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Abstract

For an integer α and a graph G, the α-disintegration of G is the graph obtained from G by
recursively deleting vertices of degree at most α until that the resulting graph has no such vertex.
Pósa proved that if a 2-connected graph contains a path on m ≥ k vertices with end-vertices
in its b(k − 1)/2c-disintegration, then G contains a cycle of length at least k. We prove that
if a 2-connected graph contains a path on m ≥ k vertices with end-vertices in its b(k − 3)/2c-
disintegration, then G contains either a cycle of length at least k or a specific family of graphs.
As an application, we strengthen the Erdős-Gallai stablity theorem of Füredi, Kostochka, Luo and
Verstraëte.

1 Introduction

The circumference c(G) of a graph G is the length of a longest cycle in G. For an integer α and a
graph G, the α-disintegration of G, denoted by H(G,α), is the graph obtained from G by recursively
deleting vertices of degree at most α until that the resulting graph has no such vertex. We also call
H(G,α) the α-core of G, and moreover this core is unique for every α.1 Pósa [12] proved the following
well-known lemma which is widely used in graph theory.

Lemma 1.1 (Pósa [12]). Let ` = b(k − 1)/2c and k ≥ 5. Let G be a 2-connected graph and H be
the `-disintegration of G. If the longest H-path in G has m ≥ k vertices, then G contains a cycle of
length at least k.

The following theorem, which combines the ideas of Pósa’s lemma [12] and Kopylov’s work [8], is
the main result of this paper. Denote by K+

3,3 the graph obtained from taking a copy of K3,3 and a
new edge xy and joining each of x, y to the same two vertices in one part of K3,3.

Theorem 1.2. Let ` = b(k− 1)/2c and k ≥ 5. Let G be a 2-connected graph with c(G) < k and H be
the (`− 1)-disintegration of G. Let m be the number of vertices in a largest H-path in G. If m ≥ k,
then G contains a subgraph F ∈ F(m, k, r) for some r ≤ ` or a copy of K+

3,3 when m = k + 1 = 9.

Remark. We give the definition of the graph family F(m, k, r) in Section 2. The graph K+
3,3 contains

a copy of F ∈ F(8, 8, 1).

For integers n ≥ k ≥ 2a, let H(n, k, a) be the n-vertex graph whose vertex set is partitioned into
three sets A,B,C such that |A| = a, |B| = n − k + a, |C| = k − 2a and whose edge set consists of
all edges between A and B together with all edges in A ∪ C (see Figure 1, the subgraphs induced
by A and C are complete graphs and the subgraph induced by B contains no edge). Note that any
path/cycle in H(n, k, a) cannot contain consecutive vertices in B. One may check that the longest
path in H(n, k, a) contains k vertices and the longest cycle in H(n, k, a) contains k − 1 vertices.
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1One can see that H(G,α) is unique in G and has minimum degree at least α+ 1 (if non-empty).
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Figure 1. H(17, 16, 7).

Let

h(n, k, a) := e(H(n, k, a)) =

(
k − a

2

)
+ (n− k + a)a. (1)

The celebrated Erdős-Gallai theorem [2] states that any n-vertex graph G with c(G) < k has
at most (k − 1)(n − 1)/2 edges. This was improved by Kopylov [8] by showing that any n-vertex
2-connected graph G with c(G) < k has at most max{h(n, k, 2), h(n, k, b(k−1)/2c)} edges. Combined
with the results in [5], Füredi, Kostochka, Luo and Verstraëte [6] proved a stability version of Kopylov’s
theorem, which says that for any 2-connected graph G with c(G) < k, if e(G) is close to the above
maximum number from Kopylov’s theorem, then G must be a subgraph of some well-specified graphs.

Theorem 1.3 (Füredi, Kostochka, Luo and Verstraëte [5,6]). Let G be an n-vertex 2-connected graph
with c(G) < k. Let ` = b(k − 1)/2c. Then

e(G) ≤ max{h(n, k, `− 1), h(n, k, 3)}

unless

(a) k = 2`+ 1, k 6= 7, and G ⊆ H(n, k, `);

(b) k = 2`+ 2 or k = 7, and G−A is a star forest for some A ⊆ V (G) of size at most `;2 or

(c) G ⊆ H(n, k, 2).

The proof of Theorem 1.3 is mainly based on contracting edges and the following fact. If a graph
contains a cycle of length at least k and is obtained from another graph by contracting edges, then
that other graph also contains a cycle of length at least k. Theorem 1.3 was further extended in [10].

The aim of this paper is to study a new approach and provide some potential tools in this line of
research. In order to explain our main idea of this paper, we restate Kopylov’s theorem as follows. If
an n-vertex 2-connected graph G has more than max{h(n, k, 2)), h(n, k, b(k − 1)/2c)} edges, then G
contains a copy of graph F ∈ Ck, where Ck is the set of cycles of length at least k. Roughly speaking,
our proof shows that if an n-vertex 2-connected graph G has more than max{h(n, k, 3)), h(n, k, b(k−
1)/2c − 1)} edges, then G contains a copy of graph F ∈ (Ck ∪ F), where F is a set of special graphs
(see Subsection 2.2). From this generalization of Kopylov’s theorem, we can deduce that if an n-vertex
2-connected graph contains a copy of F ∈ F with c(G) < k, then G is a subgraph of some graphs
in Theorem 1.3. As an application, we get the following theorem strengthening Theorem 1.3 for odd
k ≥ 9.

Theorem 1.4. Let k = 2` + 1 ≥ 5 be an odd integer and n ≥ k. Let G be an n-vertex 2-connected
graph with c(G) < k. Then e(G) < max{h(n, k, 3), h(n, k, `− 1)} unless

(a) G is a subgraph of H(n, k, 2);

(b) G is a subgraph of H(n, k, `);

2A star forest is a graph in which every component is a star.
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(c) G = H(n, k, 3);

(d) G = H(n, k, `− 1); or

(e) G−A is a star forest for some A ⊆ V (G) of size at most two for k = 7.

Remark. Although Theorem 1.4 improves Theorem 1.3 only for odd k ≥ 9 with the case e(G) =
max{h(n, k, 3), h(n, k, ` − 1)}, it will be used to prove [13] a longstanding conjecture of Erdős, Si-
monovits and Sós [3] (determining the maximum number of edge colors in a complete graph such that
there is no rainbow path of given length). We will prove Theorem 1.3 for even k in [11].

The organization of this paper is as follows. In Section 2, we give a formal definition of a family
of graphs for the use of our characterization. In Section 3, we prove our main result which builds on
an integration of Pósa’s rotation lemma and Kopylov’s proof in [8]. In Section 4, as an application,
we strengthen Theorem 1.3 for odd k ≥ 9.

2 Notation and a family of graphs

2.1 Notation

The general notation used in this paper is standard (see, e.g., [1]). For disjoint subsetsA,B ⊆ V (G), we
denote G(A,B) to be the induced bipartite subgraph of G with parts A,B. Let E(A,B) = E(G(A,B))
for short. When defining a graph, we will only specify these adjacent pairs of vertices. That is if a
pair {a, b} is not discussed as a possible edge, then it is assumed to be a non-edge.

Denote by NG(x) the set of neighbors of x in G and let dG(x) be the size of NG(x). For U ⊆ V (G),
let NU (x) = NG(x) ∩ U and dU (x) = |NU (x)|. Let P = x1x2 · · ·xm be a path in G and call P and
an (x1, xm)-path or an x1-path (a path starting from x1). For x ∈ V (G), let NP (x) = NG(x) ∩ V (P )
and NP [x] = NP (x) ∪ {x}, with dP (x) = |NP (x)|. For xi, xj ∈ V (P ), we use xiPxj to denote the
subpath of P between xi and xj . For x ∈ V (P ), denote x− and x+ to be the immediate predecessor
and immediate successor of x on P , respectively. For S ⊆ V (P ), let S+ = {x+ : x ∈ S} and
S− = {x− : x ∈ S}. We call (xi, xj)P a crossing pair of P if i < j, xi ∈ NP (xm) and xj ∈ NP (x1). If
there is no ambiguity, we write this pair as (i, j) for short. We call a path a crossing path if it has a
crossing pair. For a crossing pair (i, j), let `(i, j) = j − i− 1 and call `(i, j) the length of the minimal
crossing pair (i, j). A crossing pair (i, j) is minimal in P if xh /∈ NP (x1)∪NP (xm) for each i < h < j.
For S ⊆ V (G), we call P = x1x2 · · ·xm an S-path if x1, xm ∈ S. For a graph G, let ω(G) be the order
of a maximum clique in G.

2.2 A family of graphs

Let m ≥ k ≥ 5 and 1 ≤ r ≤ ` be integers. We now devote the rest of this subsection to the definition of
a family of m-vertex graphs F(m, k, r) 3. We divide F(m, k, r) into the following four classes, namely
Types I, II, III and IV (see Figures 2, 3, 4 and 5).

Type I: Each graph F ∈ F(m, k, r) of Type I satisfies:

• k = 2`+ 1, r ≤ `− 1, and c(F ) < k;

• F contains a Hamiltonian path v1v2 . . . vm such that A = {v1, . . . , vr}; B = {vm−r+1, . . . , vm};
and either

– m = k, r ≤ `− 1, and C = {vr+1, vr+3, . . . , vm−r−2, vm−r}; or

– m ≥ k, r = `− 1, and C = {vr+1, vm−r} = {v`, vm−`+1};
3For the parameter r, roughly speaking we may view it as something close to ω(F ), though its own meaning will

be clear in the proof of Theorem 1.2. Readers may treat the coming lengthy definition as a handout and skip to next
sections.
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• each vertex in A has degree exactly ` in F [A ∪ C] and each vertex in B has degree exactly ` in
F [B ∪ C].

v5 v6 v7v1 v2 v3 v9 v10 v11

v4 v8

v5 v7v1 v2 v3 v9 v10 v11

v4 v6 v8

Figure 2. Graphs of Type I.

Type II: Each graph F ∈ F(m, k, r) of Type II satisfies:

• k = 2`+ 2, r ≤ `− 1, and c(F ) < k;

• F contains a Hamiltonian path v1v2 . . . vm such that B = {vm−r+1, . . . , vm}; and either

– m = k, r ≤ `−1, A = {v1, . . . , vr} and C = {vr+1, vr+3, . . . , vr+2i+1, vr+2i+4, . . . , vm−r−2, vm−r},
where 0 ≤ i ≤ (m− 2r − 4)/2 (Figure 3(a));

– m = k + 1, r = `− 2 ≥ 2, A = {v1, . . . , vr}, and C = {vr+1, vr+4, vr+7} (Figure 3(b));

– m = k, r ≤ ` − 1, A = {v1, . . . , vr+1}, and C = {vr+2, vr+4, . . . , vm−r−2, vm−r} (Figure
3(c));

– m ≥ k, r = `− 1, A = {v1, . . . , vr+1}, and C = {vr+2, vm−r} = {v`+1, vm−`+1}; or

– m ≥ k, r = `− 1, A = {v1, . . . , vr}, and C = {vr+1, vm−r} = {v`, vm−`+1};

• each vertex in A has degree exactly ` in F [A ∪ C] such that there are two independent edges
between {vr+2, vm−r} and A when |A| = r + 1 4 and each vertex in B has degree exactly ` in
F [B ∪ C].

v5 v7 v8v1 v2 v3 v10v11v12

v4 v6 v9

v5 v6 v8 v9v1 v2 v3 v11v12v13

v4 v7 v10

v5 v7v1 v2 v3 v9 v10

v4 v6 v8

(a) (b) (c)

Figure 3. Graphs of Type II.

Type III: Each graph F ∈ F(m, k, r) of Type III satisfies:

• k = 2`+ 2, r ≤ `− 1, and c(F ) < k;

• F contains a Hamiltonian path v1v2 . . . vm such that when B = {vm−r+1, . . . , vm}; and either

– m = k, r ≤ ` − 1, C = {v3, v5, . . . , v1+2i, vr+2+2i, vr+4+2i, . . . , vm−r−2, vm−r}, and A =
{v1, v3+2i, v4+2i, . . . , vr+1+2i} where 1 ≤ i ≤ `− r (Figure 4(a));

– m = k, r ≤ ` − 1, A = {v1, v3, . . . , vr+1}, and C = {vr+2, vr+4, . . . , vm−r−2, vm−r} (Figure
4(b));

– m = k, r ≤ `− 1, A = {v1, . . . , vr}, and C = {vr+2, vr+4, . . . , vm−r−2, vm−r} (Figure 4(c));

– m ≥ k, r = `− 1, A = {v1, v3, . . . , vr+1}, and C = {vr+2, vm−r} = {v`+1, vm−`+1} (similar
as Figure 4(b)); or

4This condition ensure the graphs in Type II are 2-connected and have some other good properties for the proofs in
the forthcoming paper [11].
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– m ≥ k, r = ` − 1, A = {v1, . . . , vr}, and C = {vr+2, vm−r} = {v`+1, vm−`+1}(similar as
Figure 4(c));

• each vertex in A has degree exactly ` in F [A ∪ C] and each vertex in B has degree exactly ` in
F [B ∪ C].

v4 v2 v8v1 v6 v5 v10 v11 v12

v3 v7 v9

v2 v6 v8v1 v4 v3 v10 v11 v12

v5 v7 v9

v4 v6 v8v1 v2 v3 v10 v11 v12

v5 v7 v9

(a) (b) (c)

Figure 4. Graphs of Type III.

Type IV: Each graph F ∈ F(m, k, r) of Type IV satisfies:

• k = 2`+ 2, r = `, and c(F ) < k;

• F contains a Hamiltonian path v1v2 . . . vm with A = {v1, . . . , vr} and B = {vm−r+1, . . . , vm};

• each vertex in A has degree exactly ` in F [A∪{vr+1, vi}] and each vertex in B has degree exactly
` in F [B ∪ {vm−r, vi}], where r + 3 ≤ i ≤ m− r − 2.

v11 v12 v13v1 v2 v3

v10v4

v7

Figure 5. F ∈ F(13, 10, 4) of Type IV

3 A generalization of Pósa’s lemma

The following well-known lemma is due to Pósa [12] and is extensively used in extremal graph theory.

Lemma 3.1 (Pósa [12]). Let G be a 2-connected graph and P = x1x2 · · ·xm be a path in G. Then G
contains a cycle of length at least min{m, dP (x1) + dP (xm)} containing NP [x1] ∪NP [xm]. Moreover,
if P is a non-crossing path with NP (x1) ∩ NP (xm) = ∅, then G contains a cycle of length at least
min{m, dP (x1)+dP (xm)+2}. If P is a non-crossing path with NP (x1)∩NP (xm) 6= ∅, then G contains
a cycle of length at least min{m, dP (x1) + dP (xm) + 1}.

Now we give the proof of our main result.

Proof of Theorem 1.2. Let G be a 2-connected graph with c(G) < k and H be the (` − 1)-
disintegration of G. Suppose to the contrary that G does not contain any subgraph in F(m, k, r) with
m ≥ k and r ≤ `. Let P be the family of all longest H-paths in G. We proceed by showing a sequence
of claims in what follows.

Claim 1. Every P = x1x2 · · ·xm ∈ P satisfies the following properties.

(i) NH(x1) ⊆ NP (x1) and NH(xm) ⊆ NP (xm),

(ii) dP (x1) ≥ dH(x1) ≥ ` and dP (xm) ≥ dH(xm) ≥ `, and

(iii) N−P (x1) ∩NP [xm] = ∅ and N+
P (xm) ∩NP [x1] = ∅.
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Proof. (i). Suppose to the contrary that there exists a vertex y ∈ (NH(x1) \NP (x1)). Then yx1Pxm
is an H-path longer than P , a contradiction. Therefore, we have NH(x1) ⊆ NP (x1). Similarly, we
have NH(xm) ⊆ NP (xm).

(ii). Note that H is the (` − 1)-disintegration of G. Each vertex of H has degree at least `
in H, that is dH(x1) ≥ ` and dH(xm) ≥ `. It follows from (i) that dP (x1) ≥ dH(x1) ≥ ` and
dP (xm) ≥ dH(xm) ≥ `.

(iii). Suppose to the contrary that N−P (x1)∩NP [xm] 6= ∅. Let xi be a vertex in N−P (x1)∩NP [xm],
i.e., x1 is adjacent to xi+1 and xm is adjacent to xi. Thus, x1PxixmPxi+1x1 is a cycle of length m ≥ k
in G, a contradiction to c(G) < k. Therefore, we have N−P (x1) ∩ NP [xm] = ∅. Similarly, we have
N+
P (xm) ∩NP [x1] = ∅.

Given a path P with a crossing pair (i, j), let

Ui = NP [x1] ∪ (N+
P (xm) \ {xi+1}) and Vj = NP [xm] ∪ (N−P (x1) \ {xj−1}).

Claim 2. Let P = x1x2 · · ·xm be a crossing path in P and (i, j) be any minimal crossing pair of P .
Then the following properties hold.

(i) dP (x1) + dP (xm) = |Ui| = |Vj | ≥ 2`,

(ii) Ui ⊆ V (x1Pxi) ∪ V (xjPxm), Vj ⊆ V (x1Pxi) ∪ V (xjPxm),

(iii) m− k + 1 ≤ `(i, j) ≤ m− 2`, i.e., 2` ≤ |V (x1Pxi) ∪ V (xjPxm)| ≤ k − 1, and

(iv) |(V (x1Pxi) ∪ V (xjPxm)) \ Ui| = |(V (x1Pxi) ∪ V (xjPxm)) \ Vj | ≤ 1. Moreover, if

– k is odd,

– dP (x1) + dP (xm) = 2`+ 1 or

– `(i, j) = m− 2`,

then V (x1Pxi) ∪ V (xjPxm) = Ui = Vj.

Proof. By Claim 1(iii) we have NP [x1] ∩ (N+
P (xm) \ {xi+1}) = ∅. Hence we have |Ui| = dP (x1) + 1 +

dP (xm) − 1 = dP (x1) + dP (xm). Similarly, we have |Vj | = dP (x1) + dP (xm). It follows from Claim
1(ii) that |Ui| = |Vj | ≥ 2`.

By the definition of a minimal crossing pair, we can easily obtain Ui ⊆ V (x1Pxi)∪V (xjPxm) and
Vj ⊆ V (x1Pxi) ∪ V (xjPxm), proving (ii).

Since c(G) < k and x1PxixmPxjx1 is a cycle of length m − `(i, j), we have m − `(i, j) < k, i.e.,
m− k + 1 ≤ `(i, j). By (i) and (ii) we have 2` ≤ |Vj | ≤ |V (x1Pxi) ∪ V (xjPxm)|. Therefore, we have
`(i, j) = m− |V (x1Pxi) ∪ V (xjPxm)| ≤ m− 2`, proving (iii).

Lastly, from (i) (ii) and (iii) we have |(V (x1Pxi)∪V (xjPxm)) \Ui| = |(V (x1Pxi)∪V (xjPxm)) \
Vj | ≤ k−1−2` ≤ 1. If k = 2`+1 is odd, then |(V (x1Pxi)∪V (xjPxm))\Ui| = |(V (x1Pxi)∪V (xjPxm))\
Vj | ≤ 2`+ 1−1−2` = 0, i.e., V (x1Pxi)∪V (xjPxm) = Ui = Vj . If dP (x1) +dP (xm) = 2`+ 1, then by
(i) we have |Ui| = |Vj | = 2`+ 1, and hence V (x1Pxi)∪V (xjPxm) = Ui = Vj . If `(i, j) = m− 2`, then
|V (x1Pxi) ∪ V (xjPxm)| = 2`, and hence by (i) and (ii) we have V (x1Pxi) ∪ V (xjPxm) = Ui = Vj .
The proof of the claim is complete.

Given a path P with a crossing pair (i, j), let

U∗i = NH [x1] ∪ (N+
H (xm) \ {xi+1}) and V ∗j = NH [xm] ∪ (N−H (x1) \ {xj−1}).

Claim 2∗. Let P = x1x2 · · ·xm be a crossing path in P and (i, j) be any minimal crossing pair of P .
Then the following properties hold.

(i) dH(x1) + dH(xm) = |U∗i | = |V ∗j | ≥ 2`,
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(ii) U∗i ⊆ V (x1Pxi) ∪ V (xjPxm) and V ∗j ⊆ V (x1Pxi) ∪ V (xjPxm),

(iii) |(V (x1Pxi) ∪ V (xjPxm)) \ U∗i | = |(V (x1Pxi) ∪ V (xjPxm)) \ V ∗j | ≤ 1 and

(iv) if

– k is odd,

– dH(x1) + dH(xm) = 2`+ 1 or

– `(i, j) = m− 2`,

then V (x1Pxi) ∪ V (xjPxm) = U∗i = V ∗j , NH(x1) = NP (x1) and NH(xm) = NP (xm).

Proof. By Claim 1(i), we have U∗i ⊆ Ui and V ∗j ⊆ Vj . Similar to the proof of Claim 2, we can easily
prove (i), (ii) and (iii).

If k = 2`+1 is odd, then it follows from Claim 2 that dP (x1)+dP (xm) = |V (x1Pxi)∪V (xjPxm)| =
2`, and hence by (i) and (ii) we have V (x1Pxi)∪V (xjPxm) = U∗i = V ∗j , implying dH(x1)+dH(xm) =
|V (x1Pxi) ∪ V (xjPxm)| ≥ dP (x1) + dP (xm). Thus by Claim 1(i) we have NH(x1) = NP (x1) and
NH(xm) = NP (xm). The rest of the proof is similar and omitted.

The following Figure 6 shows the neighbors of x1 and xm in a crossing path P with a minimal
crossing pair (i, j) (at most one blue or red edges are missing when k is even, dP (x1) + dP (xm) = 2`
and `(i, j) = m− 2`− 1).

x1 xmxjxi

Figure 6. The neighbors of x1 and xm in the crossing path P

Next we consider the neighbors of end-vertices of a path with a crossing pair. The following claim
strengthens Claims 1 and 2 and will be used many times throughout the proof.

Let N+1
P (xm) = N+

P (xm) and N+i
P (xm) = (N

+(i−1)
P (xm))+ for i ≥ 2.

Claim 3. Let P = x1x2 · · ·xm′ be a crossing path in G with dP (x1) ≥ `, dP (xm′) ≥ ` and m′ ≥ k.

Let X = V (P ) \ (
⋃m′−k+1
i=1 N+i

P (xm′) ∪ {x1}). Then the following holds.

(i) If k is even, then x1 is adjacent to all vertices but at most one of X.

(ii) If k is odd or dP (x1) = |X|, then x1 is adjacent to each vertex of X.

Proof. Clearly, since c(G) < k, we have NP (x1) ⊆ V (P ) \ (
⋃m′−k+1
i=1 N+i

P (xm′) ∪ {x1}) = X. Since P
has a minimal crossing pair, say (i, j), by Claim 2(iii) we have `(i, j) ≥ m′ − k + 1. Thus x1 is not
adjacent to xi+1, . . . , xi+m′−k+1 (see Figure 7, x1 can not be adjacent to the red empty vertices and
adjacent to all but at most one vertices of the black vertices). Hence we have

|X| ≤ m′ − (dP (xm′)− 1)− (m′ − k + 1)− 1 = k − 1− dP (xm′).

If k = 2`+ 2 is even, then since dP (xm′) ≥ `, we have |X| ≤ `+ 1. Hence, using dP (x1) ≥ `, x1 must
be adjacent to all vertices but at most one in X. The proof for the rest of Claim 3 is similar and
omitted.

x1 xm′xjxi

Figure 7. The possible neighbors of x1 in P
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Remark. In Claim 3, the length of P may be less than m and the end-vertices of P may not belong
to H.

For P = x1x2 · · ·xm ∈ P, let sP = min{h : xh+1 ∈ NP (xm)} and tP = max{h : xh−1 ∈ NP (x1)}.5

Claim 4. Let P = x1x2 · · ·xm be a crossing path in P with a minimal crossing pair (i, j). If xs ∈ V (H)
and xs+1 ∈ NP (x1), then

• NP [xs] = NP [x1], or k is even and xs is adjacent to all but at most one vertex in NP [x1];

• x1 cannot be adjacent to two consecutive vertices of xjPxt−1 and NP [xs] ⊆ NP [x1].

Similar result holds when xt ∈ V (H) and xt−1 ∈ NP (xm).

Proof. By symmetry between x1 and xm, we will prove the first statement. We consider the path
R = xsPx1xs+1Pxm. It follows from xs, xm ∈ V (H) that R ∈ P. We have NH [xs] ⊆ V (R) by the
maximality of m and NH [xm] ⊆ V (xs+1Rxm) by the definition of s. Hence, R has a crossing pair, as
otherwise we have |V (x1Pxs)| ≥ |NR[xs]| ≥ ` + 1 and hence x1PxixmPxjx1 is a cycle of length at
least |V (x1Pxs+1)| + |N+

R (xm) \ {xi+1}| + |{xq, xq+1}| = ` + 1 + ` − 1 + 2 ≥ k, a contradiction. By
Claim 3, we have NP [xs] ⊆ NP [x1], whence NP [xs] = NP [x1], or k is even and xs is adjacent to all
but at most one vertex in NP [x1].

Now, suppose to the contrary that x1 is adjacent to xq and xq+1 for some j ≤ q ≤ t − 2. Note

that xq, xq+1 ∈ NP [x1] ⊆ V (P ) \
⋃θ
i=1N

+i
P (xm), where θ = m − k + 1. Thus by Claim 3, xs must

be adjacent to one of xq, xq+1. If xs is adjacent to xq, then xsxqPxs+1xmPxq+1x1Pxs is a cycle of
length m; If xs is adjacent to xq+1, then xsxq+1Pxmxs+1Pxqx1Pxs is a cycle of length m, both are
contradictions. This completes the proof of the claim.

x1 xmxq xq+1xs+1xs
P = x1Pxsxs+1Pxm

xs xmxq xq+1xs+1x1
R = xsPx1xs+1Pxm

Figure 8. The structure of the crossing path P and R

Now according to the parity of k, we divide the remaining proof into two subsections. First, we
consider the odd case, whose proof is comparably easier, yet reveals essential ideas of our arguments.

3.1 k is odd.

In this subsection, we have k = 2` + 1. From Claim 2∗, we have NH(x1) = NP (x1) and NH(xm) =
NP (xm).

Claim 5. There exists a crossing path in P.

Proof. Suppose to the contrary that all paths in P are non-crossing. Then this is a P = x1x2 · · ·xm ∈
P. By Lemma 3.1, G contains a cycle of length at least min{m, 2`+ 1} ≥ k, a contradiction.

5When there is no ambiguity, we often omit the subscript index in sP and tP (such as in the coming claim).
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By Claim 5, there is a crossing path P ∈ P. Within P , let (i1, j1) and (i2, j2) be two minimal
crossing pairs of P such that i1 is as small as possible and j2 is as large as possible.6

Claim 6. P has a unique minimal crossing pair (i, j) with `(i, j) = m−2` when m ≥ k+1. Moreover,
if m = k, then each minimal crossing pair (i′, j′) in P satisfies that `(i′, j′) = 1.

Proof. Let m ≥ k + 1. Suppose to the contrary that there exist two minimal crossing pairs in P , say
i1 < j1 ≤ i2 < j2. By Claim 2(iii), we have `(i1, j1) ≥ m−k+1 ≥ 2 and `(i2, j2) ≥ m−k+1 ≥ 2. Then
we have contradicted Claim 2(ii) since xi2+1 ∈ V (xj1Pxm) but xi2+1 /∈ NP (xm) and xi2+2 /∈ NP (x1).
Let m = k. Then by Claim 2(iii) again, each minimal crossing pair (i′, j′) satisfies 1 = k − k + 1 ≤
`(i′, j′) ≤ k − 2` = 1. The proof of Claim 6 is complete.

Claim 7. i1 = s+ 1 and j2 = t− 1.

Proof. We may assume that j2 < t − 1. By the definition of s, t, we have xs+1 ∈ NP (xm) and
xt−1 ∈ NP (x1). Since k is odd, by Claim 2∗(iv) we have U∗i1 = V ∗j1 = V (x1Pxi1) ∪ V (xj1Pxm), and
hence xs, xs+1 ∈ NH(x1). Thus it follows from Claim 4 that x1 is not adjacent to xt−2 which implies
that j2 < t − 2. By U∗i1 = V ∗j1 = V (x1Pxi1) ∪ V (xj1Pxm) again, xm is adjacent to xt−3. Therefore,
(t− 3, t− 1) is a minimal crossing pair in P , contradicting the choice of j2. Thus we have j2 = t− 1.
Similarly, we have i1 = s+ 1.

Now we are ready to finish the proof of Theorem 1.2 when k is odd. For each minimal crossing
pair, by Claim 2(iii) we have

|V (x1Pxi) ∪ V (xjPxm)| = 2`. (2)

By Claim 2∗(iv), we have V (x1Pxi) ∪ V (xjPxm) = U∗i = V ∗j , NH(x1) = NP (x1) and NH(xm) =
NP (xm), and hence we have (note that xs /∈ NH(xm) and xt /∈ NH(x1))

V (x1Pxs+1) ⊆ NH [x1] and V (xt−1Pxm) ⊆ NH [xm]. (3)

Moreover, we have
dH(x1) = dP (x1) = ` and dH(xm) = dP (xm) = `. (4)

By Claim 7, we derive that i1 = s+ 1 and j2 = t− 1. If (i1, j1) = (i2, j2), then let C = {xs+1, xt−1},
otherwise let C = {xs+1, xs+3, · · · , xt−3, xt−1}. Let

A = V (x1Pxs), B = V (xtPxm), D = V (P ) \ (A ∪B ∪ C).

Ifm ≥ k+1, then by Claim 6, P has a unique minimal crossing pair (i, j), and hence by Claim 7 we have
(i, j) = (s+ 1, t− 1). Hence, by (3) and the definitions of s and t, we have NH [x1] = A∪{xs+1, xt−1},
NH [xm] = B∪{xs+1, xt−1} and |A| = |B| = `−1. From (3), Rγ = xγPx1xγ+1Pxm is an H-path on m
vertices for 2 ≤ γ ≤ s and hence dRγ (xγ) ≥ ` and dRγ (xm) ≥ `. If Rγ is not a crossing path, then by
Lemma 3.1 we have c(G) ≥ min{m, 2`+ 1} = k, a contradiction. Thus Rγ is a crossing path, and by
Claim 3(ii) xγ is adjacent to each vertex of (A∪{xs+1, xt−1})\{xγ}. Thus we have NH [xγ ] = NH [x1].
Similarly, we have NH [xλ] = NH [xm] for t ≤ λ ≤ m. Hence G[A] and G[B] are complete graphs.
Therefore, it is easy to check that G[V (P )] gives a copy in F(m, k, s) of Type I, a contradiction (see
Figure 9).

x1 xmxt−1xs+1

Figure 9. The structure of the crossing path P with m ≥ k + 1

6Note that it is possible that (i1, j1) = (i2, j2).
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Let m = k. From (3), we have xs, xs+1 ∈ NH(x1) and xt, xt−1 ∈ NH(xm). By Claim 4, x1 is
not adjacent to consecutive vertices of V (xj1Pxt−1) and xm is not adjacent to consecutive vertices
of V (xs+1Pxi2). Since xm is adjacent to xs+1, we have that xm is not adjacent to xs+2, whence x1
is not adjacent to xs+2 by Claim 1(iii). By Claim 6, x1 is adjacent to xs+3. Consider the minimal
crossing pair (s+ 1, s+ 3). By Claim 2∗(iv), we have V (x1Pxs+1)∪V (xs+3Pxm) = U∗s+1 = V ∗s+3, and
hence xm is adjacent to xs+3. Repeating the above arguments, we have x1 and xm are adjacent to
xs+5, xs+7, . . . , xt−1, and hence we have NH [x1] = A ∪ C and NH [xm] = B ∪ C. Consider the paths
Rγ = xγPx1xγ+1Pxm for 2 ≤ γ ≤ s. Since c(G) < k, Rγ ∈ P is a crossing path by Lemma 3.1.
By Claim 3(ii), the neighbors of xγ in H are determined by the neighbors of xm in Rγ , that is
NH [xγ ] = NH [x1]. Similarly, NH [xλ] = NH [xm] for t ≤ λ ≤ m. Thus G[A] and G[B] are complete
graphs. Now it is straightforward to check that G[V (P )] gives a copy in F(m, k, s) of Type I, a
contradiction (see Figure 10). This completes the proof of Theorem 1.2 for odd k.

x1 xmxt−1xs+1

Figure 10. The structure of the crossing path P when m = k

3.2 k is even.

In this subsection, we have k = 2`+ 2.

Claim 8. There exists a crossing path in P.

Proof. Suppose to the contrary that all paths in P are non-crossing. Let P = x1x2 · · ·xm ∈ P. Let α
be the maximum integer such that xα is adjacent to x1 and β be the minimum integer such that xβ
is adjacent to xm. Note that α ≤ β.

If α < β, then by Lemma 3.1, G contains a cycle of length at least min{m, 2` + 2} ≥ k, a
contradiction. Therefore, we have α = β. Since G is 2-connected, there exists a path Q in G
with V (Q) ∩ V (P ) = {xu, xv} for 1 ≤ u < α < v ≤ m. Let p = min{h : h > u, xh ∈ NP (x1)}
and q = max{h : h < v, xh ∈ NP (xm)}. Then C0 = x1PxuQxvPxmxqPxpx1 is a cycle containing
NP [x1] ∪NP [xm]. By Claim 1, C0 has length at least k − 1. Note that c(G) < k. This forces that C0

has length k−1. It follows that dH(x1) = dH(xm) = `, NH(x1) = V (x2Pxu)∪V (xpPxα), NH(xm) =
V (xαPxq) ∪ V (xvPxm−1), V (C0) = NH [x1] ∪NH [xm] and Q = xuxv.

For any 2 ≤ γ ≤ u− 1, we consider the path Rγ = xγPx1xγ+1Pxm. Since xγ ∈ NH(x1) ⊆ V (H),
Rγ ∈ P is an H-path. Also, by our assumption, Rγ is non-crossing. It follows that NH [xγ ] ⊆
V (x1Pxα). Suppose that xγ has a neighbor y in V (xu+1Pxp−1). Then xγPx1xγ+1PxuQxvPxmxqPyxγ
is a cycle of length at least k + 1, a contradiction. Therefore, we have

NH [xγ ] = NH [x1] for any 2 ≤ γ ≤ u− 1. (5)

By symmetry, we have
NH [xγ ] = NH [xm] for any v + 1 ≤ γ ≤ m− 1. (6)

Suppose that p < α or q > α. By symmetry, we may assume that p < α. Then we have
xα−1 ∈ NP (x1). Now, we consider the path L = xuPxα−1x1Pxu−1xαPxm (since NH [xu−1] = NH [x1],
xu−1 is adjacent to xα). Clearly, L ∈ P. Note that xv ∈ NL(xu), xα ∈ NL(xm) and xα precedes xv
in L. It follows that L is a crossing path in P, a contradiction.

The last paragraph implies that p = α and q = α. Suppose that u = α − 1 or v = α + 1.
By symmetry, we may assume u = α − 1. Then xαxu ∈ E(P ). Now we consider the path M =
xuPx1xαPxm. Clearly, M ∈ P. Note that xv ∈ NM (xu), xα ∈ NM (xm) and xα precedes xv in M . It
follows that M is a crossing path in P, a contradiction.
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Thus, we may suppose that u < α− 1 and v > α+ 1. Let

A = V (x1Pxu), B = V (xvPxm) and C = V (P ) \ (A ∪B).

By (5) and (6), G[A] and G[B] are complete graphs. Hence, it is easy to check that G[V (P )] gives a
copy in F(m, k, `) of Type IV (with k = 2`+2, w = xα and {w1, w2} = {xu, xv}), a contradiction.

x1 xmxvxαxu

Figure 11. The structure of the non-crossing path P

We choose a longest H-path P = x1Pxm ∈ P satisfying the following.

(a) dH(x1) + dH(xm) is as large as possible;

(b) subject to (a), `(i, j) is as large as possible, where (i, j) is a minimal crossing pair (i, j) in P ;

(c) and subject to (a) and (b), P has as many minimal crossing pairs as possible.

Within P , let (i1, j1) and (i2, j2) be two minimal crossing pairs of P such that i1 is as small as possible
and j2 is as large as possible. 7

Claim 9. The followings hold for the crossing pairs of P .

• There is a unique minimal crossing pair in P when m ≥ k + 2,

• there are at most two minimal crossing pairs in P when m = k + 1 and

• each minimal crossing pair (i′, j′) 6= (i, j) in P satisfies `(i′, j′) = 1 when m = k.

Proof. Let m ≥ k+ 2. Suppose to the contrary that there exist two minimal crossing pairs in P , that
is i1 < j1 ≤ i2 < j2. By Claim 2(iii), we have `(i1, j1) ≥ m− k + 1 ≥ 3 and `(i2, j2) ≥ m− k + 1 ≥ 3.
Note that V (xi2+1Pxj2−2) ∩ ((N−P (x1) \ {xj1−1}) ∪NP [xm]) = ∅, |V (xi2+1Pxj2−2)| = `(i2, j2)− 1 ≥ 2
and |(N−P (x1) \ {xj1−1}) ∪NP [xm]| = |Vj1 | ≥ 2` by Claim 2(i) and Claim 2(iii) (recall the definitions
of Ui and Vj). It follows that x1Pxi1xmPxj1x1 is a cycle of length at least 2`+ 2 = k, a contradiction.

Letm = k+1. Suppose to the contrary that there exist three minimal crossing pairs (α1, β1), (α2, β2)
and (α3, β3) in P . Without loss of generality, we may assume that α1 < β1 ≤ α2 < β2 ≤ α3 < β3.
Note that

(V (xα2+1Pxβ2−2) ∪ V (xα3+1Pxβ3−2)) ∩ ((N−P (x1) \ {xα1−1}) ∪NP [xm]) = ∅,

|V (xα2+1Pxβ2−2| = |V (xα3+1Pxβ3−2)| = 1 and |(N−P (x1) \ {xj1−1}) ∪ NP [xm]| = |Vj | ≥ 2` by Claim
2(i). Then x1Pxα1xmPxβ1x1 is a cycle of length at least 2`+ 1 + 1 = k, a contradiction.

Finally, let m = k. By Claim 2(iii), we have `(i, j) = 1 or `(i, j) = 2. We may assume that
`(i, j) = 2 = m−2`, since otherwise the result follows by the choice of (i, j). Hence Claim 2(iv) implies
V (x1Pxi) ∪ V (xjPxm) = Ui = Vj . Suppose to the contrary that there exists a minimal crossing pair
(i′, j′) other than (i, j) in P with `(i′, j′) = 2. It is clear that V (xi′+1Pxj′−2) ∩ ((N−P (x1) \ {xj−1}) ∪
NP [xm]) = ∅ and |V (xi′+1Pxj′−2)| = 1, contradicting V (x1Pxi) ∪ V (xjPxm) = Ui = Vj .

There are two possibilities for the size of m: m ≥ k + 1 or m = k. We now split the rest of the
proof into two cases based on these two possibilities.

7It is possible that (i1, j1) = (i2, j2).
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3.2.1 m ≥ k + 1.

Since m ≥ k + 1, by Claim 9, there are at most two minimal crossing pairs in P . Suppose that there
are two minimal crossing pairs (i1, j1), (i2, j2) in P . By Claim 9 again, we have m = k + 1. By Claim
2(iii), we have 2 = m−k+ 1 ≤ `(i1, j1), `(i2, j2) ≤ m−2` = 2`+ 2 + 1−2` = 3. Consider the crossing
pair (i1, j1). From Claim 2(iv) we have |(V (x1Pxi1) ∪ V (xj1Pxm)) \ Ui1 | ≤ 1 implying (recall the
definition of Ui1) |V (xi2Pxj2)| ≤ 4, i.e., `(i2, j2) ≤ 2. Similarly, we have `(i1, j1) ≤ 2. Thus we obtain
`(i1, j1) = `(i2, j2) = 2. Consider the crossing pair (i1, j1). We have xi2+2 /∈ Ui1 (recall the definition
of Ui1). Hence, by Claim 2(ii) and (iv), we have

Ui1 = (V (x1Pxi1) ∪ V (xj1Pxm)) \ {xi2+2} (7)

and hence Claim 2(i) and (iii) imply that |Ui1 | = 2`. Moreover, by Claim 2∗(iv), we have NP (x1) =
NH(x1), NP (xm) = NH(xm) and dP (x1) = dP (xm) = dH(x1) = dH(xm) = `. Hence from the
definition of s and t, we have xs, xs+1 ∈ NH(x1) and xt−1, xt ∈ NH(xm).

Assume that j2 < t − 1. Since xs, xs+1 ∈ NH(x1) and x1 is adjacent to xt−1 by the definition of
t, it follows from Claim 4 that x1 is not adjacent to xt−2 and hence j2 ≤ t − 3. Thus, by (7), xm is
adjacent to xt−3. Therefore, (t− 3, t− 1) is minimal crossing pair in P with j2 ≤ t− 3, contradicting
that there are two minimal crossing pairs. Hence, we have j2 = t − 1. Similarly, we have i1 = s + 1.
Note that x1 is not adjacent to xi2+2 and xm is not adjacent to xi2+1. Consider the crossing pair
(s+ 1, j1) = (i1, j1). We have xi2+2 /∈ U∗i1 . By Claim 2∗(iii), we have

(V (x1Pxs+1) ∪ V (xj1Pxm)) \ U∗i1 = {xi2+2}. (8)

By Claim 4, x1 is not adjacent to xj1+1 and hence by (8) xm is adjacent to xj1 . By Claim 4 again,
xm is not adjacent to xj1+1 implying j1 = i2. Let

A = V (x1Px`−2), B = V (x`+6Pxk+1), and C = {x`−1, x`+2, x`+5}.

Combing the above arguments, we have NH [x1] = A∪C, NH [xm] = B ∪C and |A| ≥ 2. Consider the
paths xγPx1xγ+1Pxm for 2 ≤ γ ≤ `−2 and xλPxk+1xλ−1Px1 for `+6 ≤ λ ≤ k. Since |V (x1Px`−1)| =
`−1, |V (xmPx`+5)| = `−1, xγ ∈ V (H) and xλ ∈ V (H), xγ is adjacent to some vertex of V (x`Pxk+1)
and xλ is adjacent to some vertex of V (x1Px`+4). Thus those paths are crossing H-paths. By Claim 3,
we can determine the neighbors of xγ and xλ in H, that is NH [x1] = NH [xγ ] and NH [xk+1] = NH [xλ].
Hence G[A] and G[B] are complete graphs, G[V (P )] gives a copy of F (k+ 1, k, `− 2) of Type II with
|A| ≥ 2, a contradiction (see Figure 12.).

x1 xk+1x`+5x`−1 x`+2

Figure 12. The structure of the crossing path P with two crossing pairs when m = k + 1

Thus, we may assume that there is a unique minimal crossing pair (i, j) in P .

Claim 10. Consider the crossing pair (i, j). We have i = s+ 1 and j = t− 1.

Proof. If dH(x1) + dH(xm) ≥ 2` + 1, then by Claim 2(iii) and Claim 2∗(i), (ii), we have dH(x1) +
dH(xm) = 2` + 1. Hence by Claim 2∗(iv), we have V (x1Pxi) ∪ V (xjPxm) = U∗i = V ∗j , NP (x1) =
NH(x1) and NP (xm) = NH(xm). If m − `(i, j) = 2`, by Claim 2∗(iv), we also have V (x1Pxi) ∪
V (xjPxm) = U∗i = V ∗j , NP (x1) = NH(x1) and NP (xm) = NH(xm). Therefore, we have xs, xs+1 ∈
NH(x1), and hence by Claim 4, x1 is not adjacent to consecutive vertices of V (xjPxt−1). Since x1 is
adjacent to xj , x1 is not adjacent to xj+1. Then by V (x1Pxi)∪V (xjPxm) = U∗i = V ∗j , xm is adjacent
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to xj . Since there is a unique minimal crossing pair, x1 is not adjacent to any vertex of V (xj+1Pxm),
implying j = t− 1. By symmetry we have i = s+ 1.

Now, suppose that m − `(i, j) = 2` + 1 and dH(x1) + dH(xm) = 2`, i.e., dH(x1) = dH(xm) = `.
Then by Claim 2∗(ii), there exists a unique vertex xp ∈ V (x1Pxi) ∪ V (xjPxm) such that

{xp} ∪ U∗i = V (x1Pxi) ∪ V (xjPxm). (9)

By symmetry between x1 and xm, we may assume that 1 ≤ p ≤ i. Then we have

V (xjPxm) ⊆ U∗i , (10)

implying that xt, xt−1 ∈ NH(xm) (m 6= t by m ≥ k + 1). Suppose to the contrary that i > s + 1.
Since xt, xt−1 ∈ NH(xm), xi ∈ NH(xm), by Claim 4, we have xi−1 /∈ NP (xm). Since there is only
one minimal crossing pair in P , with Claim 1(iii), we have V (xs+1Pxi) ∩ NP (x1) = ∅. Thus by
xi−1 /∈ NP (xm) and xi /∈ NP (x1), xi does not belongs to U∗i , i.e., p = i. Since x1 is not adjacent
to xi−1 (by i − 1 ≥ s + 1), by (9) we have xi−2 ∈ NH(xm) and hence xi−3 is not adjacent to xm
by xt, xt−1 ∈ NH(xm) and Claim 4. Thus by (9) and p = i, x1 is adjacent xi−2. Since there is a
unique minimal crossing pair, we have s = i − 3. Hence, we have V (x1Pxs) ⊆ U∗i , implying that
xs, xs+1 ∈ NH(x1) by m ≥ k + 1 (see Figure 13.). By Claim 4, x1 is not adjacent to xj+1. From
(10), xm is adjacent to xj , and since there is a unique minimal crossing pair, from (10) we deduce
that V (xjPxm−1) ⊆ NH(xm). We consider the path R1 = xtPxmxt−1Px1. Since xt ∈ V (H), we
have dR1(xt) ≥ dH(xt) ≥ `. Note that |V (xtPxm)| ≤ dH(xm) − 1 = ` − 1. Thus xt is adjacent to
some vertices of V (x1Pxt−2). Since x1 is adjacent to xt−1, R1 ∈ P is a crossing path. Hence by
Claim 3, xt must be adjacent to one of xi−2, xi−1 (xi−2, xi−1 are possible neighbors of xt in R1). Then
xγPx1xt−1PxixmPxtxγ is a cycle of length at least m−1 ≥ k, where γ ∈ {i−2, i−1}, a contradiction.
This contradiction shows that i = s+ 1.

x1 xmxt−1xjxi

Figure 13. P = x1Pxsxs+1Pxm with dH(x1) = dH(xm) = ` and m− `(i, j) = 2`

Next, we will show that j = t − 1. First, we suppose that xj+1 ∈ NP (x1) (see Figure 14.). Then
we have

|V (x1Pxi)| ≤ `− 1. (11)

By Claim 4, we have xs /∈ V (H) or xs+1 /∈ NP (x1). If xs /∈ V (H), then xs /∈ NH(x1). Since xs−1 is
not adjacent to xm by the definition of s, then we have xs = xp, i.e., p = i − 1. If xs+1 /∈ NP (x1),
then xs+1 /∈ NH(x1). Sine xs is not adjacent to xm by the definition of s, then we have xs+1 = xp,
i.e., p = i. Hence, we can consider the following two cases.

Case 10.1. p = i = s + 1. Then x1 is not adjacent to xi. It follows from (9) that V (x1Pxi−1) ⊆
NH [x1]. If i ≤ 3, then x1xjPxixmPxj+1x1 is a cycle of length m− 1 ≥ k, a contradiction. Therefore,
we have i ≥ 4. Then we consider the path R3 = xi−2Px1xi−1Pxm. Since xi−2 ∈ V (H) (by (9)), by
(11) xi−2 is adjacent to at least one vertex of V (xi+1R3xm), and hence R3 ∈ P is a crossing path.
Hence by Claim 3, xi−2 must be adjacent to at least one vertex in {xj , xj+1} (as in the proof of
Claim 4). If xi−2 is adjacent to xj , then x1Pxi−2xjPxixmPxj+1x1 is a cycle of length m − 1 ≥ k,
a contradiction. Similarly, if xi−2 is adjacent to xj+1, then x1Pxi−2xj+1PxmxiPxjx1 is a cycle of
length m− 1 ≥ k, a contradiction.

Case 10.2. p = i − 1 = s. Then xi ∈ NH(x1) and xi−1 /∈ V (H). Clearly, by (9) we have
xi−1 /∈ NH(x1) and xi−2 ∈ NH(x1). Suppose that xi−2 has a neighbor y ∈ V (H) not in P . Then
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we consider the H-path R4 = yxi−2Px1xiPxm on m vertices. Since R4 is a longest H-path, we
have dR4(y) ≥ dH(y) ≥ `. From (11) we have |V (yxi−2Px1)| = |V (x1Pxi)| − 1 ≤ ` − 2. Thus y is
adjacent to at least one vertex of V (xi+1R4xm), and hence R4 ∈ P is a crossing path. Therefore,
by Claim 3, y must be adjacent to one of {xj , xj+1} (as in the proof of Claim 4). If y is adjacent
to xj (or xj+1), then x1Pxi−2yxjPxixmPxj+1x1 (or x1Pxi−2yxj+1PxmxiPxjx1) is a cycle of length
at least k, a contradiction. Therefore, we have NH(xi−2) ⊆ V (P ). Then we consider the path R5 =
xi−2Px1xiPxm.8 Clearly, we have dR5(xi−2) ≥ dH(xi−2) ≥ ` (xi−1 /∈ V (H)) and dR5(xm) ≥ ` (xm ∈
V (H) is not adjacent to xi−1 by Claim 4 and xt−1, xt ∈ NH(xm)). By (11), we have |V (xi−2Px1)| =
|V (x1Pxi)| − 2 ≤ `− 3. Then xi−2 is adjacent to at least one vertex of V (xi+1R5xm), and hence R5

has a crossing pair. Therefore, by Claim 3, xi−2 must be adjacent to at least one of {xj , xj+1}. If
xi−2 is adjacent to xj (or xj+1), then x1Pxi−2xjPxixmPxj+1x1 (or x1Pxi−2xj+1PxmxiPxjx1) is a
cycle of length m− 1 ≥ k, a contradiction.

Combining Cases 10.1 and 10.2, x1 is not adjacent to xj+1. By (10), xm is adjacent to xj . Since
there is only one minimal crossing pair, x1 is not adjacent to any vertex of V (xj+1Pxm), that is,
j = t− 1. This completes the proof of the claim.

x1 xmxi−1xi xj xj+1

Figure 14. x1 is adjacent to both of xj and xj+1

Therefore, there is only one minimal crossing pair (i, j) in P with i = s+1 and j = t−1 by Claim 10.
It follows from Claim 2(iii) that m− `(i, j) = 2` or m− `(i, j) = 2`+1. Suppose that m− `(i, j) = 2`.
Then applying Claim 2∗(iv), we have U∗i = V ∗j = V (x1Pxi) ∪ V (xjPxm), NH(x1) = NP (x1) and
NH(xm) = NP (xm). Moreover, we have i = ` and j = m− `+ 1. Consider the paths xγPx1xγ+1Pxm
for 2 ≤ γ ≤ `−1. Since |V (x1Pxi)| = ` and xγ ∈ V (H), xγ is adjacent to some vertex of V (xi+1Pxm).
Hence xγPx1xγ+1Pxm is a crossing H-path. Then by Claim 3, xγ is adjacent to all but at most one
vertex of V (x1Pxi)∪{xj , xj−1}. If x2 is adjacent to xj−1, then x1xi−1Px2xj−1PxixmPxjx1 is a cycle
of length m ≥ k + 1, a contradiction. Thus, we have NH [x2] = NH [x1]. If x3 is adjacent to xj−1,
then x1x2xi−1Px3xj−1PxixmPxjx1 is a cycle of length m ≥ k + 1, a contradiction. Thus, we have
NH [x3] = NH [x1]. Progressively, we can show that NH [xγ ] = NH [x1]. By symmetry of x1 and xm,
we have NH [xm] = NH [xλ] for m− `+ 2 ≤ λ ≤ m− 1. Let

A = V (x1Px`−1), B = V (xm−`+2Pxm) and C = {x`, xm−`+1}.

Then G[A] and G[B] are complete graphes on `− 1 vertices. Hence, it is easy to check that G[V (P )]
gives a copy in F(m, k, `− 1) with Type II, a contradiction.

Therefore, we may assume that

m− `(i, j) = 2`+ 1, i.e., `(i, j) = m− 2`− 1. (12)

Suppose that dH(x1)+dH(xm) = 2`+1. Without loss of generality, let dH(x1) = `+1 and dH(xm) = `.
Then applying Claim 2∗(iv), we have U∗i = V ∗j = V (x1Pxi) ∪ V (xjPxm), NH(x1) = NP (x1) and
NH(xm) = NP (xm). Consider the paths xγPx1xγ+1Pxm for 2 ≤ γ ≤ i − 1 and xλPxmxλ−1Px1 for
j+ 1 ≤ λ ≤ m− 1 (it is easy to check that those paths are crossing paths as before). By Claim 3, it is
not hard to show that NH [xγ ] ⊆ NH [x1] for 2 ≤ γ ≤ ` and NH [xm] = NH [xλ] for m−`+2 ≤ λ ≤ m−1.
Let

A = V (x1Pxi−1), B = V (xj+1Pxm) and C = {xi, xj}.
8Note that R5 has m− 1 vertices. Thus R5 does not belong to P.
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Since we can keep x1xj , xi−1xi and delete other edges between A and C to ensure dF [A∪C](z) = ` for
each z ∈ A, 9 G[V (P )] gives a copy in F(m, k, `− 1) with Type II, a contradiction.

Now we may assume that dH(x1) = dH(xm) = `. By Claim 2∗(iii), without loss of generality,
there exists a vertex xp such that

{xp} ∪ U∗i = V (x1Pxi) ∩ V (xjPxm) with 1 ≤ p ≤ i. (13)

Claim 10 implies that
i = `+ 1 and j = m− `+ 1. (14)

Also, note that NH [xm] = {x`+1} ∪ V (xm−`+1Pxm) and NH [x1] = {xm−`+1} ∪ (V (x1Px`+1) \ {xp}).
Then we consider the path Qλ = x1Pxλ−1xmPxλ, where m − ` + 2 ≤ λ ≤ m − 1. Since dQλ(xλ) ≥
dH(xλ) ≥ `, xλ is adjacent to some vertices of V (x1Pxj−1) = V (x1Qλxj−1). Hence, Qλ ∈ P is a
crossing path. As in the previous proofs, xλ is adjacent to all but at most one vertex of NH [xm]∪{xp−1}
by Claim 3.

Claim 11. For each m− `+ 2 ≤ λ ≤ m− 1, we have NH [xλ] = NH [xm].

Proof. Suppose to the contrary that xλ is adjacent to xp−1. First we assume that p < i. Then
xp−1Px1xp+1Pxλ−1xmPxλxp−1 is a cycle of length m− 1 ≥ k, a contradiction.

Therefore, we have p = i (see Figure 15.). Then we consider the path Lλ = x1PxλxmPxλ+1. Note
that xλ+1 ∈ V (H), |V (xjPxm)| ≤ ` and x1 is adjacent to xj . Clearly, Lλ ∈ P is a crossing path. By
Claim 3, xλ+1 must be adjacent to at least one of {xp−1, xp}. By the maximality of `(p, j) in Lγ , xλ+1

is adjacent to xp, as otherwise we have `(p− 1, j) > `(p, j) where `(p− 1, j) is in P , a contradiction.
Then xp−1Px1xjPxpxλ+1Pxmxj+1Pxλxp−1 is a cycle of length m, a contradiction. Therefore, xλ is
not adjacent to xi−1 = xp−1. This completes the proof of the claim.

x1 xmxjxp

Figure 15. The structure of the crossing path P with one crossing pair

From Claim 11,
G[V (xm−`+2Pxm)] is a complete graph. (15)

Suppose that xp /∈ V (H). Let 2 ≤ γ ≤ ` and γ 6= p, p − 1. Then we consider the m-vertex H-path
Mγ = xγPx1xγ+1Pxm. Note that xγ ∈ V (H) which implies xp ∈ NP (xγ), |V (x1Pxi)| = ` and xm is
adjacent to xi. Clearly, Mγ ∈ P is a crossing path. Note that xp /∈ NH(xγ). Consider the neighbors
of xγ and xm in Mγ (in H). Since xp /∈ V (H) by Claim 3, we have NH [x1] = NH [xγ ] for 2 ≤ γ ≤ `
and γ 6= p, p− 1, and hence we have NH [x1] = NH [xp−1] (xγ is adjacent to xp−1). Let

A = {x1, · · · , x`} \ {xp}, B = {xm−`+2, · · · , xm} and C = {xi, xj} = {x`+1, xm−`+1}.

Hence, combining with Claim 11 and (15), G[A] and G[B] are complete graphs. Recall that m ≥ k+1.
It is easy to check that G[V (P )] gives a copy of F (m, k, `− 1) of Type III (view xp as v2 when p < s
or vr+1 when p = s and see Figure 4(b) and 4(c) for some hints), a contradiction.

Therefore, we have xp ∈ V (H). Since x1 is adjacent to x2 and NH(x1) = NP (x1), we have p ≥ 3.
Let

A = {x1, · · · , x`}, B = {xm−`+2, · · · , xm} and C = {xi, xj} = {x`+1, xm−`+1}.
Then we consider the path Tγ = xγPx1xγ+1Pxm for 2 ≤ γ ≤ ` with γ 6= p− 1. Note that xγ ∈ V (H)
and N [xm] = {x`+1} ∪ V (xm−`+1Pxm). Those paths are crossing H-paths. By Claim 3, we have
NH(xγ) ⊆ A ∪ C for 2 ≤ γ ≤ ` and γ 6= p− 1. Combining with NH [x1] = (A ∪ C) \ {xp}, we have

NH [xγ ] ⊆ A ∪ C for 1 ≤ γ ≤ ` and γ 6= p− 1. (16)

9This simple fact will be used later in the following proofs when |A ∪ C| = `+ 2.
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In particular, if p ≤ `, then
NH [xp] = (A ∪ C) \ {x1}. (17)

We consider the following three cases.

Case A.1. Let p = i = `+ 1. By Claim 11, xp = xi = x`+1 is adjacent to xm−`+2. Consider the path
Q1 = xp−1Px1xm−`+1Pxpxm−`+2Pxm. Since xp−1 is adjacent to xp and xm is adjacent to xm−`+1,
Q1 ∈ P is a crossing H-path. By Claim 3, we have NH [xp−1] ⊆ A ∪ C. Hence, combining with (16),
each vertex of A in G[A ∪ C] has degree at least `. Note that both vertices of C are adjacent to A
(x1 is adjacent to xj = xm−`+1 and xi−1 is adjacent to xi = x`+1). Combining with (15), it is easy
to check that G[V (P )] gives a copy of F (m, k, `− 1) with Type II (recall the definition of Type II), a
contradiction.

Case A.2. Let p ≤ ` = i − 1 and ` ≥ 4. By (17), xp is adjacent to xp−2 for p ≥ 4. Hence,
consider the paths xp−1xpxp−2Px1xp+1Pxm when p ≥ 4 and xp−1xpxp+1x1xp+2Pxm when p = 3
(p + 2 = 5 ≤ ` + 1 = i). By c(G) < k and Claim 3, we have NH [xp−1] ⊆ A ∪ C, and hence xp−1 has
degree at least ` in G[A∪C]. Combining with (16), each vertex of A \ {xp−1} has degree at least ` in
G[A∪C]. Note that x1 is adjacent to each vertex of C. Thus combining with (15), it is easy to check
that G[V (P )] gives a copy of F ∈ F(m, k, `− 1) of Type II, a contradiction.

Case A.3. Let p ≤ ` and ` ≤ 3. Suppose that m ≥ k + 2. Then j = m − ` + 1 ≥ ` + 5 ≥ 2` + 2.
Thus x1Pxjx1 is a cycle of length at least 2`+ 2 = k, a contradiction. Now let m = k + 1. Then we
have j = m− `+ 1. If ` ≤ 2, then x1Pxjx1 is a cycle of length at least m− `+ 1 = k+ 1− `+ 1 ≥ k,
a contradiction. Let ` = 3. This forces that k = 8 and p = 3 (see Figure 16.). Note that x3 ∈ V (H)
and NH(x3) = {x2, x4, x7}. Suppose that dP (x2) ≥ 3. Since c(G) ≤ 8, we have NP (x2) ⊆ A ∪ C.
Then G contains a copy of F ∈ F(9, 8, 2) (A = {x1, x2, x3}, B = {x8, x9}, C = {x4, x7} and x1x7 and
x3x4 are two independent edges) with Type II, a contradiction. Therefore, we have dP (x2) = 2. It
follows from ` = 3 and x2 ∈ V (H) that there is a vertex z ∈ NH(x2) \ NP (x2). Since c(G) ≤ 8, we
have NH(z) = {x2, x4, x7}. Hence {z, x3, x1} together with {x2, x4, x7} induce a copy of K3,3 Since
NH(x8) = {x4, x7, x9} by c(G) ≤ 8, it is easy to check that G[V (P ) ∩ {z}] contains a copy of K+

3,3, a

contradiction. Moreover, G contains a copy in F ∈ F(8, 8, 1) (m = 9) with Type III in K+
3,3 (the path

zx2x3x4x8x9x7x1 with A′ = {z}, B′ = {x1} and C ′ = {x2, x4, x7}). This completes the proof when k
is even and m ≥ k + 1.

x1 x2 x3 x4 x5 x6 x7 x8 x9

Figure 16. The structure of the crossing path P when m = k + 1 = 9

3.2.2 m = k.

By Claim 2(iii), we have `(i, j) = 1 or `(i, j) = 2. If `(i, j) = 2 or dH(x1) + dH(xk) = 2`+ 1, then by
Claim 2∗(iv), we have

V (x1Pxi) ∪ V (xjPxk) = U∗i = V ∗j , NH(x1) = NP (x1) and NH(xk) = NP (xk). (18)

In the following, we only consider the case `(i, j) = 2, since the case dH(x1) + dH(xk) = 2` + 1 is
similar to the case after (12). By the definition of s, xs−1 and xs are not adjacent to xk. Hence, by
(18), we have xs, xs+1 ∈ NH(x1). Similarly, we have xt−1, xt ∈ NH(xk). Let

A = V (x1Pxs), B = V (xtPxk) and C = {xs+1, xs+3, . . . , xi−2, xi, xj , xj+2, . . . , xt−2, xt}.

By Claim 1(iii), x1 is not adjacent to xs+2. By Claim 4, xm is not adjacent to xs+2. Hence, x1 is
adjacent to xs+3 by (18). Moreover, consider the minimal crossing pair (s+ 1, s+ 3). By Claim 4, x1
is not adjacent to xs+4. Then apply (18) again, xk is adjacent to xs+3 and not adjacent to xs+4 by
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Claim 4. Repeating the above arguments, x1 is adjacent to each vertex of A ∪ C and xk is adjacent
to each vertex of B ∪ C. Since |V (x1Pxs+1)| ≤ ` and xγ ∈ V (H), Rγ = xγPx1xγ+1Pxk is a crossing
H-path for 2 ≤ γ ≤ s. Hence, xγ is adjacent all but at most one vertex of (A ∪ C ∪ {xj−1}) \ {xγ}
by Claim 3 (xγ is not adjacent to xi+1 = xj−2 since xk is adjacent to xi and c(G) < k). If xs is
adjacent to xj−1, then xj−1Pxs+1xkPxjx1Pxs is a cycle of length k, a contradiction. Therefore, we
have NH [xs] = NH [x1], and progressively, we have NH [xγ ] = NH [x1] for 2 ≤ γ ≤ s. Similarly, we have
NH [xλ] = NH [xk] for t ≤ λ ≤ k − 1. Hence, G[A] and G[B] are complete graphs with |A| = |B| = s,
and G[V (P )] gives a copy of F(k, k, s) with Type II (see Figure 17.), a contradiction.

x1 xkxi xjxs+1

Figure 17. The structure of the crossing path P

Therefore, we may assume that `(i, j) = 1 and dH(x1) = dH(xk) = `. By Claim 2∗(iii), without
loss of generality, there exists a vertex xp /∈ (NH [x1] ∪N+

H (xk)) \ {xi+1} = U∗i with 1 ≤ p ≤ i, that is

V (x1Pxi) ∪ V (xjPxk) = U∗i ∪ {xp}. (19)

Hence, we have xp /∈ NH(x1) and xp−1 /∈ NH(xk). By the definition of t, we have i ≤ t − 2. Now,
subject to previous choices,

we choose P ∈ P such that |V (xsP+2PxtP−2) ∩ {xp}| is as large as possible. (20)

Claim 12. p ≤ s+ 1.

Proof. Suppose to the contrary that p > s+ 1, that is s+ 2 ≤ p ≤ t− 2. By the definitions of s and t
and (19), we have xs, xs+1 ∈ NH(x1) and xt−1, xt ∈ NH(xk). Let

A = V (x1Pxs) and B = V (xtPxk).

We consider the following three cases.

Case 12.1. xp−1 ∈ NH(x1) and xp ∈ NH(xk). Let

C = {xs+1, xs+3, · · · , xp−5, xp−3, xp+2, xp+4, · · · , xt−3, xt−1}.

We shall show that x1 and xk are adjacent to each vertex of C. It follows from the definition of s
that xk is adjacent to xs+1. By Claim 1(iii) x1 is not adjacent to xs+2. Since xt−1, xt ∈ NH(xk),
by Claim 4, xk is not adjacent to xs+2. Next, by (19) x1 is adjacent to xs+3, and hence by Claim
4, x1 is not adjacent to xs+4. By (19) again, xk is adjacent to xs+3. Applying Claim 4 again, xk
is not adjacent to xs+4. Progressively, we can show that x1 and xk are adjacent to each vertex
of {xs+1, xs+3, · · · , xp−5, xp−3} and are not adjacent to each vertex of {xs+2, xs+4, · · · , xp−4, xp−2}.
Similarly, x1 and xk are adjacent to each vertex of {xp+2, xp+4, · · · , xt−3, xt−1}. Thus, x1 and xk are
adjacent to each vertex of C (see Figure 18.).

Then we consider the paths Tγ = xγPx1xγ+1Pxk and Sλ = xλPxkxλ−1Px1 for 2 ≤ γ ≤ s and t ≤
λ ≤ k−1. Since |V (x1Pxs)| = |V (xtPxk)| ≤ `−1 and xγ , xλ ∈ V (H), Tγ , Sλ ∈ P are crossing H-paths.
By Claim 3, xγ is adjacent to all but at most one vertex of A∪C ∪{xp−1, xp}. If xs is adjacent to xp,
then xpPxkxs+1Pxp−1x1Pxsxp is a cycle of length at least k, a contradiction. Thus xs is not adjacent
to xp and hence NH [xs] = NH [x1]. If xs−1 is adjacent to xp, then xpPxkxs+1Pxp−1x1Pxs−2xsxs−1xp
is a cycle of length k (by NH [xs] = NH [x1], xs−2 is adjacent to xs), a contradiction. Thus xs−1 is not
adjacent to xp and hence NH [xs−1] = NH [x1]. Repeat the above argument, we have NH [xγ ] = NH [x1]
for 2 ≤ γ ≤ s . By symmetry, we have NH [xλ] = NH [xk] for t ≤ λ ≤ k − 1. Finally, we can see that
xp−1x1Pxsxt−1PxpxkPxtxs+1Pxp−1 is a cycle of length k, a contradiction.
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x1 xkxt−1xpxp−1xs+1

Figure 18. The structure of the crossing path P when m = k

Case 12.2. xp−1 ∈ NH(x1) and xp /∈ NH(xk). Then we have p < i and xp+1 ∈ NH(x1). Let

C = {xs+1, xs+3, · · · , xp−1, xp+1, · · · , xt−3, xt−1}.

Then the similar proof as (a) shows that x1 is adjacent to each vertex of C and xk is adjacent to
each vertex of C \ {xp−1} (see Figure 19.). Note that dH(x1) = dH(xk) = `. Then we have |A| = s
and |B| = s + 1. Consider the crossing paths Sλ = xλPxkxλ−1Px1 ∈ P for t ≤ λ ≤ k − 1 (since
|V (xtPxk)| ≤ ` and xλ ∈ V (H), Sλ is a crossing path). By Claim 3 we have NH(xλ) ⊆ B ∪ C.
Moreover, consider the crossing paths Tγ = xγPx1xγ+1Pxk ∈ P for 2 ≤ γ ≤ s (since |V (x1Pxs)| ≤ `
and xγ ∈ H, Tγ is a crossing path). Similarly as the proof as in the last paragraph, we have NH [x1] =
NH [xγ ] = A ∪ C for 2 ≤ γ ≤ s. Let A′ = B and B′ = A. Note that xk ∈ A′ is adjacent to xs+1 and
xt ∈ A′ is adjacent to xt−1. It is easy to check that G[V (P )] gives a copy in F(k, k, s) with Type II.

x1 xkxtxpxp−1xs+1

Figure 19. The structure of the crossing path P when m = k

Case 12.3. xp−1 /∈ NH(x1). If xp /∈ NP (xk), then there is a minimal crossing pair (i′, j′) of length at
least (p+ 1)− (p− 2)− 1 = 2 (xp−1, xp /∈ NP (xk) and xp−1, xp /∈ NP (xk)), a contradiction. Therefore
we have xp ∈ NP (xk) = NH(xk). Let

C = {xs+1, xs+3, · · · , xp−2, xp, xp+2, · · · , xt−3, xt−1}.

As the proofs before, xk is adjacent to each vertex of C and x1 is adjacent to each vertex of C \ {xp}.
From dH(x1) = dH(xk) = `, we have |A| = s and |B| = s− 1. Consider the paths xγPx1xγ+1Pxk ∈ P
and xλPxkxλ−1Px1 ∈ P for 2 ≤ γ ≤ s and t ≤ λ ≤ k − 1. As in the previous proofs, we have
NH [xγ ] ⊆ A ∪ C and NH [xλ] = B ∪ C. Note that x1 ∈ A is adjacent to xt−1 and xs is adjacent to
xs+1. It is easy to check that G[V (P )] gives a copy in F(k, k, s − 1) with Type II, a contradiction.
Thus we finish the proof of Claim 12.

x1 xkxt−1xpxp−1xs

Figure 20. The structure of the crossing path P when m = k

By Claim 12, we can assume that 2 ≤ p ≤ s+ 1, that is, |V (xs+2Pxt−2) ∩ {xp}| = 0. By (19), xt
and xt−1 belong to NH(xk). By Claim 4, xk is not adjacent consecutive vertices of V (xs+1Pxi2). From
the definition of s, we have p ≤ i1. First, we will show that i1 = s+ 1. Suppose that i1 > s+ 1. Then
by Claim 4, xk is not adjacent to xs+2, and hence we have i1 ≥ s+ 3. Moreover, since 2 ≤ p ≤ s+ 1,
by (19), x1 is adjacent to xs+3, that is (s+ 1, s+ 3) is a crossing pair, a contradiction to i1 > s+ 1.
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Claim 13. NH [xλ] = NH [xk] for t ≤ λ ≤ k − 1.

Proof. Note that xλ ∈ V (H), x1 is adjacent to xt−1 and |V (xtPxk)| ≤ `. The path P λ = x1Pxλ−1xkPxλ
is a crossing path. By Claim 3, we have NH [xλ] ⊆ NH [xk] ∪ {xp−1}. By our choice of P , we
may assume dH(xλ) = `. Suppose that xλ is adjacent to xp−1 (see Figure 21.). Case (13.1).
p < s + 1. Note that x1 is adjacent to xp+1. Consider the path P λ ∈ P. By the maximality of
the number of minimal crossing pairs of P , xλ is adjacent to each vertex of V (xt−1Pxk) (other-
wise the path P λ ∈ P has more minimal crossing pairs than P ). Hence, xλ is not adjacent to a
vertex x ∈ NH [xk] \ V (xt−1Pxk). Note that NPλ(xλ) ∪ {x} = NP (xk) ∪ {xp−1}. Thus the path
P λ = xλPxkxλ−1Px1 = ykyk−1 . . . y2y1 = ykP

λy1 is a crossing path with a minimal crossing pair
(i′, j′) = (p− 1, p+ 1) satisfying |V (ys′+2Pyt′−2) ∩ {yp′}| = 1, where s′ = min{h : yh+1 ∈ NP ′(yk)} =
p− 1, t′ = max{h : yh−1 ∈ NP ′(y1)} = t and {yp′} = (V (y1Pyi′) ∪ V (yj′Pyk)) \ (NPλ [y1] ∪N+

Pλ
(yk)),

a contradiction to the choice of P . Case (13.2). p = s+ 1. Note that i1 = s+ 1 = p. Then x1 is not
adjacent to xs+1. Since P λ is a crossing path, by Claim 3, xλ is adjacent to all but at most one vertex
of NH [xk]∪{xs}. Suppose that xλ is adjacent to xs. Then xλ is adjacent to xs+1, as otherwise (s, s+3)
is minimal crossing pair with `(s, s + 3) = 2 in P λ, a contradiction to our choice of P . Note that
Qλ = x1PxλxkPxλ+1 is a crossing path (it is possible that xλ+1 = xk). By Claim 3, xλ+1 is adjacent
to all but at most one vertex of NH [xk] ∪ {xs}. Hence xλ+1 is adjacent to at least one of {xs, xs+1}.
Note that xk is adjacent to xt. We can find a cycle of length k (xλ+1xsPx1xt−1Pxs+1xλPxtxkPxλ+1

or xλxsPx1xt−1Pxs+1xλ+1PxkxtPxλ), a contradiction. Thus xλ is not adjacent to xs and hence
NH [xλ] = NH [xk] for t ≤ λ ≤ k − 1. This completes the proof of the claim.

x1 xλxt−1xs+1xp

(13.1)

x1 xλxλ+1xt−1xs+1xs

(13.2)

Figure 21. The structure of the crossing path P λ when m = k

We consider the following three cases.

Case B.1. 2 ≤ p ≤ s − 1. By (19) we have {xs, xs+1} ⊆ NH(x1), and hence by Claim 4, x1 is not
adjacent to any two consecutive vertices of xs+1Pxt−1. Let 2 ≤ γ ≤ s and γ 6= p, p − 1. Note that
xγ ∈ V (H), xk is adjacent to xs+1 and |V (x1Pxs+1)| ≤ `. Tγ = xγPx1xγ+1Pxk is a crossing H-path.
Let

A = V (x1Pxs), B = V (xtPxk) and C = {xs+1, xs+3, · · · , xt−3, xt−1}.

By (19) we have {xt−1, xt} ⊆ NH(xk), hence since xk is adjacent to xs+1, by Claim 4, xk is not
adjacent to xs+2. Then by (19) again, x1 is adjacent to xs+3. Repeat the above arguments, we
have x1 is adjacent to each vertex of (A ∪ C) \ {xp} and xk is adjacent to each vertex of B ∪ C.
(B.1.1). xp /∈ V (H). Consider the path Tγ = xγPx1xγ+1Pxk (clearly, this path is a crossing path).
By Claim 3, we have NH [xγ ] = NH [x1]. Then we can check that G[V (x1Pxs) \ {xp}] is a complete
graph (note that each vertex of A \ {xp−1, xp} is adjacent to xp−1). By Claim 13, G[V (xtPxk)] is a
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complete graph. Thus it is easy to check that G contains either a copy of F (k, k, s) with Type III,
a contradiction. (B.1.2). xp ∈ V (H). Then p ≥ 3 and s ≥ 4. For xγ ∈ A \ {xp−1, xp}, consider
the crossing H-path Tγ = xγPx1xγ+1Pxk. We deduce NH [xγ ] ⊆ A ∪ C from Claim 3. Consider the
path Tp = xpx1xp+1Pxk. Similarly, we have NH [xp] ⊆ A ∪ C from Claim 3. It follows that x1 is
adjacent to each vertex of (A ∪ C) \ {xp} and xp is adjacent to each vertex of (A ∪ C) \ {x1}. Now,
consider the path xp−1xpxp−2Px1xp+1Pxm ∈ P (clearly, this path is a crossing path). Claim 3 implies
NH(xp−1) ⊆ A ∪ C. Note that x1 is adjacent to xt−1 and xs is adjacent to xs+1. Hence, it is easy to
check that G[V (P )] gives a copy of F (k, k, s) with Type II, a contradiction.

x1 xkxt−1xs+1xp

Figure 22. The structure of the crossing path P when m = k

Case B.2. p = s. Suppose that x1 is not adjacent to any two consecutive vertices of xj1Pxt−1.
Then the same proof as in the last paragraph shows that if xp /∈ V (H), G[V (P )] gives a copy in
F(k, k, s) with Type III and if xp ∈ V (H), G[V (P )] gives a copy in F(k, k, s) with Type II, both
are contradictions. Therefore x1 is adjacent to two consecutive vertices of xj1Pxt−1. Let λ be the
minimum integer such that x1 is adjacent to both of {xλ, xλ+1} ⊆ V (xj1Pxt−1). By Claim 4, we
have xs /∈ V (H). Let r = min{h : h ≥ λ, xh ∈ NH(xk)}. By Claim 2∗ and p = s < i1, we
have V (xλPxr) ⊆ NH(x1). Hence, we have xr, xr−1 ∈ NH(x1). It follows from Claim 4 that x1 is
not adjacent to both of any two consecutive vertices of xr+2Pxt−1. Note that xt−1, xt ∈ NH(xk).
Applying Claim 4 again, xk is not adjacent to both of any two consecutive vertices of xs+1Pxt−1.

Let
A = V (x1Pxs−1) ∪ V (xλPxr−1), B = V (xtPxk)

and
C = {xs+1, xs+3, · · · , xλ−2, xr, xr+2, · · · , xt−3, xt−1}.

Similar to previous proofs, x1 is adjacent to each vertex of A ∪ C and xk is each vertex of B ∪ C
Consider the crossing H-path xγPx1xγ+1Pxk ∈ P for γ ∈ [2, s− 2]∪ [λ, r− 1] (it is easy to check that
those paths are crossing paths). By xs /∈ V (H) and Claim 3, we have NP [x1] = NP [xγ ]. Similarly,
NP [xk] = NP [xλ] for t + 1 ≤ λ ≤ k − 1. Note that |A| = |B| = k − t + 1 (dP (x1) = dP (xk) = k and
NP (x1) ∩NP (xk) = {xs+1, xr, xr+2, · · · , xt−3, xt−1}). Moreover, G[A] and G[B] are complete graphs.
It is easy to check that G[V (P )] gives a copy of F (k, k, k − t+ 1) with Type III, a contradiction.

x1 xkxt−3 xt−1xλ xrxs+1

Figure 23. The structure of the crossing path P when m = k

Case B.3. p = s + 1. Note that xp ∈ NH(xk). Then we have xp ∈ V (H) and p ≥ 3 by x1 is
adjacent to x2. First, we show that x1 is not adjacent to any two consecutive vertices of V (xj1Pxt).
Suppose to the contrary that x1 is adjacent to both of {xλ, xλ+1} for some λ ≥ j1. Consider the
path Ts−1 = xs−1Px1xsPxk (clearly, Ts−1 is a crossing H-path). It follows from Claim 3 that xs−1 is
adjacent to at least one of {xλ, xλ+1}. Hence, P ′1 = xsPxλxs−1Px1xλ+1Pxk ∈ P (xs−1 is adjacent to
xλ) or P ′2 = xsPxλx1Pxs−1xλ+1Pxk ∈ P (xs−1 is adjacent to xλ+1) is a crossing H-path on k vertices
ending at xk.
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For P ′1, since xk is not adjacent to both of {x1, xλ−1}, we have {xλ+1, xλ} ⊆ V (P ′1) \N
+1
P ′1

(xk). By

Claim 3, xs is adjacent at least one of {xλ, xλ+1}. Then x1PxsxλPxs+1xkPxλ+1x1 (xs is adjacent to
xλ) or x1xλPxs+1xkPxλ+1xsPx1 (xs is adjacent to xλ+1) is a cycle of length k, a contradiction. For
P ′2, since xk is not adjacent to both of {x1, xλ−1}, we have {x2, xλ} ⊆ V (P ′2) \N

+1
P ′2

(xk). By Claim 3,

xs is adjacent at least one of {xλ, x2}. Note that x1 is adjacent to xs and xs−1 is adjacent to xλ+1.
Then xsxλPxs+1xkPxλ+1xs−1Px1xs (xs is adjacent to xλ) or xsx2Pxs−1xλ+1Pxkxs+1Pxλx1xs (xs
is adjacent to x2) is a cycle of length k, a contradiction. Therefore x1 is not adjacent to any two
consecutive vertices of xj1Pxt−1.

Let

A = {x1, x2, · · · , xs}, B = {xt, xt+1, · · · , xk} and C = {xs+1, xs+3, · · · , xt−3, xt−1}.

Similar to the previous proofs, we have NH [x1] = (A ∪ C) \ {xs+1} and NH [xk] = B ∪ C. Consider
the H-path xγPx1xγ+1Pxk (it is easy to check that it is a crossing path). By Claim 3, we have
NH [xγ ] ⊆ A ∪ C for 2 ≤ γ ≤ s. Note that xs ∈ A is adjacent to xs+1 and x1 ∈ A is adjacent to xt−1.
It is easy to check that G[V (P )] gives a copy of F (k, k, s − 1) with Type II, a contradiction. This
completes the proof of Theorem 1.2.

x1 xkxt−1xs+1(xp)

Figure 24. The structure of the crossing path P when m = k

4 Proof of Theorem 1.3 for odd k

We need the following theorem proved by Fan [4].

Theorem 4.1 (Fan [4]). Let G be an n-vertex 2-connected graph and ab be an edge in G. If the longest

path starting from a and ending at b in G has at most r vertices, then e(G) ≤ (r−3)(n−2)
2 + 2n − 3.

Moreover, the equality holds if and only if G− {a, b} is a vertex-disjoint union of copies of Kr−2.

The graph Z(n, k, δ) denotes the vertex-disjoint union of a clique Kk−δ and some cliques Kδ+1’s,
where any two cliques share the same two vertices. It is easy to check that ω(Z(n, k, δ)) = k−t+1 and
δ(Z(n, k, δ)) = t− 1. Recall the definition of H(n, k, t− 1). We can also see that ω(H(n, k, t− 1)) =
k − t+ 1 and δ(H(n, k, t− 1)) = t− 1. The following Lemma 4.2 is proved by Yuan [14].

Lemma 4.2 (Yuan [14]). Let G be a 2-connected n-vertex graph with c(G) < k and n ≥ k ≥ 5. If
ω(G) ≥ k − t+ 1 and δ(G) ≥ t− 1, then G = H(n, k, t− 1) or G = Z(n, k, t− 1).

A cycle C is locally maximal in a graph G if there is no cycle C ′ in G such that |E(C ′)| > |E(C)|
and |E(C ′) ∩ E(C,G − C)| ≤ 2. We will prove Lemma 4.2 by a result of Ma and Ning (see Lemma
4.4 in [10]).

Lemma 4.3. Let G be a 2-connected non-Hamilton graph on n vertices with δ(G) ≥ t− 1 and C be a
locally maximal cycle in G of length c ≤ k− 1. If the clique number of G[C] is at least k− t+ 1, then
G = H(n, k, t− 1) or G = Z(n, k, t− 1).

Proof of Lemma 4.2. Let n ≥ k ≥ 5. Let G be a 2-connected n-vertex graph with ω(G) ≥ k− t+ 1
and δ(G) ≥ t− 1. Suppose that G /∈ {H(n, k, t− 1), Z(n, k, t− 1)}. We will show that c(G) ≥ k. Let
G′ be an edge-maximal counter-example. That is G′ /∈ {H(n, k, t− 1), Z(n, k, t− 1)} is a 2-connected
n-vertex graph with ω(G′) ≥ k − t+ 1, δ(G′) ≥ t− 1 and adding any edge to G′ will create a cycle of
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length at least k. Thus we may take a maximal clique K` in G′ with ` ≥ k− t+ 1 and a longest path
P = x1x2 . . . xm starting from x1 ∈ V (K`) ending at xm ∈ V (G′) \ V (K`) with m ≥ k. Thus by the
choice of P , we have dP (x1) ≥ dV (K`)(x1) ≥ k − t and dP (xm) ≥ δ(G′) ≥ t − 1. Since c(G) < k, by
Lemma 3.1, there is a cycle of length k − t+ t− 1 = k − 1 containing V (K`) ⊆ NP [x1]. Clearly, this
cycle C is local maximal and the clique number of G[C] is at least k − t + 1. Applying Lemma 4.3,
G′ = H(n, k, t− 1) or G′ = Z(n, k, t− 1), a contradiction. The proof is complete. �

Proof of Theorem 1.4. Let k = 2` + 1 ≥ 5. Let G be a maximal (in the sense that if we add any
edge into G, then the resulting graph contains a cycle of length at least k) n-vertex 2-connected graph
with c(G) ≤ k and

e(G) ≥ max{h(n, k, 3), h(n, k, `− 1)}. (21)

Let H = H(G, `) be the (` − 1)-disintegration of G. First H is non-empty, otherwise e(G) ≤(
`−1
2

)
+ (n− `+ 1)(`− 1) <

(
`+2
2

)
+ (n− `− 2)(`− 1) = h(n, k, `− 1), a contradiction to (21).

Claim. H is a complete graph.

Proof. Suppose not, there is a non-edge ab in H. Then by the maximality of G, G + ab contains a
cycle of length m ≥ k, i.e., there is an H-path in G on at least k vertices. Take a longest H-path in
G. Then by Theorem 1.2, G contains a copy of F ∈ F(m, k, r) of Type I. We refer V (F ) to the sets
A,B,C as in Section 2.2.

Let r ≤ `−2. Then 3 ≤ |C| ≤ `. Note that for any two vertices x, y ∈ V (F ), there is an (x, y)-path
on at least k− 2 vertices in F and if x /∈ C, then there is an (x, y)-path on at least k− 1 vertices in F
(see Figure 2.). Since G is 2-connected and c(G) < k, each vertex of G− V (F ) is an isolated vertex.
Moreover, each vertex of G− V (F ) can only be adjacent to C of V (F ). Hence, if r = 1, i.e., |C| = `,
then G is a subgraph of H(n, k, `) (Theorem 1.4 (b)). Now we may assume 3 ≤ |C| ≤ `− 1. Then we
have ` ≥ 4 implying 2

(
`+1
2

)
+
(
`−1
2

)
<
(
`+2
2

)
+ (`− 1)2. Therefore,

e(G) ≤ e(G[V (F )]) + (n− k)|C|
= e(G[A ∪ C]) + e(G[B ∪ C])− e(G[C]) + e(G[C, V (F ) \ (A ∪B ∪ C)] + (n− k)|C|

≤ 2

(
`+ 1

2

)
−
(
|C|
2

)
+ |C|(|C| − 1) + (n− k)|C|

≤ 2

(
`+ 1

2

)
+

(
`− 1

2

)
+ (n− k)(`− 1)

<

(
`+ 2

2

)
+ (`− 1)2 + (n− k)(`− 1)

= h(n, k, `− 1),

contradicting (21).
Now, let r = ` − 1. Then |C| = 2. Note that for any two vertices x, y ∈ V (F ) with x /∈ C, there

is an (x, y)-path on at least k − 1 vertices in F . Since G is 2-connected and c(G) < k, each vertex of
G− V (F ) only connected to C of F by a path and the longest C-path is on at most `+ 1 vertices. If
k ≥ 9, i.e., ` ≥ 4, then `2 + 3`/2 <

(
`+2
2

)
+ (`− 1)2 and (`+ 2)/2 ≤ `− 1. It follows from Theorem 4.1

that

e(G) ≤ 2n− 3 + (n− 2)(`− 2)/2

= `2 + 3`/2 + (n− 2`− 1)(`+ 2)/2

<

(
`+ 2

2

)
+ (`− 1)2 + (n− k)(`− 1)

= h(n, k, `− 1),

contradicting (21). If k = 7, then the longest C-path is on at most four vertices. Hence we can easily
see that after deleting C the resulting graph is a star forest (Theorem 1.4 (e)). If k = 5, then ` = 2,
and hence the longest C-path is on at most 3 vertices. Thus we can see that G is a subgraph of
H(n, 5, 2). The proof of the claim is complete.
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Let |V (H)| = m. If m = k−2, then since c(G) < k and G is 2-connected, each vertex of G−V (H)
is adjacent to the same two vertices of H, and hence G = H(n, k, 2) (Theorem 1.4 (a)). If m = `+ 1,
then e(G) ≤

(
`+1
2

)
+ (n− `− 1)(`− 1) <

(
`+2
2

)
+ (n− `− 2)(`− 1) = h(n, k, `− 1), a contradiction to

(21).
So we may assume ` + 2 ≤ m ≤ k − 3, i.e., 3 ≤ k − m ≤ ` − 1. Let H ′ = H(G, k − m) be

the (k −m + 1)-disintegration of G. If H ′ = H is complete, then e(G) ≤
(
m
2

)
+ (n −m)(k −m) =

h(n, k, k − m) ≤ max{h(n, k, 3), h(n, k, ` − 1)}, where the last inequality holds since h(n, k, a) is a
convex function in a. By (21), we have e(G) = h(n, k, 3) or e(G) = h(n, k, `− 1). If e(G) = h(n, k, 3),
then m = k − 3. Moreover, (21) implies that H ′ is obtained by deleting vertices with degree three
one by one. Therefore, ω(G) ≥ m = k − 3 and δ(G) = 3. Applying Lemma 4.2, G = H(n, k, 3)
(Theorem 1.4 (c)). If e(G) = h(n, k, ` − 1), then ω(G) ≥ m = k − ` + 1 = ` + 2 and δ(G) = ` − 1.
Applying Lemma 4.2, G = H(n, k, `− 1) (Theorem 1.4 (d)).

Now, we can assume that H ′ 6= H. Then there exists a vertex b ∈ (V (H ′) \ V (H)) and a vertex
a ∈ V (H) such that a is not adjacent to b. Then by the maximality of G, there is a longest path
P on at least m ≥ k vertices starting from H and ending at H ′. Let u ∈ H and v ∈ H ′ be two
end-vertices of P . By the choice of P , dP (u) + dP (v) ≥ dH(u) + dH′(v) ≥ (m− 1) + (k −m+ 1) = k.
Applying Lemma 3.1, there is a cycle of length at least min{m, k} ≥ k, a contradiction. The proof of
Theorem 1.4 is complete. �

5 Conclusion

In [9], Luo determined the maximum size of cliques with given size in a 2-connected graph with
c(G) < k. This is viewed as a clique version of the Erdős-Gallai Theorem. To conclude this paper, we
would like to propose the following conjecture. This (if true) would give a clique version of Theorem 1.3
and implies a clique version of results in [10]. Let Ns(G) denote the number of copies of Ks in G.

Conjecture 5.1. Let G be a 2-connected graph on n vertices and let ab be an edge in G. Let r ≥ 4
and s ≥ 3 be integers, and let n− 2 = x(r− 3) + t for some 0 ≤ t ≤ r− 4. If Ns(G) > x

(
r−1
s

)
+
(
t+2
s

)
,

then there is a cycle on at least r vertices containing the edge ab.

This also can be viewed as a clique version of Theorem 4.1 of Fan [4].

Remark. Very recently, Ji and Ye [7] confirm this conjecture. Based on their result, we will get a
stability result of Luo’s theorem in a forthcoming paper [11] .
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