then x;_2 is adjacent to at least one vertex of V(x;41R5%y,), and hence Rs
has a crossing pair. Therefore, by Claim 3, z;_o must be adjacent to at least one of {z;,x;41}. If
xi—9 is adjacent to x; (or 1), then z1Px;_ox;PrxmPrji1z1 (or 1 Pxi_oxji1 Prpa; Prjxy) is a
cycle of length m — 1 > k, a contradiction.

Combining Cases 10.1 and 10.2, z; is not adjacent to xj11. By (10), =, is adjacent to x;. Since
there is only one minimal crossing pair, z1 is not adjacent to any vertex of V(x;i11Pxy), that is,
j =t —1. This completes the proof of the claim. O

1 Ti—1T;  TjTj+1 Tm
Figure 14. z; is adjacent to both of x; and x4

Therefore, there is only one minimal crossing pair (4, j) in P with i = s+1 and j = t—1 by Claim 10.
It follows from Claim 2(¢4i) that m —£(7, ) = 2¢ or m — (i, j) = 20+ 1. Suppose that m —£(i, j) = 2¢.
Then applying Claim 2*(iv), we have U} = V' = V(21Px;) UV (z;Pxy,), Nu(z1) = Np(z1) and
Ny (zm) = Np(xy,). Moreover, we have ¢ = £ and j = m — £+ 1. Consider the paths x,Pxixy+1 Py,
for 2 <~ </¢—1. Since |V (21 Pz;)| = £ and z € V(H), z is adjacent to some vertex of V(241 Pxy,).
Hence x Px12,41 P2y, is a crossing H-path. Then by Claim 3, z, is adjacent to all but at most one
vertex of V(z1Px;) U{x;,xj—1}. If z9 is adjacent to x;_1, then x12;_1 Prox;_1 Pr;xm,m Prjzy is a cycle
of length m > k + 1, a contradiction. Thus, we have Ny[zs] = Ng[zi]. If 3 is adjacent to z;_1,
then xyxow; 1 Pr3xj 1 Pr;xym Pz is a cycle of length m > k + 1, a contradiction. Thus, we have
Nylz3] = Nglxi]. Progressively, we can show that Ng[z] = Ny[z1]. By symmetry of 1 and z,,
we have Nyg[zp] = Nglzy] for m —£0+2 <X <m —1. Let

A=V (x1Pxy_1),B=V(xm_ysoPxy) and C = {xp, ym_gs1}-

Then G[A] and G[B] are complete graphes on ¢ — 1 vertices. Hence, it is easy to check that G[V (P)]
gives a copy in F(m, k,¢ — 1) with Type II, a contradiction.
Therefore, we may assume that

m— (i, j) =20+1, ie., £(i,j)=m—20—1. (12)

Suppose that dg (1) +dg(x,) = 204+1. Without loss of generality, let di(z1) = (41 and dg(z,,) = ¢.
Then applying Claim 2*(iv), we have U = V' = V(21Pz;) U V(2;Pzm), Nu(z1) = Np(z1) and
Ny (zm) = Np(@m). Consider the paths o Px12y41 Py, for 2 < v <i—1 and xyPxyxy_1 Pz for
j+1<A<m-—1 (it is easy to check that those paths are crossing paths as before). By Claim 3, it is
not hard to show that Ng[z,] € Nyz1] for 2 <~ < fand Ng[z,,] = Ng[z)] for m—04+2 <X <m—1.
Let

A=V (x1Pxi—1), B =V(zj41Prp) and C = {x;, x;}.

8Note that Rs has m — 1 vertices. Thus Rs does not belong to P.
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Since we can keep x1x;, z;—12; and delete other edges between A and C to ensure d Pl AUC](Z) =/ for
each z € A, ¥ G[V(P)] gives a copy in F(m, k,¢ — 1) with Type II, a contradiction.

Now we may assume that dg(x1) = dg(zn,) = (. By Claim 2*(¢ii), without loss of generality,
there exists a vertex x;, such that

{z,} UU; = V(z1Px;) NV (xPxp,) with 1 < p <. (13)

Claim 10 implies that
i=¢+1land j=m—{+1. (14)

Also, note that Ny |z = {xe41} UV (Tm—r+1P2m) and Ng[z1] = {@m—ry1} U (V(z1Pzes1) \ {zp}).
Then we consider the path Q) = z1Pxy_12,mPxy, where m — £ +2 < X < m — 1. Since dg, (z)) >
du(xy) > £, x is adjacent to some vertices of V(z1Pxj_1) = V(z1Qxzj—1). Hence, Q) € P is a
crossing path. As in the previous proofs, x is adjacent to all but at most one vertex of Ny [z, |U{zp—1}
by Claim 3.

Claim 11. For eachm —{+2 < X <m — 1, we have Ng[z)] = Ng[Tn].

Proof. Suppose to the contrary that x) is adjacent to z,_1. First we assume that p < ¢. Then
Tp—1Pr12p11 Pry_12m Pr)\Tp—1 is a cycle of length m — 1 > k, a contradiction.

Therefore, we have p = i (see Figure 15.). Then we consider the path L) = x1 Pz z,, Pryy1. Note
that xx41 € V(H), |V(2jPxy,)| < € and x; is adjacent to ;. Clearly, Ly € P is a crossing path. By
Claim 3, x4 must be adjacent to at least one of {z,_1,2,}. By the maximality of ¢(p,j) in L., 241
is adjacent to x,, as otherwise we have ¢(p — 1,5) > {(p, j) where ¢(p —1,j) is in P, a contradiction.
Then x,_1 Pr12jPryxyi1 Prmzjt1Prax,—1 is a cycle of length m, a contradiction. Therefore, x) is

not adjacent to x;_1 = x,—1. This completes the proof of the claim. O
T Lp Ly Tm

Figure 15. The structure of the crossing path P with one crossing pair

From Claim 11,
GV (zm—¢+2Pxy)] is a complete graph. (15)
Suppose that x, ¢ V(H). Let 2 <y < ¢ and v # p,p — 1. Then we consider the m-vertex H-path
M, = z,Px12y41Pxy,. Note that z, € V(H) which implies ,, € Np(x,), |V (x1Px;)| = £ and z,, is
adjacent to x;. Clearly, M, € P is a crossing path. Note that x, ¢ Ng(x,). Consider the neighbors
of z, and z,, in M, (in H). Since z, ¢ V(H) by Claim 3, we have Ng[zi] = Ng[z,] for 2 <~ < ¢
and v # p,p — 1, and hence we have Ny[z1] = Nyg[xp—1] (2, is adjacent to x,_1). Let

A= {33]_, e 756@} \ {xp}7 B = {xm—f—&-Qa T ’xm} and C' = {J"hx]} = {33Z+17$m—€+1}‘

Hence, combining with Claim 11 and (15), G[A] and G[B] are complete graphs. Recall that m > k+1.
It is easy to check that G[V(P)] gives a copy of F(m,k,¢ — 1) of Type III (view ) as vy when p < s
or vy4+1 when p = s and see Figure 4(b) and 4(c) for some hints), a contradiction.

Therefore, we have x, € V(H). Since z; is adjacent to 2 and Ny (z1) = Np(x1), we have p > 3.
Let

A - {xly e 756(}; B = {xm—f-‘,—Qa e ,iEm} and C — {xia .’E]} = {xf-f—la xm—(—l—l}-

Then we consider the path Ty = x, Px12y41 P2y, for 2 <y < £ with v # p — 1. Note that z, € V(H)
and N[z,,] = {xp11} U V(2p—pr1Prym). Those paths are crossing H-paths. By Claim 3, we have
Ng(zy) CAUC for 2 <y <l and v # p— 1. Combining with Ny[z1] = (AUC) \ {z,}, we have

Nylzy] CAUCfor 1 <y</landy#p—1 (16)

9This simple fact will be used later in the following proofs when |[AUC| = £ + 2.
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In particular, if p < £, then
Npzp] = (AUC) \ {z1}. (17)
We consider the following three cases.

Case A.1. Let p=1i¢=/{+1. By Claim 11, x,, = x; = 2441 is adjacent to x,,_¢42. Consider the path
Q1 = xp1Pr12m—¢+1 P2y —p42Py,. Since z,_1 is adjacent to x, and x,, is adjacent to x,,_¢41,
Q1 € P is a crossing H-path. By Claim 3, we have Ng[z,—1] C AU C. Hence, combining with (16),
each vertex of A in G[A U C] has degree at least ¢. Note that both vertices of C' are adjacent to A
(21 is adjacent to x; = @p,—¢41 and x;_1 is adjacent to x; = x¢41). Combining with (15), it is easy
to check that G[V (P)] gives a copy of F(m, k,¢ — 1) with Type II (recall the definition of Type II), a
contradiction.

Case A.2. Let p < ¢ =1i—1and ¢ > 4. By (17), z, is adjacent to z,_o for p > 4. Hence,
consider the paths x,_1zp2p_2Pr12p11 P2y when p > 4 and x,_17p2p11712p42 Py when p = 3
(p+2=5<{+1=1). By ¢(G) < k and Claim 3, we have Ng[z,—1] € AUC, and hence z,_1 has
degree at least £ in G[AU C]. Combining with (16), each vertex of A\ {z,_1} has degree at least ¢ in
G[AUCC]. Note that 1 is adjacent to each vertex of C. Thus combining with (15), it is easy to check
that G[V(P)] gives a copy of F € F(m,k,{ — 1) of Type II, a contradiction.

Case A.3. Let p < { and ¢ < 3. Suppose that m > k+2. Then j=m—£+1>0+5> 20+ 2.
Thus z1Pzjz1 is a cycle of length at least 2¢ + 2 = k, a contradiction. Now let m = k + 1. Then we
have j =m — ¢+ 1. If £ < 2, then x1Px;x; is a cycle of length at least m —f{+1=k+1—-(+1 >k,
a contradiction. Let ¢ = 3. This forces that k = 8 and p = 3 (see Figure 16.). Note that x5 € V(H)
and Ny (z3) = {z2,x4,27}. Suppose that dp(x2) > 3. Since ¢(G) < 8, we have Np(z2) C AUC.
Then G contains a copy of F' € F(9,8,2) (A= {x1,x2,23}, B={zs,29}, C = {z4, 27} and z127 and
x3z4 are two independent edges) with Type II, a contradiction. Therefore, we have dp(z3) = 2. It
follows from ¢ = 3 and z9 € V(H) that there is a vertex z € Ny (x2) \ Np(z2). Since ¢(G) < 8, we
have Np(z) = {x2,24,27}. Hence {z,x3, 21} together with {z2,x4, 27} induce a copy of K33 Since
Npy(zg) = {x4, 27,29} by ¢(G) < 8, it is easy to check that G[V(P) N {z}| contains a copy of Kgf?), a
contradiction. Moreover, G contains a copy in F' € F(8,8,1) (m = 9) with Type III in Kgfg (the path
zxowgryrsroryry with A" = {z}, B’ = {z1} and C' = {23, x4, 27}). This completes the proof when k
is even and m >k + 1.

Ty T2 T3 T4 Tp Te L7 T X9

Figure 16. The structure of the crossing path P when m=k+4+1=9

3.2.2 m=k.

By Claim 2(7i7), we have ¢(i,7) =1 or £(i,5) = 2. If £(3,j) = 2 or dgg(x1) + dg(xr) = 20+ 1, then by
Claim 2*(iv), we have

V(z1Pz;) UV (2 Pry) = U =V, Ny(21) = Np(v1) and Ng(vg) = Np(zg). (18)

In the following, we only consider the case £(i,7) = 2, since the case dy(r1) + dy(xr) = 20+ 1 is
similar to the case after (12). By the definition of s, xs_; and x4 are not adjacent to . Hence, by
(18), we have xg, x541 € Ny (x1). Similarly, we have x;_1, 2 € Ny(zk). Let

A =V (x1Pxs), B =V (x¢Pxy) and C = {41, Ts43, ..., Tim2, Ti, Tj, Lj42, . - -, T4—2, Tt }.

By Claim 1(éii), =1 is not adjacent to xsyo. By Claim 4, z,, is not adjacent to zs;o. Hence, x; is
adjacent to xs13 by (18). Moreover, consider the minimal crossing pair (s + 1, s+ 3). By Claim 4, z;
is not adjacent to xsy4. Then apply (18) again, xz is adjacent to 543 and not adjacent to xsy4 by
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Claim 4. Repeating the above arguments, z; is adjacent to each vertex of AU C and xj is adjacent
to each vertex of BUC. Since |V (21 Pxgy1)| < ¢ and z, € V(H), Ry = xyPx12y41 Py is a crossing
H-path for 2 < v < s. Hence, x, is adjacent all but at most one vertex of (AU C U {z;_1}) \ {z}
by Claim 3 (z is not adjacent to z;y1 = z;_2 since z}, is adjacent to x; and ¢(G) < k). If xy is
adjacent to x;_1, then x;_1 Pxs 171 Px;21 P, is a cycle of length £, a contradiction. Therefore, we
have Ng[zs] = Ng[z1], and progressively, we have Ny [z, = Ny[z1] for 2 < v < s. Similarly, we have
Nplxy] = Nulxg] for t < A < k — 1. Hence, G[A] and G[B] are complete graphs with |A| = |B| = s,
and G[V (P)] gives a copy of F(k, k,s) with Type II (see Figure 17.), a contradiction.

1 Ts+1 Tj L Tk
Figure 17. The structure of the crossing path P

Therefore, we may assume that £(i,j) = 1 and dg(z1) = dg(zx) = ¢. By Claim 2*(4ii), without
loss of generality, there exists a vertex x, & (Ng[z1) U N (z)) \ {zit1} = Uf with 1 <p < i, that is

V(x1Px;) UV (z;Pxy) = U U{xp}. (19)

Hence, we have =, ¢ Ny(z1) and x,—1 ¢ Ng(zx). By the definition of ¢, we have i < ¢ — 2. Now,
subject to previous choices,

we choose P € P such that |V (zs,42Pxt,—2) N {z,}| is as large as possible. (20)
Claim 12. p <s—+1.

Proof. Suppose to the contrary that p > s+ 1, that is s+ 2 < p <t — 2. By the definitions of s and ¢
and (19), we have s, 2541 € Ny(z1) and 241,z € Ng(xg). Let

A =V(x1Pxs) and B =V (z;Pxy).

We consider the following three cases.

Case 12.1. 2,1 € Ny(z1) and z, € Ny(z). Let

C ={Ts41,Ts43, * , Tp—5,Tp—3, Tpt2, Tptd, * , Tt—3, Ti—1 }-

We shall show that x1 and x; are adjacent to each vertex of C. It follows from the definition of s
that xj is adjacent to zs41. By Claim 1(4i7) 1 is not adjacent to zs42. Since xy—1,2¢ € Ng(zy),
by Claim 4, xj is not adjacent to xs12. Next, by (19) x; is adjacent to zs;+3, and hence by Claim
4, z1 is not adjacent to xsy4. By (19) again, xj is adjacent to zs+3. Applying Claim 4 again, xj
is not adjacent to xs44. Progressively, we can show that z; and x; are adjacent to each vertex
of {zst1,2s43, ++ ,Tp—s5,Tp—3} and are not adjacent to each vertex of {zsio, Tsta, - ,Tp_a,Tp_2}.
Similarly, z; and zj, are adjacent to each vertex of {zp42, Zpia,- -, x¢—3,2¢—1}. Thus, 21 and xj are
adjacent to each vertex of C' (see Figure 18.).

Then we consider the paths T, = x, Pz12, 1 Px) and Sy = x\Prpry_1Pry for2<y<sandt <
A < k—1. Since |V (21 Pz,)| = |V (2 Pay)| < {—1and x,z) € V(H), Ty, Sy € P are crossing H-paths.
By Claim 3, z is adjacent to all but at most one vertex of AUC U {x,_1,2,}. If x4 is adjacent to z,,
then x, Prixs1Pxy_121Pxsxy is a cycle of length at least k, a contradiction. Thus z; is not adjacent
to x, and hence Ny[zs] = Ng[z1]. If 251 is adjacent to x,, then zp,Pryxsi1 Py 121 Prs_2xs25 12,
is a cycle of length k (by Ng[zs] = Ng[z1], zs—2 is adjacent to xs), a contradiction. Thus zs_; is not
adjacent to z, and hence Ny [zs_1] = Ng[z1]. Repeat the above argument, we have Ny [z,] = Ny[z1]
for 2 <y < s . By symmetry, we have Ng[z)] = Ng[xg] for t < A < k — 1. Finally, we can see that
Tp_121Prsxi—1 Prpx Prizsei1 Pry—1 is a cycle of length k, a contradiction.
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1 Ts+1 Tp—1 Tp L1 Tk
Figure 18. The structure of the crossing path P when m = k

Case 12.2. 2,1 € Ny(z1) and =, ¢ Ny (xy). Then we have p < i and zp41 € Ny (x1). Let

C == {m5+1,x5+3, o 7xp—17xp+17 o 7xt—3axt—1}-

Then the similar proof as (a) shows that z; is adjacent to each vertex of C' and xj is adjacent to
each vertex of C'\ {z,—1} (see Figure 19.). Note that dy(x1) = du(zr) = £. Then we have |[A| = s
and |B| = s+ 1. Consider the crossing paths Sy = zyPrrxy_1Pz1 € P for t < A < k — 1 (since
|V(x¢Pxy)| < £ and z) € V(H), Sy is a crossing path). By Claim 3 we have Ny(xy) € BUC.
Moreover, consider the crossing paths T), = xyPx12y41Px € P for 2 <y < s (since |V (z1Px,)| < ¢
and z, € H, T, is a crossing path). Similarly as the proof as in the last paragraph, we have Ny[z{] =
Nglz,| = AUC for 2 <y <s. Let A’ = B and B’ = A. Note that z;, € A" is adjacent to zs;1 and
x; € A’ is adjacent to x;_1. It is easy to check that G[V(P)] gives a copy in F(k,k, s) with Type II.

1 Ts+1 Tp—1 Tp Ty T
Figure 19. The structure of the crossing path P when m =k

Case 12.3. z,_1 ¢ Ng(z1). If z, ¢ Np(xy), then there is a minimal crossing pair (i/, j') of length at
least (p+1)—(p—2)—1=2 (zp—1,2p ¢ Np(xy) and zp_1,2, ¢ Np(xy)), a contradiction. Therefore
we have =, € Np(x) = Ng(zg). Let

C= {CL’S+1, Ts43," " yTp—2,Lp, Tp42,° " , Tt-3, xt71}~

As the proofs before, zj, is adjacent to each vertex of C' and x; is adjacent to each vertex of C'\ {zp}.
From dp(x1) = du(xy) = ¢, we have |A| = s and |B| = s —1. Consider the paths z,Pz2y41 Pz € P
and x)\Prpxy_1Pr1 € Pfor 2 <y <sandt < A < k—1. As in the previous proofs, we have
Nylzy) € AUC and Nylzy] = BUC. Note that 1 € A is adjacent to z4—; and x, is adjacent to
Zsy1. 1t is easy to check that G[V(P)] gives a copy in F(k,k,s — 1) with Type II, a contradiction.
Thus we finish the proof of Claim 12. O

T Ts Tp—1Tp Ti—1 Tk
Figure 20. The structure of the crossing path P when m = k

By Claim 12, we can assume that 2 < p < s+ 1, that is, |V (zs42Pxi—2) N {zp}| = 0. By (19), x;
and z;_1 belong to Ny (x). By Claim 4, zj, is not adjacent consecutive vertices of V(2411 Px;,). From
the definition of s, we have p < i;. First, we will show that i1 = s+ 1. Suppose that i; > s+ 1. Then
by Claim 4, zj is not adjacent to xs12, and hence we have i; > s + 3. Moreover, since 2 <p < s+ 1,
by (19), x; is adjacent to zs43, that is (s + 1,s 4+ 3) is a crossing pair, a contradiction to i; > s + 1.
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Claim 13. NH[Z‘)\] = NH[{Ek] fort < X<k-1.

Proof. Note that z) € V(H), x1 is adjacent to z;_; and |V (z;Pxy,)| < £. The path P* = 21 Pxy_12,Pr)
is a crossing path. By Claim 3, we have Ng[z)] € Npglag] U {zp—1}. By our choice of P, we
may assume dy(xy) = ¢. Suppose that x) is adjacent to z,_; (see Figure 21.). Case (13.1).
p < s+ 1. Note that z; is adjacent to z,y;. Consider the path P» € P. By the maximality of
the number of minimal crossing pairs of P, x) is adjacent to each vertex of V(z;—1Pxy) (other-
wise the path P* € P has more minimal crossing pairs than P). Hence, x) is not adjacent to a
vertex © € Nglzg] \ V(z¢—1Pzy). Note that Npa(xzy) U {z} = Np(zg) U {zp—1}. Thus the path
P) = 2\Pxpra_1Pr1 = ypyip—1-..y2y1 = ypP My is a crossing path with a minimal crossing pair
(@',7") = (p— 1,p+ 1) satisfying |V (ys12Pyr—2) N {yp}| = 1, where s’ = min{h : yp11 € Npr(yx)} =
p—1,t =max{h:yy1 € Np/(y1)} = t and {yp} = (V(y1.Pysr) UV (35 Pyr)) \ (Npa[y1] U NG, (yr)),
a contradiction to the choice of P. Case (13.2). p = s+ 1. Note that i1 = s+ 1 = p. Then z; is not
adjacent to x,,1. Since P is a crossing path, by Claim 3, z is adjacent to all but at most one vertex
of Ny [xg]U{xzs}. Suppose that ) is adjacent to zs. Then x) is adjacent to xs41, as otherwise (s, s+3)
is minimal crossing pair with £(s,s + 3) = 2 in P*, a contradiction to our choice of P. Note that
Q) = x1Px)xrPxyy1 is a crossing path (it is possible that 2y = ). By Claim 3, )1 is adjacent
to all but at most one vertex of N[z U{zs}. Hence )1 is adjacent to at least one of {zs, zs41}.
Note that xj is adjacent to x;. We can find a cycle of length k (z)112sPr124—1 Prsi12)PrixgPryyq
or xaxxsPxixi1Prsyixri1 PriasPry), a contradiction. Thus x) is not adjacent to zs and hence
Nplxy] = Nglzg] for ¢ < XA <k — 1. This completes the proof of the claim. O

1 TsTs+1 Tt—1 TAH1TN
(13.2)
Figure 21. The structure of the crossing path P when m = k

We consider the following three cases.

Case B.1. 2 < p < s—1. By (19) we have {zs, 2511} € Ng(z1), and hence by Claim 4, z1 is not
adjacent to any two consecutive vertices of xs41Px;—1. Let 2 < v < s and v # p,p — 1. Note that
xy € V(H), xy is adjacent to xs11 and |V (x1Prer1)| < L. Ty = 2y Pr12y41 Py is a crossing H-path.
Let

A=V(x1Pxs), B=V(xyPxy) and C = {Ts41,Ts43, " , Tt—3,Tt—1}-

By (19) we have {x;_1,2:} C Npg(zx), hence since zy is adjacent to xsy1, by Claim 4, zj is not
adjacent to xs19. Then by (19) again, z; is adjacent to zs;3. Repeat the above arguments, we
have z; is adjacent to each vertex of (AU C) \ {z,} and zj is adjacent to each vertex of B U C.
(B.1.1). =, ¢ V(H). Consider the path T), = x,Pxi2,41 Pz, (clearly, this path is a crossing path).
By Claim 3, we have Ng[z,] = Ng[z1]. Then we can check that G[V (z1Pxs) \ {z,}] is a complete
graph (note that each vertex of A\ {z,—1,2p} is adjacent to x,_1). By Claim 13, G[V (z;Pxy)] is a
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complete graph. Thus it is easy to check that G contains either a copy of F(k,k,s) with Type III,
a contradiction. (B.1.2). z, € V(H). Then p > 3 and s > 4. For z, € A\ {xp_1,xp}, consider
the crossing H-path T, = x,Px12y11Px). We deduce Nyz,] € AUC from Claim 3. Consider the
path T, = xpx12p41 Pry. Similarly, we have Ny[zp) € AU C from Claim 3. It follows that x; is
adjacent to each vertex of (AUC) \ {z,} and z, is adjacent to each vertex of (AU C) \ {z1}. Now,
consider the path z,_12pxp_oPr12pt1 Pxy, € P (clearly, this path is a crossing path). Claim 3 implies
Np(xzp—1) € AUC. Note that 1 is adjacent to z;—1 and x is adjacent to xs41. Hence, it is easy to
check that G[V(P)] gives a copy of F(k,k,s) with Type II, a contradiction.

T1 Tp Tst1 Ti—1 Tk
Figure 22. The structure of the crossing path P when m = k

Case B.2. p = s. Suppose that x; is not adjacent to any two consecutive vertices of x; Pxi_.
Then the same proof as in the last paragraph shows that if z, ¢ V(H), G[V(P)] gives a copy in
F(k,k,s) with Type IIT and if 2, € V(H), G[V(P)] gives a copy in F(k, k,s) with Type II, both
are contradictions. Therefore x1 is adjacent to two consecutive vertices of xj, Pr;_1. Let A be the
minimum integer such that z; is adjacent to both of {zy,zx41} C V(xj, Pxy—1). By Claim 4, we
have s ¢ V(H). Let r = min{h : h > Az € Ng(ar)}. By Claim 2* and p = s < i1, we
have V(z)Px,) C Ng(x1). Hence, we have x,,x,—1 € Ng(x1). It follows from Claim 4 that z is
not adjacent to both of any two consecutive vertices of x, 2Px;—1. Note that z;_1,2¢ € Ng(xg).
Applying Claim 4 again, ) is not adjacent to both of any two consecutive vertices of xs11Px;_1.
Let
A=V(x1Prs_1) UV (x\Pxr_1), B=V(x;Pxy)

and
C == {x8+1ax8+37 e 7‘%)\727%.7’7337‘4—27 e 7$t_3,$t_1}.

Similar to previous proofs, x1 is adjacent to each vertex of A U C' and zj is each vertex of BU C
Consider the crossing H-path x,Px12y41Px € P for v € [2,5 —2]U[A,r — 1] (it is easy to check that
those paths are crossing paths). By =, ¢ V(H) and Claim 3, we have Np[z1] = Np|[z,]. Similarly,
NP[$]€] = Np[‘%‘)\] fort+1 < XA <k — 1. Note that |A| = ‘B| =k—-t+1 (dp(ﬂjl) = dp(ajk) =k and
Np(x1) " Np(xg) = {xst1, Tr, Tryo, -+ ,x4—3,24-1}). Moreover, G[A] and G[B] are complete graphs.
It is easy to check that G[V(P)] gives a copy of F(k,k,k —t+ 1) with Type III, a contradiction.

z1 Ts+1 Tx Ty Tt—3 Tt—1 Tk
Figure 23. The structure of the crossing path P when m = k

Case B.3. p = s+ 1. Note that z, € Ng(zx). Then we have z, € V(H) and p > 3 by z is
adjacent to xo. First, we show that x; is not adjacent to any two consecutive vertices of V(zj, Pxy).
Suppose to the contrary that x; is adjacent to both of {z),z 11} for some XA > j;. Consider the
path Ts_1 = x5_1 Pr1xs Py (clearly, Ts_1 is a crossing H-path). It follows from Claim 3 that zs_1 is
adjacent to at least one of {x),zxy1}. Hence, P{ = xsPryxs_1Pr1x)11Px) € P (251 is adjacent to
xy) or P} = xsPryx1Prs 12511 Py € P (x5-1 is adjacent to x)41) is a crossing H-path on k vertices
ending at xg.
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For PJ, since xj is not adjacent to both of {x1,z)_1}, we have {z 11,22} C V(P]) \N;l,l(xk). By
Claim 3, z, is adjacent at least one of {x),xyy1}. Then 21 Prsx\PrsyixPryy121 (x5 is adjacent to
x)) or x1x\Prsi1xpPryi1xsPr1 (x5 is adjacent to xx11) is a cycle of length &, a contradiction. For
P}, since xj, is not adjacent to both of {x1,zx_1}, we have {z9,2)} C V(Py) \N;D;,l(xk). By Claim 3,
x5 is adjacent at least one of {x),z2}. Note that x; is adjacent to zs and z,_; is adjacent to zx4q.
Then zsz)\Prsi1xpPry12cs—1Pri2s (25 is adjacent to x)) or xsxoPrs 12311 Prprsi1 Prazizs (s
is adjacent to x2) is a cycle of length k, a contradiction. Therefore x; is not adjacent to any two
consecutive vertices of xj, Pxy_1.

Let

A == {$15$27 e 7$S}7B - {xtvxt-‘rlu e )xk} and C - {x3+1,x5+3, e 7xt—37xt—1}'

Similar to the previous proofs, we have Ng[zi] = (AU C) \ {zs+1} and Ng[zi] = BUC. Consider
the H-path xyPx12y41Pxy (it is easy to check that it is a crossing path). By Claim 3, we have
Nglzy) C AUC for 2 <y < s. Note that z, € A is adjacent to z,41 and 1 € A is adjacent to 4.
It is easy to check that G[V(P)] gives a copy of F(k,k,s — 1) with Type II, a contradiction. This
completes the proof of Theorem 1.2. O

x1 $S+1(CL‘p) Ti—1 Tk
Figure 24. The structure of the crossing path P when m = k

4 Proof of Theorem 1.3 for odd k

We need the following theorem proved by Fan [4].

Theorem 4.1 (Fan [4]). Let G be an n-vertex 2-connected graph and ab be an edge in G. If the longest

path starting from a and ending at b in G has at most r vertices, then e(G) < w + 2n — 3.
Moreover, the equality holds if and only if G — {a,b} is a vertez-disjoint union of copies of K,_o.

The graph Z(n, k,d) denotes the vertex-disjoint union of a clique Kj_s and some cliques Ks1’s,
where any two cliques share the same two vertices. It is easy to check that w(Z(n, k,d)) = k—t+1 and
5(Z(n,k,d)) =t — 1. Recall the definition of H(n,k,t —1). We can also see that w(H(n,k,t — 1)) =
k—t+1and 6(H(n,k,t —1)) =t — 1. The following Lemma 4.2 is proved by Yuan [14].

Lemma 4.2 (Yuan [14]). Let G be a 2-connected n-vertex graph with ¢(G) < k and n > k > 5. If
wG)>k—t+1and 6(G) >t—1, then G=H(n,k,t —1) or G = Z(n,k,t —1).

A cycle C' is locally mazimal in a graph G if there is no cycle C' in G such that |[E(C")| > |E(C)|
and |[E(C") N E(C,G — C)| < 2. We will prove Lemma 4.2 by a result of Ma and Ning (see Lemma
4.4 in [10)).

Lemma 4.3. Let G be a 2-connected non-Hamilton graph on n vertices with §(G) >t —1 and C be a
locally mazimal cycle in G of length ¢ < k — 1. If the clique number of G[C] is at least k —t + 1, then
G=H(n,k,t—1) orG=Z(n,k,t —1).

Proof of Lemma 4.2. Let n > k > 5. Let G be a 2-connected n-vertex graph with w(G) > k—t+1
and 0(G) >t — 1. Suppose that G ¢ {H(n,k,t — 1), Z(n,k,t — 1)}. We will show that ¢(G) > k. Let
G’ be an edge-maximal counter-example. That is G' ¢ {H(n,k,t — 1), Z(n,k,t — 1)} is a 2-connected
n-vertex graph with w(G’') > k—t+1, 6(G') > t — 1 and adding any edge to G’ will create a cycle of
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length at least k. Thus we may take a maximal clique K; in G’ with £ > k —t+ 1 and a longest path
P = zy29... 2y, starting from z7 € V(K) ending at z,,, € V(G’) \ V(K;) with m > k. Thus by the
choice of P, we have dp(x1) > dy(k,)(z1) > k —t and dp(zm) > 0(G") >t — 1. Since ¢(G) < k, by
Lemma 3.1, there is a cycle of length k —t +t — 1 =k — 1 containing V(K;y) C Np[z1]. Clearly, this
cycle C' is local maximal and the clique number of G[C] is at least k — ¢ + 1. Applying Lemma 4.3,
G' = H(n,k,t—1) or G = Z(n,k,t — 1), a contradiction. The proof is complete. O

Proof of Theorem 1.4. Let k =2/ + 1 > 5. Let G be a maximal (in the sense that if we add any
edge into G, then the resulting graph contains a cycle of length at least k) n-vertex 2-connected graph
with ¢(G) < k and
e(G) > max{h(n, k,3),h(n,k,{—1)}. (21)
Let H = H(G,/) be the (¢ — 1)-disintegration of G. First H is non-empty, otherwise e(G) <
(D +m—e+1)(0—1) < (B2 + (n—€—2)({ — 1) = h(n,k, £ — 1), a contradiction to (21).

Claim. H is a complete graph.

Proof. Suppose not, there is a non-edge ab in H. Then by the maximality of G, G 4 ab contains a
cycle of length m > k, i.e., there is an H-path in G on at least k vertices. Take a longest H-path in
G. Then by Theorem 1.2, G contains a copy of F' € F(m,k,r) of Type I. We refer V(F') to the sets
A, B,C as in Section 2.2.

Let r < £—2. Then 3 < |C| < £. Note that for any two vertices =,y € V(F), there is an (x, y)-path
on at least k — 2 vertices in F and if ¢ C, then there is an (z,y)-path on at least k — 1 vertices in F
(see Figure 2.). Since G is 2-connected and ¢(G) < k, each vertex of G — V(F') is an isolated vertex.
Moreover, each vertex of G — V(F) can only be adjacent to C of V(F'). Hence, if r =1, i.e., |C| = ¢,
then G is a subgraph of H(n, k,¢) (Theorem 1.4 (b)). Now we may assume 3 < |C| < ¢ —1. Then we
have ¢ > 4 implying 2(“2'1) + (451) < (%2) + (¢ — 1)%. Therefore,

e(G) < e(GV(F)])+ (n—Fk)|C]
= ¢(G[AUQ)) +e(G[BUC)) — e(G[C]) + e(G[C, V(F) \ (AU BUC)] + (n — k)|C|

< ("3 - (') +ierer- v+ @- e
< 2 £+1> <£;1)+(n_kw_1)

< < 2) 124 (= k)= 1)
— h(nkl—

contradicting (21).

Now, let » = ¢ — 1. Then |C| = 2. Note that for any two vertices z,y € V(F') with « ¢ C, there
is an (x,y)-path on at least & — 1 vertices in F. Since G is 2-connected and ¢(G) < k, each vertex of
G — V(F) only connected to C of F by a path and the longest C-path is on at most ¢ + 1 vertices. If
k>9, ie., >4, then (2 +3(/2 < (822) + (£ —1)? and (£ +2)/2 < £—1. Tt follows from Theorem 4.1
that

e(G) < 2n—3+(n—-2)({—2)/2
C430/24 (n—20—1)(£+2)/2
< <€;2>+(€—1)2+(n—k)(€—1)
= h(n,k,0—1),

contradicting (21). If £ = 7, then the longest C-path is on at most four vertices. Hence we can easily
see that after deleting C' the resulting graph is a star forest (Theorem 1.4 (e)). If K =5, then £ = 2,
and hence the longest C-path is on at most 3 vertices. Thus we can see that G is a subgraph of
H(n,5,2). The proof of the claim is complete. O
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Let |V(H)| = m. If m = k—2, then since ¢(G) < k and G is 2-connected, each vertex of G—V (H)
is adjacent to the same two vertices of H, and hence G = H(n, k,2) (Theorem 1.4 (a)). If m = ¢ +1,
then e(G) < (T +(n—0—1)(( —1) < (53 + (n — £—2)(£ —1) = h(n, k,£ — 1), a contradiction to
(21).

So we may assume £ +2 < m < k—3,ie,3 < k—m < {—1. Let H = H(G,k —m) be
the (k — m + 1)-disintegration of G. If H' = H is complete, then ¢(G) < (') + (n — m)(k —m) =
h(n,k,k —m) < max{h(n,k,3),h(n,k,¢ — 1)}, where the last inequality holds since h(n,k,a) is a
convex function in a. By (21), we have e(G) = h(n, k,3) or e(G) = h(n,k,{ —1). If e(G) = h(n, k, 3),
then m = k — 3. Moreover, (21) implies that H' is obtained by deleting vertices with degree three
one by one. Therefore, w(G) > m = k — 3 and §(G) = 3. Applying Lemma 4.2, G = H(n,k,3)
(Theorem 1.4 (c¢)). If e(G) = h(n,k, £ —1), then w(G) > m=k—4+1=/¢+2and 6(G) =(— 1.
Applying Lemma 4.2, G = H(n,k,¢ — 1) (Theorem 1.4 (d)).

Now, we can assume that H' # H. Then there exists a vertex b € (V(H') \ V(H)) and a vertex
a € V(H) such that a is not adjacent to b. Then by the maximality of G, there is a longest path
P on at least m > k vertices starting from H and ending at H'. Let u € H and v € H' be two
end-vertices of P. By the choice of P, dp(u) +dp(v) > dy(u) +dg(v) > (m—1)+(k—m+1) = k.
Applying Lemma 3.1, there is a cycle of length at least min{m, k} > k, a contradiction. The proof of
Theorem 1.4 is complete. O

5 Conclusion

In [9], Luo determined the maximum size of cliques with given size in a 2-connected graph with
¢(G) < k. This is viewed as a clique version of the Erdés-Gallai Theorem. To conclude this paper, we
would like to propose the following conjecture. This (if true) would give a clique version of Theorem 1.3
and implies a clique version of results in [10]. Let Ns(G) denote the number of copies of Ky in G.

Conjecture 5.1. Let G be a 2-connected graph on n vertices and let ab be an edge in G. Let r > 4
and s > 3 be integers, and let n —2 = x(r —3) +1t for some 0 <t <r—4. If Ny(G) > x(tl) + (Hs'2),
then there is a cycle on at least T vertices containing the edge ab.

This also can be viewed as a clique version of Theorem 4.1 of Fan [4].

Remark. Very recently, Ji and Ye [7] confirm this conjecture. Based on their result, we will get a
stability result of Luo’s theorem in a forthcoming paper [11] .
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