
A clique version of the Erdős-Gallai stability theorems

Jie Ma∗ Long-Tu Yuan†

Abstract

Combining a stability result of the Pósa’s rotation lemma with a technique of Kopylov in a
novel approach, we prove a generalization of the Erdős-Gallai theorems on cycles and paths. This
implies a clique version of the Erdős-Gallai stability theorems and also provides alternative proofs
for some recent results.

1 Introduction

The well-known Erdős-Gallai theorem [2] states that any n-vertex graph G with more than (k−1)(n−
1)/2 edges contains a cycle of length at least k. The exact value of this extremal function is obtained
by Kopylov [8] and independent by Faudree and Schelp [4]. In [8], Kopylov determined the maximum
numbers of edges of a (or a connected) graph which does not contain a path on k vertices, and of a (or
a 2-connected) graph which does not contain cycles of length at least k. In order to state Kopylov’s
results, we introduce the following graphs. For integers n ≥ k ≥ 2α, let H(n, k, α) be the n-vertex
graph whose vertex set is partitioned into three sets A,B,C such that |A| = α, |B| = n − k + α,
|C| = k − 2α and whose edge set consists of all edges between A and B together with all edges in
A∪C (see Figure 1, the subgraphs induced by A and C are complete graphs and the subgraph induced
by B contains no edge). One may check that the longest path in H(n, k, α) contains k vertices and the
longest cycle in H(n, k, α) contains k − 1 vertices. Given a graph G, denoted by Ns(G) the number
of copies of Ks in G. Let hs(n, k, α) := Ns(H(n, k, α)) =

(
k−α
s

)
+ (n − k + α)

(
k−α
s−1
)
. In particular,

h2(n, k, α) = e(H(n, k, α)).

A

B

C

Figure 1. H(17, 16, 7).
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Throughout the rest of the paper, let k ≥ 5 be an integer and ` = b(k − 1)/2c. Kopylov [8] showed
that any n-vertex 2-connected graph G without containing cycles of length at least k has at most
max{h2(n, k, 2)), h2(n, k, `} edges. Combined with the results in [5], Füredi, Kostochka, Luo and
Verstraëte [6] proved a stability version of Kopylov’s theorem, which says that for any 2-connected
graph G with c(G) < k, if e(G) is close to the above maximum number from Kopylov’s theorem, then
G must be a subgraph of some well-specified graphs.

Theorem 1.1 (Füredi, Kostochka, Luo and Verstraëte [5,6]). Let G be an n-vertex 2-connected graph
with c(G) < k. Then

e(G) ≤ max{h2(n, k, `− 1), h2(n, k, 3)},

unless

• k = 2`+ 1, k 6= 7, and G ⊆ H(n, k, `);

• k = 2`+ 2 or k = 7, and G−A is a star forest for some A ⊆ V (G) of size at most `;1 or

• G ⊆ H(n, k, 2).

Extending Koplov’s theorem, Luo [9] proved the following theorem.

Theorem 1.2 (Luo [9]). Let G be an n-vertex 2-connected graph. If G does not contain cycles of
length at least k, then

Ns(G) ≤ max{hs(n, k, 2)), hs(n, k, `}.

For an integer α and a graph G, the α-disintegration of G, denoted by H(G,α), is the graph
obtained from G by recursively deleting vertices of degree at most α until that the resulting graph
has no such vertex. We also call H(G,α) the α-core of G and denote the order of it by s(G,α), and
moreover this core is unique for every α.2 For a graph G, let ω(G) be the order of a maximum clique
in G. Based on a stability result [11] of the well-known Pósa lemma, we will establish the following
theorem.

Theorem 1.3. Let n ≥ k ≥ 5, α ≥ 0 and β ≥ 2 be integers. Let G be an n-vertex 2-connected
maximal Kk,α-free graph with c(G) < k. If `− α ≥ β and

Ns(G) > max{hs(n, k, `− α), hs(n, k, β)}, (1)

then we have either ω(G) > k − β or s(G,α) < k − `+ α.

Remark. The family of graphs Kk,α will be defined in Section 3. Roughly speaking, the graphs in
Kk,α are 2-connected with c(G) < k.

Theorem 1.3 will be used to prove the following stability result of Luo’s theorem which also can
be viewed as a clique version of Theorem 1.1. The graph Z(n, k, δ) denotes the vertex-disjoint union
of a clique Kk−δ and some cliques Kδ+1’s, where any two cliques share the same two vertices. In
particular, if δ = 2, then Z(n, k, δ) = H(n, k, 2).

Theorem 1.4. Let G be an n-vertex 2-connected graph with minimum degree δ ≥ 2. Let n ≥ k ≥ 9,
s ≥ 3 and `− 1 ≥ δ + 1.3 If c(G) < k and

Ns(G) > max{hs(n, k, `− 1), hs(n, k, δ + 1)}, (2)

then one of the following holds:

• s ≤ `+ 1 and G−A is a star forest for some A ⊆ V (G) of size at most `;

1A star forest is a graph in which every component is a star.
2One can see that H(G,α) is unique in G and has minimum degree at least α+ 1 (if non-empty).
3If 5 ≤ k ≤ 8, then ` ≤ 3. By (2), it follows from Luo’s theorem that G contains a cycle of length at least k.
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• s ≤ `+ 1, and k = 9, 10 and G−A consists of stars, complete bipartite graphs with one part of
size two and at least θ(n) triangles for some A ⊆ V (G) of size three;

• s = `+ 1 and the copies of Ks except at most `+ 2 of them can be divided into two families A
and B such that each in A shares only x, y ∈ V (G) and each in B shares only x, z ∈ V (G).

• s = `+ 2, k is even and G contains a unique copy of Ks.

• G is a subgraph of the graph Z(n, k, δ);

• G is a subgraph of H(n, k, δ).

Remark. Theorem 1.3 can be applied to prove Theorem 1.1 and the main results in [10] concerning
the stability results of cycles in a 2-connected graph with given minimum degree.

The organization of this paper is as follows. In Section 2, we study a family of graphs in which
contains no cycles of length at least k. In Section 3, we prove our main result Theorem 1.3. In
Section 4, we show how to use Theorem 1.3 to deduce Theorem 1.4 as well as some main results
in [5, 6, 10].

2 Notation and a family of graphs

2.1 Notation

The general notation used in this paper is standard (see, e.g., [1]). For disjoint subsetsA,B ⊆ V (G), we
denote G(A,B) to be the induced bipartite subgraph of G with parts A,B. Let E(A,B) = E(G(A,B))
for short. When defining a graph, we will only specify these adjacent pairs of vertices, that says, if a
pair {a, b} is not discussed as a possible edge, then it is assumed to be a non-edge. Denote by NG(x) the
set of neighbors of x in G and let dG(x) be the size of NG(x). For U ⊆ V (G), let NU (x) = NG(x)∩U
and dU (x) = |NU (x)|. Let P = x1x2 · · ·xm be a path in G and call P and an (x1, xm)-path or an
x1-path. For x ∈ V (G), let NP (x) = NG(x)∩V (P ) and NP [x] = NP (x)∪{x}, with dP (x) := |NP (x)|.
For xi, xj ∈ V (P ), we use xiPxj to denote the sub-path of P between xi and xj . For S1, S2 ⊆ V (G),
we call P an (S1, S2)-path if x1, xm ∈ S. Moreover, if S1 = S2 = H, then we call P an H-path, and if
S1 = {x1} and S2 = {x2}, then we call P an (x1, x2)-path for simplicity.

2.2 A family of graphs

Let m ≥ k ≥ 5 and 1 ≤ r ≤ ` be integers. We now devote the rest of this subsection to the definition
of a family of m-vertex graphs F(m, k, r) 4 introduced in [11]. We divide F(m, k, r) into the following
four classes, namely Types I, II, III and IV. Along the way, we also define some special graphs (see
Figures 2, 3, 4 and 5).

Type I: Let k = 2`+ 1 be odd and r ≤ `− 1. Each graph F ∈ F(m, k, r) of Type I satisfies:

• F contains a Hamilton path with |V (F )| = m and c(F ) < k,

• V (F ) = A ∪B ∪ C ∪D,

• |A| = |B| = r,

• F [C] is empty with |C| = `− r + 1,

• F [D] is empty when |C| ≥ 3 and F [D] is a path on at most `− 1 vertices when |C| = 2,5

4For the parameter r, roughly speaking we may view it as something close to ω(F ), though its own meaning will be
clear in the proof of Lemma 3.1.

5An isolated vertex will also be viewed as a (trivial) path in this paper.
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• each vertex in A has degree ` in G[A ∪ C] and each vertex in B has degree ` in G[B ∪ C], and

• F [C ∪D] is a C-path.

DA B

C

F ∈ F(11, 9, 3) with |C| = 2

DA B

C

F ∈ F(11, 11, 3) with |C| = 3

Figure 2. Graphs of Type I.

Type II: Let k = 2`+ 2 be even and r ≤ `− 1. Each graph F ∈ F(m, k, r) of Type II satisfies:

• F contains a Hamilton path with |V (F )| = m and c(F ) < k,

• V (F ) = A ∪B ∪ C ∪D,

• |A| ∈ {r, r + 1} and |B| = r,

• F [C] is empty with |C| = `− r + 1,

• F [D] is a path when |C| = 2, and F [D] consists of at most two independent edges and some
isolated vertices when |C| ≥ 3 such that one of the following holds:

– F [D] is empty when |A| = r + 1,

– F [D] contains a unique edge when |A| = r, or

– F [D] consists of two independent edges when |A| = r = `− 2 ≥ 2.

• each vertex in A has degree exactly ` in F [A∪C]6 and each vertex in B has degree exactly ` in
F [B ∪ C], and

• F [C∪D] is a C-path satisfying that if |A| = r+1 then the end-vertices of F [C∪D] are adjacent
different vertices of A.

In particular, we denote the graph of Type II with |A| = r = `− 2 and |D| = 3 by F1(m, k, r), the
graph of Type II with |A| = r = ` − 2 and |D| = 4 by F2(m, k, r), and the graphs family of Type II
with F [A] being a star on three vertices by F3(m, k, 2).

DvA B

Cv2v1

F1(12, 12, 3)

d1 d
∗
1 d2 d

∗
2

c2c1 c3

D

A B

C

F2(13, 12, 3)
D

u1
A B

C

F ∈ F3(10, 10, 2)

Figure 3. Graphs of Type II.

Type III: Let k = 2`+ 2 be even and r ≤ `− 1. Each graph F ∈ F(m, k, r) of Type III satisfies:

• F contains a Hamilton path with |V (F )| = m and c(F ) < k,

6Note that if r = 1 and |A| = 2, then F [A] = K2 (by the fact that F contains a Hamilton path).
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• V (F ) = A ∪B ∪ C ∪D,

• F [A] and F [B] are cliques on r vertices,

• F [C] is empty with |C| = `− r + 1,

• F [D] is empty when |C| ≥ 3, and F [D] consists of a path and an isolated vertex when |C| = 2,

• each vertex in A ∪B is adjacent to each vertex in C, and

• F [C ∪D] consists of at most two vertex-disjoint paths such that one of the following holds:

– F [C ∪ D] consists of a path with distinct end-vertices d0, ds ∈ D and a path with end-
vertices in C satisfying that |D| = ` − r + 1 and d0, ds is adjacent to exactly one vertex
a1, as in A, respectively, with a1 6= as (denote this family of graphs by F4(m, k, r) and
denote by c1 and cs the neighbours of d0 and ds in F [C ∪D] respectively),

– F [C ∪ D] consists of a C-path and an isolated vertex x ∈ D such that x is adjacent to
exactly two vertices x1, x2 of A (denote this graph by F5(m, k, r)), or

– F [C ∪D] is a path with the end-vertex y ∈ D such that y is an isolated vertex in F [D] and
is adjacent to exactly one vertex y1 in A (denote this graph by F6(m, k, r)).

d0 Ddsas A a1 B

c1 cs C

F ∈ F4(16, 16, 3)
Dxx1x2 A B

C

F5(12, 12, 3)
Dyy1A B

Cc1

F6(12, 12, 3)

Figure 4. Graphs of Type III.

Type IV: Let k = 2`+ 2 be even and r = `. Each graph F ∈ F(m, k, r) of Type IV satisfies:

• F contains a Hamilton path with |V (F )| = m and c(F ) < k,

• V (F ) = A ∪B ∪ C,

• F [A] and F [B] are cliques on `− 1 vertices, and

• F [C] induces a cycle with three distinct vertices w1, w2, w such that w1w2 ∈ E(F [C]), wwi /∈
E(F [C]) for i ∈ {1, 2}, w1 is adjacent to each vertex of A, w2 is adjacent to each vertex of B,
and w is adjacent to each vertex of A ∪B.

BA

C

w2w1

w

Figure 5. F ∈ F(13, 10, 4) of Type IV
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We point out that by definition, there is a Hamilton path in each F ∈ F(m, k, r) starting from A and
ending at B. Also, if k is odd, then all graphs in F(m, k, r) have Type I. Furthermore, F2(k+1, k, `−2)
is the only graph in F(m, k, r) with m > k and r ≤ `− 2, and if r ≥ `− 1, there are many graphs in
F(m, k, r) with m > k.

Let S = S(k, a, b) be the graph with a partition V (S) = A ∪ B ∪ C ∪ D on k vertices satisfying
the following (see Figure 6):

• S contains a Hamilton path with |V (F )| = k and c(F ) < k,

• S[A] and S[B] are complete graphs with |A| = a and |B| = b;

• S[C] is empty with |C| = c ≥ 2 and S[D] is empty with |D| = c− 1;

• a+ b+ 2c− 1 = k;

• S(A,C) and S(B,C) are complete bipartite graphs;

• and S[C ∪D] is a C-path on 2c− 1 vertices.

DA B

C

Figure 6. S(10, 3, 2)

We need the following graph F (k) which satisfies all conditions of graph F (k, k, 1) with Type II
except that it does not contain a Hamiltonian path. For even k, the graph F (k) is obtained by taking
a path P2`−1 on 2`−1 vertices and a disjoint copy of K3, and joining each vertex of K3 to each vertex
of the larger partite set in the unique bipartition of P2`−1. We denote two vertices of K3 by A and
the other vertex of K3 by B (see Figure 7).

DA B

C

Figure 7. F (8)

2.3 Some facts about F(m, k, r), S(k, a, b) and F (k)

We need the following technical propositions.

Proposition 2.1. Let G be an n-vertex connected graph with a non-edge c1c2 and n ≥ 6. Assume
that each vertex except c1 and c2 of G has degree n− 2. Then we have the following.

(i) For each ab ∈ E(G), there is a Hamilton (c1, c2)-path containing ab.
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(ii) For each v ∈ V (G) \ {c1, c2}, there is a path on n− 1 vertices starting from v, through V (G) \
{c1, c2, v} and ending in {c1, c2}.

Proof. Let A = V (G) \ {c1, c2}. Note that each vertex in A has degree n− 2. We can partition A into
A0, A1 and A2 such that each vertex in A0 is adjacent to both of {c1, c2} and each vertex of Ai is not
adjacent to of ci for i = 1, 2. Since each vertex of A has degree n− 2, G[A1] and G[A2] are complete
graphs and G[A0] is the complement of the graph consisting of |A0|/2 independent edges (clearly, |A0|
is even and if |A0| ≥ 4, then there is a Hamilton (u, v)-path in G[A0] for any u, v ∈ A0). Moreover,
each vertex of Ai is adjacent to each vertex of Aj for 0 ≤ i, j ≤ 2. Without loss of generality, assume
that |A1| ≥ |A2|.

(i) If |A0| = 0, then |A1| ≥ 1 and |A2| ≥ 1 by the connectivity of G. It is easy to see that there is
a Hamilton path starting from c1, through all vertices in A2 and then all vertices in A1, and ending at
c2. If |A0| = 2, let A0 = {x, y}. Note that |A| ≥ 4. There is a Hamilton path starting from c1 through
x ∈ A0, all vertices in A1 ∪ A2 and then y ∈ A0, ending at c1 and a Hamilton path starting from c2
through u ∈ A1 , x ∈ A0, all vertices in (A1 ∪ A2) \ {u} and then y ∈ A0, ending at c1. If |A0| ≥ 4,
then for any vertices u, v ∈ A0, there is Hamilton (u, v)-path in G[A0]. Thus there is a Hamilton path
starting from c1, through all vertices in A1 ∪ A2 and then all vertices in A0, ending at c1. It is easy
to see that each edge of G is contained in a Hamilton path, whence we finish the proof of (i).

(ii) If v ∈ A0, then there is a path on n− 1 vertex starting from v, through all vertices in A1 ∪A2

and then all vertices in A0, and ending at c1. If v ∈ A1, then there is a path on n− 1 vertex starting
from v, through all vertices in A1, one vertex in A0, all vertices in A2 and then all other vertices in
A0, and ending at c1. Similarly, there is a path on n − 1 vertices starting from v ending in {c1, c2}
when v ∈ A2.

Proposition 2.2. Let G be an n-vertex 2-connected graph and a, b be two vertices in G. Then the
following holds.

• If the longest (a, b) is on at most four vertices, then G− {a, b} consists of stars such that each
leaf of a star is adjacent to the same one vertex of {a, b}.

• If the longest (a, b) is on at most five vertices, then G − {a, b} consists of stars, triangles and
complete bipartite graphs with one part of size two.

Proof. Let X be a component of G − {a, b}. Suppose that the longest (a, b)-path is on at most four
vertices. Let uv be any edge of X. Since G is 2-connected, uv is connected to {a, b} by two independent
edges. Hence, G−{a, b} consists of stars, as otherwise we can easily find an (a, b)-path on five vertices,
a contradiction. Moreover, each leaf of X is adjacent to the same one vertex of {a, b}.

Now assume that the longest (a, b)-path is on at most five vertices. If the longest (a, b)-path though
X is on four vertices, then X is a star. Now let P3 = z1z2z3 in X such that z1 and z3 are adjacent to a
and b respectively. Then X − P3 consists of isolated vertices, otherwise there is an (a, b)-path though
X on six vertices, a contradiction. Moreover, each isolated vertex of X − P3 is adjacent to {a, z2},
{b, z2} or {z1, z2}. If some vertex of X − P3 is adjacent to {z1, z2}, then other vertices of X − P3 is
also adjacent to {z1, z2}. Thus X is a complete bipartite graph. If some vertex of X − P3 is adjacent
to {a, z2} or {b, z2}, then other vertices of X − P3 is also adjacent to {a, z2} or {b, z2}. Then X is a
star. Finally, if |X| = 3, then it is possible that z1 is adjacent to z3, whence X is a star or triangle.
The proof is complete.

Recall vertices x, xi, y, y1 in those special graphs in F(m, k, r) (see Figures 3 and 4). For F ∈
F3(m, k, 2) with F [A] = S3, where S3 is a star in three vertices, we denote by u1 the center of S3 (see
Figure 3). Let t = `− r + 1 ≥ 3 and C = {c1, c2, . . . , ct}. We denote the vertices of F [C ∪D] in the
following.

• If F [C∪D] is a C-path with F [D] empty, then let F [C∪D] = c1d1 . . . cidici+1 . . . dt−1ct; if F [C∪
D] is a C-path with an unique edge did

∗
i in F [D], then let F [C∪D] = c1d1 . . . cidid

∗
i ci+1 . . . dt−1ct;

if F = F2(k + 1, k, `− 2), then let F [C ∪D] = c1d1d
∗
1c2d2d

∗
2c3 (see Figure 3).
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• for F ∈ F4(m, k, r), let Pα = d0c1d1 . . . csds, P
β = cs+1ds+1cs+2 . . . dt−1ct and F [C ∪ D] =

Pα ∪ P β (see Figure 4);

• for F ∈ F5(m, k, r), let F [C ∪ D] = Pα ∪ P β where Pα = x and P β = c1d1c2 . . . dt−1ct (see
Figure 4);

• for F = F6(m, k, r), let F [C ∪D] = yc1d1c2 . . . dt−1ct (see Figure 4).

In particular, if F = F1(k, k, `− 2), then let F [C ∪D] = v1vv2d2d
∗
2c3 (see Figure 3).

Proposition 2.3. For 1 ≤ r ≤ `− 2 and m ≥ k, each F ∈ F(m, k, r) satisfies the following:

(i) Let ab ∈ E(F ). If ab ∈ {x1x2, a1c1, ascs, y1c1} ∪ E({u1}, C), or ab ∈ E({y1}, C) ∪ {v1v, v2v}
with r ≥ 2, then there is a cycle of length k − 2 containing ab; otherwise, there is a cycle of
length k − 1 containing ab.

(ii) For each non-edge ab in A∪B∪D, if {a, b} ⊆ A, {a, b} ⊆ A∪{x}, {a, b} ⊆ A∪{y}, u1 ∈ {a, b},
or y1 ∈ {a, b} with r ≥ 2, then there is an (a, b)-path on k − 1 vertices; otherwise, there is an
(a, b)-path on k vertices.

(iii) For each non-edge ab between A ∪ B ∪ D and C, if ab is between u1 and C, then there is an
(a, b)-path on k−2 vertices; if ab is between Pα and P β, then there is an (a, b)-path on k vertices;
otherwise, there is an (a, b)-path on k − 1 vertices.

(iv) For each non-edge ab in C, if |A| = r ≥ 2, |C| = 3 and k is even, or ab = cici+1 is incident
with did

∗
i , then there is an (a, b)-path on k − 3 vertices; if ab = cicj with i ≤ s, j ≥ s + 1 and

F ∈ F4(k, k, r), then there is an (a, b)-path on k − 1 vertices; otherwise, there is an (a, b)-path
on k − 2 vertices.

(v) Suppose that G is 2-connected with c(G) < k and contains a copy of F . Then G−A∪B ∪C is
a star forest.

The Proposition 2.3 can be checked by direction observations. For the reason of completeness, we
check Proposition 2.3 case by case.

Proof of Proposition 2.3 (i). Let k be odd and P = F [C ∪ D]. Note that, for each 1 ≤ i ≤ t,
there is a cycle of length k− 1 starting α ∈ A, through all other vertices of A (in arbitrary order), the
sub-path c1Pci of P , all vertices of B (in arbitrary order) and the sub-path ctPci+1 of P sequentially
(each vertex of A∪B is adjacent to each vertex of C), and ending at α. Clearly, this cycle can contain
any edge inside A and B, any edge between A ∪ B and C, and any edge in P (choose different i).
Thus for each edge ab of F , there is a cycle of length k − 1 containing ab.

Let k be even. We first consider some specific edges in some F ∈ F(m, k, r).
Let ab = x1x2. Then F [C ∪D] = {x}∪P β. Then there is an (x1, x2)-path on k−2 vertex starting

x1, through c1Pct−1, all vertices of B, ct and all vertices of A \ {x, x1, x2} sequentially, and ending at
x2 (without containing x and one vertex in D). Moreover, there is no cycle of length k− 1 containing
x1x2, otherwise there is a cycle of length k (use x1xx2 instead of x1x2), a contradiction.

Let ab = a1c1. Then F [C ∪D] = Pα ∪ P β. Then there is a path on k− 2 vertex starting from a1,
through c1P

1cs, all vertices of B, P β, all vertices of A \ {a1} sequentially, and ending at a1 (without
containing d0 and ds). Similarly, there is a cycle of length k − 2 containing ascs. Clearly, there is no
cycle of length k − 1 containing a1c1 or ascs, as otherwise we can find a cycle of length at least k.

Let ab = y1c1. Then F [C ∪D] = yc1d1c2 . . . dt−1ct. There is a cycle on k − 2 vertex starting from
c1, through all vertices of B, c2Pct, A\{y1} and y1 sequentially, and ending at c1 (without containing
y and another vertex of D). Clearly, there is no cycle of length k − 1 containing y1c1.

Let ab ∈ E({u1}, C). Then F [A] = αu1β and F [C ∪D] = c1d1c2 . . . dt−1ct. Note that α and β are
adjacent to each vertex of C. If u1 is adjacent to ci, then there is a cycle of length k− 2 starting from
u1, through ciPct, all vertices of B, ci−1Pc1 and α sequentially, and ending at u1 for i ≥ 2 (starting
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from u1, through c1Pct−1, all vertices of B, ct and α sequentially, and ending at u1 for i = 1). Again,
we can see that there is no cycle of length k − 1 in F containing ab.

Let ab = v1v with r ≥ 2. Then F [C ∪D] = v1vv2d2d
∗
2c3. There is a cycle on k − 2 vertex starting

from v1 = a, through all vertices of B, c3, all vertices of A, v2 and v = b sequentially, and ending at v1
(without containing d2, d

∗
2). Note that this cycle contains v2v. We find the desired cycle. Note that

each component of F [D] except the isolated vertex d1 contains at least two vertices (r ≥ 2). Since any
cycle containing v1v or v2v can at most three components of F [D], there is no cycle of length k − 1
containing v1v or v2v.

Let ab ∈ E({y1}, C) with r ≥ 2. Let ab = y1ci for i ≥ 2 (we have already proved the case
ab = y1c1) and P = F [C ∪D]. Then there is a cycle of length k − 2 starting from y1, through ciPct,
all vertices of B, ci−1Pc1 and all vertices in A \ {y1} sequentially, and ending at y1 for i ≥ 2.

We now divide the proof into the following two cases.

Case (1). |A| = r + 1.

Let |A| = r+1 ≥ 4. By the definition of F ∈ F(m, k, r) with Type II, F [C∪D] is a path such that
the end-vertices of it are adjacent to different vertices of A. Let 2 ≤ i ≤ t. Note that each vertex of A
has degree at least r + 1 in F [A ∪ {c1, ci}]. Hence, if there are two independent edges, say e1 and e2,
between A and {c1, ci}, then we can delete edges between A and {c1, ci} except e1 and e2 such that
the resulting subgraph of F [A∪{c1, ci}] is connected and each vertex in A has degree exactly r+ 1 in
F [A ∪ {c1, ci}]. Thus, by Proposition 2.1(i), there is a path P ∗ starting from e1 through all vertices
of A (this path may contain any edge in F [A]) and ending at e2. Hence, there is a cycle Ci of length
k − 1 starting from c1P

∗ci, the sub-path ciPct, all vertices of B, the sub-path ci−1Pc1 sequentially.
Therefore, we have the following fact.

Fact. There is a cycle of length k − 1 containing any two independent edges between {c1, ci} and A.

Moreover, since c1 and ct are adjacent to different vertices of A, there is a cycle of length k − 1
containing any edge inside A ∪ B, between A and {c1, ct}, or between B and {c1, c2, ct−1, ct} (by
symmetry of c1 and ct). Let C∗ = C \ {c1, c2, ct−1, ct}. Thus it is sufficient to prove that, for each
edge between A and C \ {c1, ct}, between B and C∗, and inside P , there is a cycle of length k − 1
contain it. We divide the proof into the following two subcases.

Subcase (1.1). ci is adjacent to A for each i with 2 ≤ i ≤ t− 1.

Fix i, suppose that α ∈ A is adjacent to c1 and β ∈ A is adjacent to ci. In the following, we
will find cycles of length k − 1 containing c1α and cycles of length k − 1 containing ciβ. If α 6= β,
then αc1 and βci are two independent edges, and hence by the fact there is a cycle of length k − 1
containing both of them. Moreover, each edge between ci−1 and B, and each edge of c1Pci−1 and
ciPct are contained in this cycle. Let α = β. We consider the following two cases.

(a). There is a vertex, say γ, of A \ {α} which is adjacent to c1. Then αci and γc1 are two
independent edges. Hence there is a cycle of length k−1 containing αci. If there is a vertex η ∈ A\{α}
which is adjacent to ci, then similarly, there is a cycle of length k− 1 containing αc1. Moreover, these
two cycles can contain any edge of c1Pci−1, ciPct and between B and ci−1 . Now we may assume
that there is no vertex in A \ {α} which is adjacent to ci. Then each vertex of A \ {α} is adjacent
to each vertex of C \ {ci}. Thus there are two independent edges αc1 and γct, implying that there
is a path P ∗ starting from αc1, through all vertices of A, and ending at γct. Therefore, there is a
cycle of length k− 1 starting from c1P

∗ct, the sub-path ctPci, all vertices of B, the sub-path ci−1Pc1
sequentially. In summary, for each i with 2 ≤ i ≤ t and each edge between A and ci, between B and
ci−1 and inside c1Pci−1 and ciPct, there is a cycle of length k − 1 containing it.

(b). There is no vertex in A\{α} which is adjacent to c1. Then each vertex of A\{α} is adjacent to
each vertex of C \ {c1}. Thus there is a vertex γ ∈ A \ {α} such that γci and αc1 are two independent
edges. Therefore, by Proposition 2.1(i), there is a cycle of length k − 1 through c1α, all vertex of
A \ {α}, ciPct, all vertices of B, ci−1Pc1. For the edge αci, there is a cycle starting from α, through
ciPc1, all vertices of B, ctPci+1 and all vertices of A \ {α}, ending at α. Combining with the above
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cycles, for each i with 2 ≤ i ≤ t− 1 and each edge between A and ci, between B and ci−1 and inside
c1Pci−1 and ciPct, there is a cycle of length k − 1 containing it.

In conclusion, each edge between {c1, ci} and A, between ci−1 and B, and in c1Pci−1 and ciPct
is contained in a cycle of length k − 1. Therefore, for each edge between A ∪ B and C and inside P ,
there is a cycle of length k − 1 containing it by choosing different 2 ≤ i ≤ t− 1.

Subcase (1.2). ci is not adjacent to A for some i with 2 ≤ i ≤ t− 1.

Then each vertex of A is adjacent to each vertex of C \ {ci}. Thus by Proposition 2.1(i), there
is a path P ∗ starting from c1 through all vertices of A and ending at cj with 2 ≤ j ≤ t and j 6= i.
Then we can consider cycle of length k− 1 starting from c1P

∗cj , the sub-path cjPct, all vertices of B,
the sub-path cj−1Pc1 sequentially. Therefore, there exist cycles of length k − 1 containing any edge
between A and C, between B and C \ {ci−1}, inside P (choose different j). For the edges between
ci−1 and B, by the symmetry of ci−1 and ci+1 in F , there is a cycle of length k − 1 containing those
edges. Therefore, for each edge between A and C, between B and C, and inside P , there is a cycle of
length k − 1 containing it. We complete the proof for |A| = r + 1 ≥ 4.

Let |A| = r + 1 = 3. (a). F [A] is a path αu1β. Then α and β are adjacent to each vertex of C.
Hence, there is a cycle of length k− 1 starting from c1αu1βci, through the sub-path ciPct, all vertices
of B, the sub-path ci−1Pc1 sequentially. Therefore, each edge in F except the edges between u1 and
C is contained in a cycle of length k − 1. (b). F [A] is a complete graph on three vertices, say α,
β and γ. If e ∈ F [A], say e = αβ, then there are two independent edges between C and {α, γ}. If
e ∈ F [A,C], say e = αc, then it is easy to check that there are two independent edges (including e)
between C and A. In both of the above cases, similar to the case |A| = r+ 1 ≥ 4, we can find a cycle
of length k − 1 containing e. For other edge in F , it is not hard to see that there is a cycle of length
k − 1 containing it.

Let |A| = r + 1 = 2. Then by the definition of F(m, k, r), we have F [A] = K2 (recall that each
graph in F(m, k, r) contains a Hamilton path). Similar to the case F [A] = K3, for each edge e in F ,
there is a cycle of length k − 1 containing it.

Case (2). |A| = r.

Then F [C ∪D] consists of at most two paths. We divide the proof into the following cases.

Subcase (2.1). F [C ∪D] is a path P .

Let F ∈ F(m, k, r) with Type II. Then F [C ∪D] = c1d1 . . . cidid
∗
i ci+1 . . . dt−1ct. If |C| = t ≥ 4 or

r = 1, there is a cycle of length k− 1 containing each vertex of C and t components of F [A∪B ∪D].
Hence, for each edge in F , we can easily find a cycle of length k − 1 containing it. If |C| = 3 and
r ≥ 2, there is a cycle of length k − 1 starting from A, through c1, B and c3d

∗
2d2c2, and ending in A.

Hence, there is a cycle of length k − 1 containing ab except ab = v1v, v2v. For |C| = 3 and r = 1, we
have k = 8, and hence it is easy to see that each edge of F is contained in a cycle of length k− 1 = 7.

Let F ∈ F(k, k, r) with Type III. Then F = F6(k, k, r) and F ∗ = F −{y}. If r = 1, then applying
the odd case for F ∗ = F − {y} with k∗ = k − 1, we can easily check that for each edge e 6= y1c1 in
F ∗, there is a cycle of length k′ − 1 = k − 2 containing both of e and y1c1. Thus each edge of F is
contained in a cycle of length k − 1 (replacing y1c1 with y1yc1). If r ≥ 2, then can easily check that
for each edge which is not between C and y1, there is a cycle containing both of e and y1c1. As before,
we can find the desired cycle.

Subcase (2.2). F [C ∪D] consists of two paths.

Let F ∈ F4(k, k, r). Then Pα = d0c1d1 . . . csds, P
β = cs+1ds+1cs+2 . . . dt−1ct and F [C ∪ D] =

Pα∪P β. First we will show that, for each edge between A\{as} and C \{c1} there is a cycle of length
k−1 containing it. For 2 ≤ i ≤ s, there is a cycle Cα of length k−1 starting from a ∈ A\{as}, through
ciP

αcsds, as, all vertices of A \ {a, a1, as}, the path P β, all vertices of B, ci−1P
αc1d0 sequentially,

and ending at a1a (without containing di−1). For s + 1 ≤ i ≤ t, there is a cycle Cβ of length k − 1
starting from a ∈ A \ {as}, through ciP

βct for i > s+ 1 (ci for i = s+ 1), all vertices of B, the path
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ci−1P
βcs+1 (ci+1P

βct for i = s+ 1), all the vertices of A \ {a, a1, as}, as and dsP
αd0 sequentially, and

ending at a1a. Hence, we obtained the desired cycle and by symmetry between a1 and as each edge
between as and C \ {cs} is contained in a cycle of length k − 1. Moreover, each edge in Pα, P β, A
and B is contained in a cycle of length k− 1 by choosing different i. In the cycles Cα and Cβ, we can
see that each edge between B and C ∩ V (Pα) and between B and C ∩ V (P β) is contained in a cycle
of length k − 1. Therefore, we finish the proof for F ∈ F4(k, k, r).

Let F = F5(k, k, r). Let F ∗ = F −{x}. Then the proof for odd k′ = k−1 shows that for each edge
e 6= x1x2, there is a cycle of length k − 2 in F ∗ containing e and x1x2. Thus each edge e 6= x1x2 of F
is contained in a cycle of length k− 1 (replacing x1x2 with x1xx2). The proof of Proposition 2.3(i) is
complete. �

Proof of Proposition 2.3(ii). First let k be odd and P = F [C ∪D] = c1d1c2d2 . . . ct−1dt−1ct. If the
non-edge ab is between A and B, then there is an (a, b)-path on k vertices starting from A, through
the path P , and ending in B. If the non-edge ab is between A and D, say b = di ∈ D, then there is
an (a, b)-path on k vertices starting from A, through the path c1Pci, all vertices of B and the path
ctPci+1, and ending at b = di. Similarly, there is an (a, b)-path on k vertices when a ∈ B and b ∈ D.
Let ab be a non-edge in D. Without loss of generality, let a = di and b = dj with 1 ≤ i ≤ j ≤ t− 1.
The there is an (a, b)-path on k vertices starting from a = di, through the path c1Pci, all vertices of
A, the path cjPci+1, all vertices of B and the path ctPcj+1, and ending at b = dj . We finish the proof
of Proposition 2.3(ii) for odd k.

Now let k be even. We will finish our proof in the following two cases.

Case 1. |A| = r + 1.

If {a, b} ⊆ A, then a, b are adjacent to each vertex of C. Moreover, we have |A| ≥ 4 or F [A] = αu1β.
In both cases, we can add ab and delete two independent edges between a, b and C. The resulting
graph F ′ is still in F(k, k, r). Hence, by Proposition 2.3(i), there is a cycle of length k− 1 containing
ab in F ′, and hence there is an (a, b)-path on k − 1 vertices in F . Suppose that a ∈ A, a 6= u1 and
b ∈ (B∪D). Then by Proposition 2.1(ii) and some observations (|A| = 2 and |A| = 3), there is a path
P ∗ starting from a, through all vertices of A \ {a} and ending in {c1, ct}. Without loss of generality,
suppose that P ∗ starts from a and ends at ct. If b ∈ B, then there is an (a, b)-path on k vertices start
from P ∗, through P and ending in B. If b = di ∈ D, then ci and ci+1 are two neighbours of b in
F [C ∪D]. Thus there is an (a, b)-path on k vertices start from P ∗, through ctPci+1 and B, ending in
c1Pcib. Let a = u1 and F [A] = αu1β. If b ∈ B, then there is an (a, b)-path on k − 1 vertices starting
a = u1, through α and P , and ending in B. If b = di ∈ D, then there is an (a, b)-path on k−1 vertices
starting a = u1, through α, c1Pci and B, and ending in ctPci+1di. Similarly, for a ∈ B and b ∈ D,
there is an (a, b)-path on k vertices (note that there is a Hamilton (c1, ct)-path in F [A∪{c1, ct}]. Now
let a = di and b = dj with 1 ≤ i < j ≤ t− 1. Since there is a Hamilton (c1, ct)-path in F [A∪ {c1, ct}],
there is an (a, b)-path on k vertices start from diPc1, through A, ctPcj+1 and B, and ending in
ci+1Pdj .

Case 2. |A| = r.

Then F [C ∪ D] consists of at most two paths. As the proof of Proposition 2.3(i), we divide the
proof into the following cases.

Subcase (2.1). F [C ∪D] is a path P .

Let F = F6(k, k, r) and F ′ = F − {y}. Applying the proof of Proposition 2.3(ii) for odd k, there
is an (u, v)-path in F ′ on k′ − 1 = k − 2 (k′ is odd) vertices when u = y1, v ∈ A and an (u, v)-path in
F ′ on k′ = k− 1 when u = y1 and v ∈ B ∪D. Thus if {a, b} ⊂ A∪ {y} or y1 ∈ {a, b} with r ≥ 2, then
there is an (a, b)-path on k − 1 vertices. If y1 ∈ {a, b} and r = 1, then it is easy to see that there is
an (a, b)-path on k vertices. The rest cases are simpler and we omit the proofs.

Subcase (2.2). F [C ∪D] consists of two vertex-disjoint paths.
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Clearly, we have F ∈ F4(k, k, r) ∪ {F5(k, k, r)}. Let F = F5(k, k, r). If {a, b} ⊆ A ∪ {x}, then
we can add ab and delete x1x. Since the resulting graph is still F = F5(k, k, r), the result follows
by applying Proposition 2.3(i). For other no-edge ab ⊆ (A ∪ B ∪ D), the proof is the same as the
case F = F6(k, k, r). Now we can assume that F ∈ F4(k, k, r). If a ∈ A and b ∈ B, then there is an
(a, b)-path on k vertices through aa1, d0P

αds, A \ {a, a1}, P β and B. Let a ∈ A and b = di ∈ D. If
0 ≤ i ≤ s, then there is an (a, b)-path starting A \ {as} (or A \ {a1}), through d0P

αci (or dsP
αci+1),

B, P β and asdsP
αdi (or a1d0P

αdi) on k vertices; if s+ 1 ≤ i ≤ t, then there is an (a, b)-path through
diP

βct, B, ci−1P
βcs+1, a1 (or as), P

α and A \ {a1} (or A \ {as}) on k vertices. Let a ∈ B and
b = di ∈ D. If 0 ≤ i ≤ s, then there is an (a, b)-path through diP

αd0, a1, ci+1P
αds, A \ {a1}, P β

and B on k vertices; if s+ 1 ≤ i ≤ t, then there is an (a, b)-path through diP
βcs+1, a1, P

α, A \ {a1},
ci+1P

βct and B on k vertices. Now, let a = di ∈ D and b = dj ∈ D with 1 ≤ i < j ≤ t. If j ≤ s,
then there is an (a, b)-path through diP

αd0, a1, ci+1P
αcj , B, P β, A \ {a1} and dsP

αdj on k vertices;
if i ≥ s+ 1, then there is an (a, b)-path through diP

βcs+1, B, ciP
βcj , a1, P

α, A \ {a1} and ctP
βdj on

k vertices; if i ≤ s and j ≥ s+ 1, then there is an (a, b)-path through diP
αd0, a1, cjP

βcs+1, A \ {a1},
dsP

αci, B and ctP
βdj on k vertices. �

Proof of Proposition 2.3(iii). Let k be odd. Then we may assume that a = ci ∈ C and b = dj ∈ D
with j 6= i− 1, i. Without loss of generality, let i < j. Hence there is an (a, b)-path through ciPc1, A,
ci+1Pcj , B and ctPdj on k − 1 vertices (without containing di).

Now, we may assume that k is even. Let ab be a non-edge between A and C. Without loss of
generality, let a ∈ A and b = ci ∈ C. Then we have |A| = r+ 1. Let a 6= u1. If 2 ≤ i ≤ t− 1, then a is
adjacent to both of {c1, ct}. Hence, we can add ab and delete ac1 or act such that the resulting graph
F ′ is in F(k, k, r). If i = 1 or i = t, then we can add edge ab and delete acj with 2 ≤ j ≤ t− 1 such
that the resulting graph F ′ is in F(k, k, r). In both of the above cases, the result follows by applying
Proposition 2.3(i) to F ′ (a cycle of length k − 1 containing ab, then there is an (a, b)-path in F on
k−1 vertices). If ab is a non-edge between u1 and C. We add this edge ab and delete an edge between
u1 and C. By Proposition 2.3(i), there is a cycle of length k− 2 containing ab in the resulting graph,
and hence there is an (a, b)-path on k − 2 vertices in F .

Since each vertex of B is adjacent to each vertex of C, from now, we may assume that ab is a
non-edge between C and D with a ∈ C and b ∈ D. Since c1 and ct are adjacent to different vertices
of A, by Proposition 2.1(i), for each F ∈ F(m, k, r), there is path P ∗ starting from c1, through all
vertices of A, and ending at ct. Hence, if F /∈ F4(k, k, r), we can easily find an (a, b)-path on k − 1
vertices as k is odd. Let F ∈ F4(k, k, r). Note that F [A ∪ V (Pα)] and F [B ∪ V (P β)] are Hamilton
graphs (graphs contains a spanning cycle). If a ∈ V (P β) and b ∈ V (P β), then there is a Hamilton
(a, a∗)-path in F [A∪ V (Pα)] and a Hamilton (b, b∗)-path in F [B ∪ V (P β)] such that a∗ is adjacent to
b∗, an hence there is an (a, b)-path on k vertices. If a, b ∈ V (Pα) or a, b ∈ V (P β), then we can easily
find an (a, b)-path on k − 1 vertices. �

Proof of Proposition 2.3(iv). Let ci, cj ∈ C with 1 ≤ i < j ≤ t. Note that there is a Hamilton
(c1, ct)-path in F [A ∪ {c1, ct, w}], where w = x or w = y. If F /∈ F4(k, k, r), then the result follows
easily from the fact that each C-path contains at most |C| − 1 components of F [A ∪ B ∪ D]. Now,
we consider the case F ∈ F4(k, k, r). For ci, cj ∈ V (Pα) or ci, cj ∈ V (P β), we only consider the case
ci, cj ∈ V (Pα) with i ≤ j. Other cases can be proved similarly. The desired (ci, cj)-path on k − 2
vertices starts from ciPd0, through a1, P

β, B, ci+1P
αcj−1, A \ {a1}, ends in dsP

αcj . If ci ∈ V (Pα)
and cj ∈ V (P β), then by Proposition 2.3(iii), there is a (ci, dj)-path on k vertices containing djcj and
hence there is a (ci, cj)-path on k − 1 vertices. �

Proof of Proposition 2.3(v). Let X be a non-trivial component of G − A ∪ B ∪ C.7 By Proposi-
tion 2.3(i), (ii), (iii) and (iv), for any a, b ∈ V (F ) there is an (a, b)-path on at least k − 3 vertices.
Since G is 2-connected with c(G) < k, the longest path starting from a ∈ V (F ), though X and ending
at b ∈ V (F ) is on at most four vertices. By Proposition 2.2, X is a star forest. Thus G[X] is a star
and we finish the proof of Proposition 2.3. �

7We say a component is trivial if it consists of a unique vertex.
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We give the following propositions without proofs, since their proofs are very similar to that of
Proposition 2.3.

Proposition 2.4. Let u, v be two vertices of S(k, a, b) with a + b ≤ k − 2. If u and v are not both
in C, then there is a (u, v)-path on at least k − 1 vertices, otherwise there is a (u, v)-path on k − 2
vertices.

Proposition 2.5. Let u, v be two vertices of F (k). If u and v are in A ∪ B ∪ D, then there is an
(u, v)-path on k − 1 vertices. If u and v are between A ∪B ∪D and C, then there is a (u, v)-path on
k − 2 vertices. If u and v are in C, then there is an (u, v)-path on k − 3 vertices.

The following proposition shows that if a 2-connected graph G contains a copy of F ∈ F (m, k, r)
or F (k), then we have ω(G) < k − `+ 1 or c(G) < k.

Proposition 2.6. Let G be a 2-connected graph ω(G) ≥ k − ` + 1. If G contains a copy of F ∈
F (m, k, r) or F (k), then G contains a cycle of length at least k.

Proof. Let G contains a copy of F ∈ F (m, k, r) with r ≤ ` − 2 and a copy of Kt with t ≥ k − ` + 1.
Let k be even. Then ω(G) ≥ k − `+ 1 ≥ `+ 3. By Proposition 2.3(v), for each pair of vertices (a, b),
there is an (a, b)-path of length at least k − 3 in F . If |V (Kt) \ V (F )| ≥ 3, then there is a cycle of
length k by G is 2-connected. If |V (Kt) \ V (F )| = 2, then |V (Kt) ∩ V (F )| ≥ t − 2 ≥ k − ` − 1 ≥ 3.
Applying Proposition 2.3 there is an H-path on k− 2 vertices in F , where H = V (Kt)∩ V (F ) (there
is at most one pair (a, b) in V (F ) such that the longest (a, b)-path is on k − 3 vertices). Hence, there
is a cycle of length k. Let |V (Kt) \ V (F )| = 1. Then |V (Kt) ∩ (A ∪B ∪D)| ≥ t− 1− |C| ≥ 2. From
Proposition 2.3, for any a, b ∈ A∪B ∪D, there is an (a, b)-path of length at least k− 1 in F , whence
there is a cycle of length k.

Now we may assume that V (Kt) ⊆ V (F ). If |A| = r + 1, then ω(F [A ∪ B ∪D]) ≤ r + 1. Since
|V (Kt) \ C| ≥ k − `+ 1− |C| ≥ r + 2, E(Kt) contains a non-edge ab incident with B ∪D. Hence by
Proposition 2.3(ii), there is a path on k vertices containing ab. If |A| = r, then ω(F [A∪B∪D]\{w}) ≤
r, where w ∈ {x, y, u1, y1}. Since |V (Kt) \ (C ∪ {w})| ≥ k − ` + 1 − |C| ≥ r + 2, E(Kt) contains a
non-edge ab incident with B ∪ D \ {w}. Hence by Proposition 2.3(ii), there is a path on k vertices
containing ab. In both of the above cases, there is a cycle of length k in F . For the rest cases, the
proposition holds similarly. The proof is complete.

Next we bound the number of copies of Ks in 2-connected graphs containing a copy of F ∈
F(m, k, r). Let

fs(n, k, α) =

(
k − `
s

)
+

(
`+ 1

s

)
−
(
α

s

)
+ (n− k + α− 1)

(
α

s− 1

)
.

Lemma 2.7. Let G be an n-vertex 2-connected graph with c(G) < k and α ≥ 3. If G contains a copy
of S(k, k − `− α, `+ 1− α)8, then

Ns(G) ≤ fs(n, k, α).

Moreover, fs(n, k, α) ≤ hs(n, k, t) for any α ≤ t ≤ `− 1.

Proof. Assume that G is an n-vertex 2-connected graph with c(G) < k and contains a copy of S(k, k−
` − α, ` + 1 − α). Since α ≥ 3, by Proposition 2.4, X = G − V (F ) is an independent set and each
vertex of X is only adjacent to C of V (F ), otherwise G contains a cycle of length k, a contradiction.
Since the numbers of unlabeled s-cliques inside A∪B∪C and unlabeled s-cliques incident with D are
at most

(
k−`
s

)
+
(
`+1
s

)
−
(
α
s

)
and at most (n−k+ `− r)

(
α
s−1
)

respectively, we have Ns(G) ≤ fs(n, k, α).
Let t ≥ α. Note that (

x

s

)
−
(
x− a
s

)
=

s∑
i=1

(
x− a
s− i

)(
a

i

)
8S(k, k − `− α, `+ 1− α) contains a copy of F ∈ F(m, k, r) of Type II with r = `+ 1− α.
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for integers x and a with x ≥ a. If t = `, then we have(
t+ 1

s

)
−
(
`+ 1

s

)
=

(
k − `
s

)
−
(
k − t
s

)
.

If t > `, then `+ 1 ≥ k − t (recall ` = b(k − 1)/2c), and hence we have(
t+ 1

s

)
−
(
`+ 1

s

)
=

s∑
i=1

(
`+ 1

s− i

)(
t− `
i

)
≥

s∑
i=1

(
k − t
s− i

)(
t− `
i

)
=

(
k − `
s

)
−
(
k − t
s

)
.

If t < `, then t+ 1 ≤ k − `, and hence we have(
`+ 1

s

)
−
(
t+ 1

s

)
=

s∑
i=1

(
t+ 1

s− i

)(
`− t
i

)
≤

s∑
i=1

(
k − `
s− i

)(
`− t
i

)
=

(
k − t
s

)
−
(
k − `
s

)
.

Combining the above arguments, we have(
t+ 1

s

)
−
(
`+ 1

s

)
≥
(
k − `
s

)
−
(
k − t
s

)
. (3)

Therefore, by t ≥ α, we obtain

fs(n, k, α) =

(
k − `
s

)
+

(
`+ 1

s

)
−
(
α

s

)
+ (n− k + α− 1)

(
α

s− 1

)
≤
(
k − t
s

)
+

(
t+ 1

s

)
−
(
t

s

)
+ (n− k + t− 1)

(
t

s− 1

)
= hs(n, k, t),

where the second inequality follows by (3) and the fact that (n− k + t− 1)
(
t

s−1
)
−
(
t
s

)
increases with

t when s ≥ 2. The proof is complete.

Let En−k+1 be the (n−k+1)-vertex graph consisting of b(n−k+1)/2c independent edges. Denote
by G(n, k, 3) the graph obtained from a disjoint union of F2(k+1, k, `−2) and En−k+1 by joining each
vertex of C to each vertex in D∪V (En−k+1), where C and D are the vertex sets of F2(k+ 1, k, `−2))
in its definition. Denote by gs(n, k, 3) the number of unlabeled s-cliques of G(n, k, 3). Recall that
hs(n, k, r) is the number of unlabeled s-cliques of H(n, k, r). Also recall that F2(k + 1, k, `− 2) is the
only graph in F(m, k, r) with m > k and r ≤ `− 2. We need the following lemma to prove our main
theorem.

E8

DA B

C

Figure 8. G(21, 12, 3)

Lemma 2.8. Let G be a 2-connected graph on n vertices with c(G) < k. Let m ≥ k ≥ 9, 1 ≤ r ≤ `−2
and s ≥ 2. Suppose that G contains a copy of F ∈ F(m, k, r). Then the following holds.

• If F ∈ {F1(k, k, `− 2), F2(k, k, `− 2)}, then

Ns(G) ≤ min{gs(n, k, 3), hs(n, k, 4), . . . , hs(n, k, `)}.
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• If F ∈ F3(k, k, r) with r = 2 or F = F6(k, k, r) with r ≥ 2 , then

Ns(G) ≤ min{hs(n, k, `− r + 2), . . . , hs(n, k, `)}.

• Otherwise, we have

Ns(G) ≤ min{hs(n, k, `− r + 1), . . . , hs(n, k, `)}.

Proof. Let F ∈ F(m, k, r) with m ≥ k ≥ 9 and 1 ≤ r ≤ ` − 2. Let G be a maximal n-vertex
2-connected graph with c(G) < k containing a copy of F and X = G− V (F ). By Proposition 2.3(v),
X is a star forest.

First, we consider the case: |A| = r + 1 or k is odd, i.e., F [C ∪ D] is a C-path and C,D are
empty sets. By Proposition 2.3, for any two vertices a, b not both in C there is an (a, b)-path on at
least k − 1 vertices, except a, b ∈ ({u1} ∪ C). Moreover, for any two vertices a, b in C or {u1} ∪ C,
there is an (a, b)-path on at least k − 2 vertices. Since G is 2-connected with c(G) < k, it is easy
to check that X is an independent set. Moreover, each x ∈ X is only adjacent to C or {u1} ∪ C.
If F /∈ F3(k, k, 2), then G contains a copy of S(k, r + 1, r, ` − r + 1) by the maximality of G. It
follows from Lemma 2.7 that Ns(G) ≤ hs(n, k, t) for any t ≥ ` − r + 1. Therefore, we deduce
Ns(G) ≤ min{hs(n, k, ` − r + 1), . . . , hs(n, k, `)}. Now let F ∈ F3(k, k, 2). Then each vertex of X
can only be adjacent to {u1} ∪ C. If each vertex of X can only be adjacent to C, then Lemma 2.7
implies Ns(G) ≤ min{hs(n, k, ` − 1), . . . , hs(n, k, `)}. If some vertex of X is adjacent to {u1}, then
Ns(G) ≤ fs(n, k, `) ≤ hs(n, k, `). Combining the above two cases, we have Ns(G) ≤ hs(n, k, `).

Next, we consider the case k is even and |A| = r. Let F be of Type III. We consider the following
three cases. Case (a.1). F ∈ F4(k, k, r). Let F [C ∪ D] = Pα ∪ P β. By Proposition 2.3, X is an
independent set and only adjacent to C. Moreover, each isolated vertex of X can not be adjacent to
both of C ∩ V (Pα) and C ∩ V (P β). Since a1d0 and asds is not contained in any copy of Ks with
s ≥ 3 and they are the only two edges between A and D (by Proposition 2.3), we can easily check that
Ns(G) ≤ fs(n, k, `− r + 1) ≤ hs(n, k, t) for any s ≥ 2 and t ≥ `− r + 1. Case (a.2). F = F5(k, k, r).
Since G is 2-connected with c(G) < k, by Proposition 2.3, it is easy to check that X is an independent
set and each x ∈ X is only adjacent to C or to {x1, x2}. If x∗ ∈ X is adjacent {x1, x2}, then it
contributes less copies of Ks. The result follows similarly as before. Case (a.3). F = F6(k, k, r). Since
G is 2-connected with c(G) < k, by Proposition 2.3, it is easy to check that X is an independent set
and each x ∈ X is only adjacent to C or to {y1} ∪ C. The result holds as the case F ∈ F3(k, k, 2),
that is Ns(G) ≤ min{hs(n, k, `− r + 2), . . . , hs(n, k, `)}.

Now, we may assume that F is of Type II. Let |A| = r ≤ ` − 3. Then we have |C| = t ≥ 4 and
F [C ∪D] is a path such that F [D] contains one edge. Then By Proposition 2.3, X = G− V (F ) is a
star forest and each vertex of X is only adjacent to C of V (F ). Moreover, each edge is only adjacent
to {ci, ci+1} (recall that cidid

∗
i ci+1 is a sub-path of F [C ∪D]) and each leaf of a star is only adjacent

to the same one of {ci, ci+1}. Note that |C| ≥ 4. For each edge e of G[X], the number of copies of
Ks incident with e is at most r(s), where r(s) =

(
4
s

)
for s ≥ 3 and r(s) = 5 for s = 2. For each star

St+1 of G[X], the number of copies of Ks incident with it is at most r′s(t), where r′s(t) = 0 for s ≥ 4,
r′s(t) = t+ 1 for s = 3 and at most r′s(t) = 2t+ 2 for s = 2. Recall that each isolated vertex in X ∪D
is incident with

(
α
s−1
)

copies of Ks. Let p be the number of independent edges and St1+1, . . . , Stq+1

be the stars on at least three vertices in X ∪D. Thus

Ns(G) ≤ fs(n, k, `− r+ 1)−

(
n− 2p−

q∑
i=1

(ti + 1)

)(
α

s− 1

)
+ pr(s) +

q∑
i=1

r′s(ti) < fs(n, k, `− r+ 1).

Thus the proof of Lemma 2.7 implies Ns(G) ≤ hs(n, k, t) for any t ≥ `− r + 1.
From the above analysis, we now may assume that |A| = r = ` − 2. Then we have |C| = t = 3.

Since G is 2-connected with c(G) < k, by Proposition 2.3, each vertex of G[D ∪X] is not adjacent to
A∪B. Moreover, for each star Sα with α ≥ 3, the center of the star is adjacent to at least two vertices
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of C and the leaves of Sα are adjacent to the same vertex x ∈ C. Furthermore, for other vertices
(isolated vertices and independent edges), each of them is adjacent to all vertices of C. Let p be the
number of independent edge, p′ be number of isolated vertex and St1+1, . . . , Stq+1 be the stars on at

least three vertices in X ∪ D. Let q(s) =
(

3
s−1
)
. Therefore, the number of copies of Ks containing

vertices in X ∪D is at most pr(s) + p′q(s) +
∑q

i=1 r
′
s(ti) ≤ b(n − k − 3)/2cr(s) + jq(s), where j = 1

when n− k + 3 is odd, and j = 0 when n− k + 3 is even. Hence, we have Ns(G) ≤ gs(n, k, 3). Since
n ≥ k, basic calculations show that b(n− k + 3)/2c

((
5
s

)
−
(
3
s

))
+ i
(
4
s

)
≤ (n − k + 4)

(
4
s−1
)
−
(
4
s

)
. Let

t ≥ 4. Combining the above arguments, we have

Ns(G) ≤ gs(n, k, 3) = 2

(
`+ 1

s

)
−
(

3

s

)
+

⌊
n− k + 3

2

⌋((
5

s

)
−
(

3

s

))
+ i

(
4

s

)
≤
(
k − t
s

)
+

(
t

s

)
+ (n− k + 4)

(
4

s− 1

)
−
(

4

s

)
≤
(
k − t
s

)
+

(
t

s

)
+ (n− k + t)

(
t

s− 1

)
−
(
t

s

)
= hs(n, k, t),

where the third inequality holds from the fact that (n − k + t)
(
t

s−1
)
−
(
t
s

)
increases with t. Thus we

finish the proof of this lemma.

3 Proof of the main result

Pósa proved that if there is an (a, b)-path P on m vertices in a 2-connected graph G, then G contains
a cycle of length min{m, dP (a) + dP (b)}. We need the following main result in [11] which can be
viewed as a stability result of Pósa Lemma.

Theorem 3.1 (Ma and Yuan [11]). Let G be a 2-connected graph with c(G) < k and H be the (`−1)-
disintegration of G. If the longest H-path in G has at least k vertices, then G contains a subgraph
F ∈ F(m, k, r) for some m ≥ k and r ≤ `.

Let H(k, r) be the set of graphs
⋃
m≥k F(m, k, r). Let k ≥ 5 and Kk,0 = ∅. For 1 ≤ α ≤ `− 2, let

Kk,α be the family of graphs consisting of the following graphs:9

•
⋃α
r=1H(k, r), H(k, `− 1) and H(k, `),

• F1(k, k, `− 2) and F2(k + 1, k, `− 2) when α = `− 3,

• F3(k, k, α+ 1) and F6(k, k, α+ 1) when α ≤ `− 3, and

• F (k).

The following theorem is the main result of this paper, from which one can derive Theorem 1.4.
and some other results (such as the results of [5, 6, 10]), to be discussed in Section 4. Mainly, it says
that by forbidding some family Kk,α, one can have a good understanding of structural properties of
graphs with given circumference and relatively many s-cliques. Now we are ready for the proof of
Theorem 1.3.

We note that if α or β is larger, then max{hs(n, k, ` − α), hs(n, k, β)} is smaller and presumably
the structure of G becomes more complicated. Also we have ω(G) ≤ k − 2 (as otherwise G contains
a cycle of length at least k).

For a given family of graphs F , we say a graph G is a maximal F-free graph with c(G) < k if, for
any non-edge ab of G, G+ ab contains either a copy of F ∈ F or a cycle of length at least k.

Proof of Theorem 1.3. Let k ≥ 9, α ≥ 0 and β ≥ 2, ` = b(k − 1)/2c and ` − α ≥ β. Let G be an
n-vertex 2-connected maximal Kk,α-free graph with c(G) < k satisfying (1), that is

Ns(G) > max{hs(n, k, `− 1), hs(n, k, δ + 1)}.
9If k is odd, then Kk,α only contains graphs in F(m, k, r) with r ∈ {1, . . . , α, `− 1} and m ≥ k.
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Thus, if xy /∈ E(G), then either G + xy contains a copy of K ∈ Kk,α, or a cycle of length at
least k. Recall the definition of (` − 1)-disintegration of G. Now suppose that ω(G) ≤ k − β and
s(G,α) ≥ k − `+ α. We will finish our proof by contradictions. Let H = H(G, `− 1).

Claim. H is a complete graph.

Proof. Suppose not, there is a non-edge ab in H. We prove the claim in the following cases.

Case 1. G+ ab contains a cycle of length at least k.

Then, by a, b ∈ V (H), there is an H-path on at least k vertices. Thus, there exists a longest
H-path P on m ≥ k vertices. By Lemma 3.1, G contains a copy of F ∈ F(m, k, r). If α = `− 2, then
we can see that F ∈ Kk,α, contradicting that G is Kk,α-free. Hence, we may suppose α < `− 2.

Let k be odd. Then G contains a copy of F ∈ F(m, k, r) with α + 1 ≤ r ≤ ` − 2 and hence by
Lemma 2.8, we have Ns(G) ≤ min{hs(n, k, `− r+ 1), . . . , hs(n, k, `)} ≤ hs(n, k, `−α), a contradiction
to (1).

Now let k be even and r ≤ ` − 3. If α = 1, then since G is Kk,α-free, G contains a copy of
F ∈ F(m, k, r) \ (F3(k, k, 2) ∪ {F6(k, k, 2)}) with 2 ≤ r ≤ ` − 3. Thus Lemma 2.8 implies Ns(G) ≤
min{hs(n, k, ` − 1), hs(n, k, `)} ≤ hs(n, k, ` − 1), a contradiction. If 2 ≤ α ≤ ` − 3, then G contains
a copy of F ∈ F(m, k, r) \ {F6(k, k, α + 1)} with α + 1 ≤ r ≤ ` − 3. Applying Lemma 2.8, we have
Ns(G) ≤ min{hs(n, k, `− r + 1), . . . , hs(n, k, `)} ≤ hs(n, k, `− α), a contradiction.

We may assume that r = `−2 and k ≥ 10 is even. Note that `−α ≥ 3. If `−α = 3, i.e., α = `−3,
then we have F ∈ F(m, k, `− 2) \ (F3(k, k, 2) ∪ {F1(k, k, `− 2), F2(k+ 1, k, `− 2), F6(k, k, `− 2)}) (G
is Kk,α-free). By Lemma 2.8 we have

Ns(G) ≤ min{hs(n, k, 3), hs(n, k, 4), . . . , hs(n, k, `)} ≤ hs(n, k, 3),

a contradiction. Let ` − α ≥ 4. Then F ∈ F(m, k, ` − 2) \ (F3(k, k, 2) ∪ {F6(k, k, ` − 2)}). It follows
from Lemma 2.8 that

Ns(G) ≤ min{max{gs(n, k, 3), hs(n, k, 3)}, hs(n, k, 4), . . . , hs(n, k, `)} ≤ hs(n, k, `− α),

which is also a contradiction to (1). This completes the proof of Case 1.

If c(G+ab) ≥ k or there is an H-path on at least k vertices, then by Case 1, we get a contradiction.
Thus, in the following cases, it suffices to show that either c(G+ ab) ≥ k or there is an H-path on at
least k vertices.

Now, suppose that G+ab contains a copy of F ∈ Kk,α. We divide the following proof into following
cases basing on the value of r in F(m, k, r).

Case 2. G+ ab contains a copy of F ∈
⋃α
r=1H(k, r).

Let A∪B∪C∪D be a partition of V (F ) in Section 2. If ab ∈ {x1x2, a1c1, ascs, y1c1}∪E({u1}, C),
or ab ∈ E({y1}, C) ∪ {v1v, v2v} with r ≥ 2, then there is a cycle of length k − 2 containing ab by
Proposition 2.3(iii). Thus for each wa ∈ NH(a) \ V (F ) and each wb ∈ NH(b) \ V (F ), we have

wa = wb = w. (4)

Otherwise, there is an H-path starting from wa ending at wb on k vertices and we are done.
We divide our proof into the following cases.
(2.1) Let ab = x1x2. First, a and b are not adjacent to any vertex of (B ∪D) \ {x}. Otherwise,

by Proposition 2.3(ii), we can deduce that c(G + ab) ≥ k, and hence we are done. Thus by (4)
and |A ∪ C| ≤ ` + 1, there is a unique vertex w ∈ NH [x1] \ V (F ). Therefore, we have NH [x1] =
(A ∪ C ∪ {w}) \ {x2} implying C ⊆ H. Note that each vertex of B has degree ` in G[B ∪ C]. Thus
we have B ⊆ V (H), whence there is an H-path starting from w ending in B.

(2.2) Let ab ∈ {a1c2, ascs}. Without loss of generality, let ab = a1c1. If NH(a1) ⊆ V (F ), then
C ⊆ H implying A∪B∪C ⊆ H. Hence, there is an H-path on k vertices and we are done. If there is a
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vertex w ∈ NH(a1) \ V (F ), then NH(w) ⊆ V (F ), as otherwise, by Proposition 2.3 there is an H-path
on k vertices starting from w∗ ∈ NH(w) ⊆ V (F ) ending at b. Now we have NH(w)∩ (V (F )\{c1} 6= ∅,
whence by Proposition 2.3 there is an H-path on k vertices starting from w and we are done. The
case ab = ascs is similar and omitted.

(2.3) Let ab = y1c1, ab ∈ E({u1}, C) or ab ∈ E({y1}, C) with r ≥ 2. Now, let ab ∈ E({u1}, C).
Without loss of generality, let a = u1, b = cj and u1 is not adjacent to ci ∈ F in F . First we
show that there is a vertex w in NH(u1) \ V (F ). Suppose that NH(u1) ⊆ V (F ). If u1 is adjacent
to ci in G, then G contains a copy of F ′ ∈ F3(k, k, 2), a contradiction. Since |C| = ` − 1, we have
|NH(u1) ∩ (A ∪ B ∪ D)| ≥ ` − (` − 3) ≥ 3. If u1 is adjacent to di′ ∈ H and dj′ ∈ H, then we can
find an H-path di′u1αc1Pci′βci′+1Pcj′b1b2ctPdj′ on k vertices. For other cases, we can also find an
H-path on k vertices. Therefore, we prove that there exists a vertex w ∈ NH(u1) \V (F ). If there is a
vertex w∗ ∈ NH(w) \V (F ), then there is an H-path starting from w∗ ending at b = cj . Hence we can
assume that NH(w) ⊆ V (F ). Then w is adjacent to V (F ) \ C, and hence by Proposition 2.3, there
is an H-path on k vertices starting from w ending at NH(w) \ C. The rest proofs are essentially the
same and be omitted.

(2.4) Let ab ∈ {vv1, vv2} with r ≥ 2. Then we have |C| = 3. Without loss of generality, let
ab = vv1. Then there is a vertex w ∈ NH(v) \ V (F ). Otherwise, since |C| ≤ ` and v is not adjacent
to v1, we have NH(v) ∩ (A ∪ B ∪ D) 6= ∅. It follows from Proposition 2.3(ii) that c(G + ab) ≥ k
and we are done. Now, it follows from Proposition 2.3(iii) that C ⊆ NH(w) or there is a vertex
w′ ∈ NH(w) \ V (F ) (otherwise, there is an H-path on k vertices). Thus, in the former case, we have
A ∪ B ∪ C ⊆ V (H), and hence, there is an H-path on k vertices starting from w, through v2d2d

∗
2c3,

B, v1 and ending at A. In the later case, there is a path on k vertices starting from w′, through w, v,
v2, B, v3 and A, and ending at v1. We are done in both cases.

Finally, we consider the rest cases. By Proposition 2.3(i), for each edge ab of F , there is a path
on k − 1 vertices starting from a and ending at b in F except the cases we have already discussed.
Hence, we may suppose that

NH(a) ⊆ V (F ) and NH(b) ⊆ V (F ). (5)

Otherwise, there is an H-path on at least k vertices, and we are done. Note that there is no edge
in F [C]. We can assume that, without loss of generality, a ∈ (A ∪ B ∪ D). If a ∈ B ∪ D, then by
Proposition 2.3(ii), (5) and |C| ≤ `− 1, there is a cycle of length k in G+ ab and we are done. Thus
we have a ∈ A, and applying Proposition 2.3(ii) again, NH(a) ⊆ A ∪ C. Since a is not adjacent to b,
NH(a) ≥ `, NH(b) ≥ ` and |A∪C| ≤ `+2, each vertex in A has degree at least ` in H[A∪C]. Thus G
contains a copy of F ∈ F(m, k, r) with |A| = r+ 1 or a copy of F (k) (when |A| = 2 and e(H[A]) = 0).
Both are contradictions.

Case 3. G+ ab contains a copy of F ∈ H(k, r) for r ∈ {`− 1, `}.

Assume that G+ ab contains a copy of F ∈ H(k, `− 1). Let X = A ∪B ∪C. Note that c1 and c2
are adjacent to different vertices of A (by the definition of F (m, k, r)). Since each vertex in G[X] +ab
has degree at least `, together with a, b ∈ H, we have X ⊆ H. If ab ∈ E(F [B]) or ab ∈ E(F (B,C)),
then we can easily find an H-path on k vertices starting from A ending in B. If ab ∈ E(F [C ∪D]),
then there exists an H-path on k vertices starting from a (or b), c1, A, c2, and ending in B, and we
are done. If ab ∈ E(F [A]) with |A| = ` − 1, similarly, we can find an H-path on k vertices. Let
ab ∈ E(F [A]) with |A| = `. If NH(a) ⊆ (A ∪ C) and NH(b) ⊆ (A ∪ C), then clearly, G contains a
copy of F ∈ H(k, `− 1) (note that ` ≥ 4), we are done. Let w ∈ NH(a) \ (A ∪ C). Note that there is
a cycle of length k − 1 containing ab in F [A ∪ B ∪ C] + ab. It is easy to see that there is an H-path
starting from w ∈ H ending at b.

Now, suppose that G+ ab contains a copy of F ∈ H(k, `). Let X = A∪B ∪{w,w1, w2}. Since the
degree of each vertex of X \{a, b} in G[X] is at least `, together with a, b ∈ H, we have X ⊆ H. Hence,
if ab /∈ E(C) or ab = w1w2, then we can easily find an H-path on at least k vertices. If ab ∈ E(C)
and ab 6= w1w2, then there is a path on at least k vertices starting from a (or b), through w, A, w1w2

and ending at B (note that ww1, ww2 /∈ E(C)).
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Case 4. G+ ab contains a copy of F ∈ F3(k, k, α+ 1) (α = 1) or F6(k, k, α+ 1) when α ≤ `− 3.

Let F ∈ F3(k, k, α + 1) with F [A] = αu1β and B = {b1, b2}. If ab is not between u1 and C, then
Proposition 2.3(i) there is an (a, b)-path on k − 1 vertices. Hence we have NH(a) ∪ NH(b) ⊆ V (F ).
Since a and b are not both in C (C is an independent set in F ), there is one edge in G[D] or G[A∪B,D].
Thus by Proposition 2.3(ii), we have c(G + ab) ≥ k. Now, let ab ∈ E({u1}, C). The rest proofs are
essentially the same as case (2.3). We finish the proof for F ∈ F3(k, k, α + 1). The proof of the case
F = F6(k, k, α+ 1) is similar and omitted.

Case 5. G+ ab contains a copy of F1(k, k, `− 2) or F2(k + 1, k, `− 2) when α = `− 3.

The proof of this case is essentially the same as the proof of (2.4) and be omitted.

Case 6. G+ ab contains a copy of F (k).

If there is an edge in G[A ∪ B], then G + ab contains a copy of F ′ ∈ F(k, k, 1) with Type II and
|A′| = 1 10, and we are done by Case 2. Thus, we may assume that G[A ∪B] contains no edge. Note
that the edges between A ∪ B and C are equivalence. We consider the following two subcases. (6.1)
Let a ∈ C and b ∈ D. If b is adjacent to A ∪ B, then G + ab contains a copy of F ′ ∈ F(k, k, 1) with
Type II and |A′| = 1, and hence we are done. Since |C| ≤ ` and a is not adjacent to b, there is a
vertex w ∈ NH(b) \ V (F ). If there is a w′ ∈ NH(w) \ (A ∪ B ∪ C), then there is an H-path on k
vertices starting from w′ ending at a. Thus, we have NH(w) ⊆ V (F ). Then, it is not hard to see that
c(G + ab) ≥ k, and we are done (since C ≤ ` − 1, w is adjacent to A ∪ B ∪ D). (6.2). Let a ∈ C
and b ∈ A ∪ B. As subcase (6.1) b is not adjacent to D, and hence there is a w ∈ NH(b) \ V (F ). If
there is a w′ ∈ NH(w) \ (A∪B ∪C), then there is an H-path on k vertices starting from w′ ending at
a, otherwise there is a cycle of length k in G + ab as in subcase (6.1). We complete our proof of the
claim.

Let |V (H)| = m. Since s(G, `− 1) ≥ k− `+α and ω(G) ≤ k− β, we have k− `+α ≤ m ≤ k− β.
Apply to the graph G the process of (k −m)-disintegration. Let H ′ = H(G, k −m). If H ′ = H, then

Ns(G) ≤
(
m

s

)
+ (n−m)

(
k −m− 1

s− 1

)
≤ max{hs(n, k, `− α), hs(n, k, β)},

a contradiction to (1) (hs(n, k, a) is a convex function in a). If H ′ 6= H, then there exists a vertex
b ∈ V (H ′) which is not adjacent to a vertex a ∈ V (H). We divide the proof into the following two
cases: Case (a). Adding ab, the obtained graph contains a cycle of length at least k. Then there is
a path in G on at least k vertices starting in H and ending in H ′. Let P = xPy be a longest such
path with x ∈ V (H) and y ∈ V (H ′). Then we have dP (a) ≥ m− 1 and dP (b) ≥ k −m+ 1. It follows
from Pósa’s lemma that c(G) ≥ k, a contradiction. Case (b). Adding ab, the obtained graph contains
a copy of F ∈ Kk,α. From Case (a), it is sufficient to show that c(G + ab) ≥ k. Note that H is a
complete graph on m ≥ k − `+ α vertices. By Proposition 2.6, we can easily find a cycle of length k
in G+ ab. Thus we complete the proof of Theorem 1.3. �

4 Implications

Theorem 4.1 (Fan [3], Wang and Lv [13], Ji and Ye [7]). Let G be a 2-connected n-vertex graph with
n ≥ 3. Assume n− 2 = r(`− 1) + t where 1 ≤ t ≤ `− 1. If G has an edge uv such that G has no cycle
containing uv of length at least `+ 1 ≥ 4, then

Ns(G) ≤ gs(n, k) =

{
r
(
`+1
s

)
+
(
t+2
s

)
, if s ≥ 3;

r
(
`−1
2

)
+
(
t
2

)
+ 2(n− 2) + 1, if s = 2.

We need the following lemma proved in [10].

10F ′ has a vertex partition A′ ∪B′ ∪ C′ ∪D′.
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Lemma 4.2 (Ma and Ning [10]). Let G be a 2-connected n-vertex graph with c(G) < k, δ(G) = δ and
n ≥ k. If ω(G) ≥ k − δ , then G = H(n, k, δ) or G = Z(n, k, δ).

In the following of this section, we shall use Theorem 1.3 to deduce Theorem 1.4 and equivalent
statements of some main results in [5, 6, 10]. First, we present a lemma concerning the copies of Ks.

Lemma 4.3. Let G be an n-vertex 2-connected graph with c(G) < k and n ≥ 9. If G contains a copy
of F ∈ F(m, k, r) with r ∈ {`− 1, `}, then

e(G) ≤ h2(n, k, `− 1).

Proof. Let F ∈ F(m, k, ` − 1) and C = {c1, c2}. If k = 2` + 1, then since G is 2-connected with
c(G) < k, it is easy to see that the longest path starting from c1 ending at c2 is on at most ` + 1
vertices. Since ` ≥ 4 and n ≥ k, by Theorem 4.1,

e(G) ≤ (`− 2)(n− 2)

2
+ 2n− 3 <

(
`+ 2

2

)
+ (`− 1)(n− `− 2) = h2(n, k, `− 1),

as desired. Let k = 2`+ 2 ≥ 10. Note that the longest path starting from c1 ending at c2 in G is on
` + 2 vertices (if there is a path starting from c1 ending at c2 in G on ` + 3 vertices, then one may
easily check that c(G) ≥ k by G contains a copy of F , a contradiction). Then by Theorem 4.1 and
` ≥ 5, we have

e(G) ≤ (`− 1)(n− 2)

2
+ 2n− 3 <

(
`+ 3

2

)
+ (`− 1)(n− `− 3) = h2(n, k, `− 1).

Thus we may suppose k = 10. If the longest path starting from c1 and ending in c2 has at most five
vertices, then by Theorem 4.1, we have

e(G) ≤ 2(n− 2)

2
+ 2n− 3 < 3n− 3 = h2(n, 10, 3).

Thus we may assume that there is a longest path P = c1x1x2x3x4c2 in G. Let G′ = G − {c1, c2}.
Let X be the component of G′ contains {x1, x2, x3, x4}. Then by Proposition 2.2, X is a star, a
triangle or a complete graph with one part of size two. In all of the above cases, the number of
edges incident with X in G is at most 3|X|. For any other component Y of G′, since c(G) < 10, by
Theorem 4.1, the number edges incident with it is at most 3|Y |. Summing all the above edges, we
have e(G) ≤

(
6
2

)
+ 3(n− 6) = 3n− 3 = h2(n, 10, 3). We finish the proof when F ∈ F(m, k, `− 1).

Let F ∈ F(m, k, `). Then k is even and n ≥ 10. Let w,w1 and w2 be the vertices of F as in
Section 2. Since c(G) < k, the longest path starting from w1 or w2 through G−{w,w1, w2} ending at
w is on at most `+ 1 vertices and each component of G−{w,w1, w2} can only be adjacent to w1, w or
w2, w. Let Gi be the induced subgraph of G containing {w,wi} and all components of G−{w,w1, w2}
which is adjacent to wi for i = 1, 2. Let n1 = |V (G1)| and n2 = |V (G2)|. Then n = n1 +n2− 1. Since
n ≥ 10 and ` ≥ 4, by Theorem 4.1, we have

e(G) = e(G1) + e(G2) + 1 ≤ (`− 2)(n1 − 2)

2
+ 2n1 − 3 +

(`− 2)(n2 − 2)

2
+ 2n2 − 3 + 1

=
(`− 2)(n− 3)

2
+ 2(n+ 1)− 3− 2 <

(
`+ 3

2

)
+ (`− 1)(n− `− 3) = h2(n, k, `− 1).

This finishes the proof for s = 2.

Define

φs(n, k) =

{ (
`+2
s

)
+ (r − 1)

(
`+1
s

)
+
(
t+2
s

)
, n = r(`− 1) + t+ 3, 1 ≤ t ≤ `− 1 and k is even;

r
(
`+1
s

)
+
(
t+2
s

)
, n = r(`− 1) + t+ 2, 1 ≤ t ≤ `− 1 and k is odd.

Let H′(k, `− 1) be the set of graphs in H(k, `− 1) with Type II and |A| = `− 1.
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Lemma 4.4. Let G be an n-vertex 2-connected graph with c(G) < k. If G contains a copy of
F ∈ H(k, `) or F ∈ H(k, `− 1) \ H′(k, `− 1), then

Ns(G) ≤

{
hs(n, k, `− 1), if 3 ≤ s ≤ ` and n ≥ k ≥ 11;

φs(n, k), if s ≥ `+ 1.

Proof. Since k ≥ 11, we have ` ≥ 5, hence an easy computation implies

(`− 1)

(
`− 1

s− 1

)
≥ (`+ 1)`

s(`− s+ 1)

(
`− 1

s− 1

)
=

(
`+ 1

s

)
(6)

and

(t− 2)

(
`− 1

s− 1

)
≥
(
t

s

)
for t ≤ `+ 1. (7)

Let F ∈ F(m, k, ` − 1) and k be odd. Let n − 2 = r(` − 1) + t where 1 ≤ t ≤ ` − 1 and r ≥ 2 are
integers. Since G is 2-connected with c(G) < k, the longest C-path is on at most ` + 1 vertices. If
s ≤ `, then applying Theorem 4.1, by (6) and (7) we have

Ns(G) ≤ r
(
`+ 1

s

)
+

(
t+ 2

s

)
≤
(
`+ 1

s

)
+ (r − 1)(`− 1)

(
`− 1

s− 1

)
+

(
t+ 2

s

)
≤
(
`+ 2

s

)
+ (r − 1)(`− 1)

(
`− 1

s− 1

)
+

(
t+ 1

s

)
≤
(
`+ 2

s

)
+ (n− `+ 2)

(
`− 1

s− 1

)
= hs(n, k, `− 1).

If s ≥ ` + 1, then since G is 2-connected with c(G) < k, we have s = ` + 1 and each copy of K`+1

contain both vertices of C. Thus Ns(G) ≤ φs(n, k).
Let F ∈ F(m, k, `− 1) and k be even. Let n− 2 = `+ r′(`− 1) + t′ where 1 ≤ t′ ≤ `− 1 and r′ ≥ 1

are integers. Assume that s ≤ `. Let F 6= F6(m, k, ` − 1). Note that if there is a vertex adjacent
to {x1, x2} (when F = F5(m, k, ` − 1)), then this vertex should be an isolated vertex and contribute
less number of copies of Ks in G. We may assume that each vertex of V (G) \ {A ∪ B ∪ C} is only
connected to C. Then applying Theorem 4.1, by (6), (7) and F /∈ H′(k, `− 1), we have

Ns(G) ≤
(
`+ 2

s

)
+ r′

(
`+ 1

s

)
+

(
t′ + 2

s

)
≤
(
`+ 3

s

)
+ (r′ − 1)(`− 1)

(
`− 1

s− 1

)
+

(
t′ + 1

s

)
≤
(
`+ 3

s

)
+ (n− `+ 3)

(
`− 1

s− 1

)
= hs(n, k, `− 1).

Let F = F6(m, k, `−1). If y1 is adjacent to B∪D∪(V (G)\V (F )), then by Proposition 2.7, each vertex
in B∪D∪(V (G)\V (F )) can only be adjacent to {y1}∪C. Moreover, each vertex in D∪(V (G)\V (F ))
is an isolated vertex. Hence the maximal graph containing G with circumference less than k is
S(k, `− 1, `− 2). Thus, applying Lemma 4.3, we have Ns(G) ≤ min{hs(n, k, `− 2), hs(n, k, `− 1)} ≤
hs(n, k, ` − 1). Hence, we can suppose that each vertex in D ∪ (V (G) \ V (F )) is only connected to
C, whence as before we have Ns(G) ≤ hs(n, k, ` − 1). If s ≥ ` + 1, then since G is 2-connected with
c(G) < k, we have s = `+ 1 or s = `+ 2. Thus Ns(G) ≤ φs(n, k).
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Let F ∈ F(m, k, `). Then k is even and n ≥ 10. As in the proof of Lemma 4.3, let Gi be the
induced ni-vertex subgraph of G containing {w,wi} and all components of G − {w,w1, w2} which is
adjacent to wi for i = 1, 2. Let ni − 2 = ri(`− 1) + t1 for i = 1, 2 and n1 + n2 = n+ 1. Since n ≥ 10
and ` ≥ 4, it follows from Theorem 4.1 that

Ns(G) = Ns(G1) +Ns(G2) +

(
3

s

)
≤ r1

(
`+ 1

s

)
+

(
t1 + 2

s

)
+ r2

(
`+ 1

s

)
+

(
t2 + 2

s

)
+

(
3

s

)
≤ r∗

(
`+ 1

s

)
+

(
t∗ + 2

s

)
+

(
3

s

)
≤
(
`+ 3

s

)
+ (n− `+ 3)

(
`− 1

s− 1

)
= hs(n, k, `− 1),

where n− 3 = r∗(`− 1) + t∗ with 1 ≤ t∗ ≤ `− 1. This finishes the proof of the lemma.

First, we can derive a more general result concerning the number of cliques from Theorem 1.3. We
need the following family of graphs G(n, k) introduced in [5] (see Fig. 1 in [5]). The n-vertex graphs
in G(n, k) consist of four types G1(n, k), G2(n, k), G3(n, k) and G4(n, k).

• G1(n, k) = {H(n, k, `)};

• Each G ∈ G2(n, k) is defined by a partition V (G) = A∪B∪J , |A| = t and a pair a1 ∈ A, b1 ∈ B
such that G[A] = Kt, G[B] is the empty graph, G(A,B) is a complete bipartite graph and for
every c ∈ J one has N(c) = {a1, b1}.

• Every member of G ∈ G3(n, k) is defined by a partition V (G) = A ∪ B ∪ J , |A| = t such that
G[A] = Kt, G(A,B) is a complete bipartite graph, and G[J ] has more than one component, all
components of G[J ] are stars with at least two vertices each, there is a 2-element subset A′ of
A such that N(J) ∩ (A ∪ B) = A′, for every component S of G[J ] with at least 3 vertices, all
leaves of S are adjacent to the same vertex a(S) in A′ and any other vertex of J is adjacent to
each vertex of A′;

• Each member of G4(n, k) (k = 10) has a 3-vertex set A such that G[A] = K3 and G−A is a star
forest such that if a component S of G − A has more than two vertices then all its leaves are
adjacent to the same vertex a(S) in A and any other vertex of G−A is adjacent to each vertex
of A.

Now, we give a more delicate version of Theorem 1.4.

Theorem 4.5. Let G be an n-vertex 2-connected graph with minimum degree δ ≥ 2. Let n ≥ k ≥ 9,
s ≥ 3 and `− 1 ≥ δ + 1. If c(G) < k and

Ns(G) > max{hs(n, k, `− 1), hs(n, k, δ + 1)}, (8)

then one of the following holds:

• G is a subgraph of a graph in G(n, k).

• s ≤ `+1, and k = 9, 10 and G−A consists of at least θ(n) triangles, stars and complete bipartite
graphs with one part of size two for some A ⊆ V (G) of size at most 3;

• s = `+ 1 and the copies of Ks except at most `+ 2 of them can be divided into two families A
and B such that each in A shares only x, y ∈ V (G) and each in B shares only x, z ∈ V (G).
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• s = `+ 2, k is even and G contains a unique copy of Ks.

• G is a subgraph of the graph Z(n, k, δ);

• G is a subgraph of H(n, k, δ).

Proof. Suppose that G is Kk,1-free. Let J ⊇ G be a maximal Kk,1-free with c(J) < k. Suppose that
s(J, `− 1) ≤ k − `. Then

Ns(J) ≤ (n− k + `)

(
`− 1

s− 1

)
+

(
k − `
s

)
= hs(n, k, `− 1)

contradicting (8). Thus we have s(J, `−1) ≥ k−`+1. Clearly, Ns(J) > max{hs(n, k, `−1), hs(n, k, δ+
1)} and δ(J) ≥ δ. Applying Theorem 1.3 with α = 1 and β = δ + 1, we have ω(J) ≥ k − δ. Then by
Lemma 4.2, we have J = Z(n, k, δ) or J = H(n, k, δ), that is, G is a subgraph of the graph Z(n, k, δ)
or G is a subgraph of H(n, k, δ).

Now we may assume that G contains a copy of F ∈ Kk,1. We divide the rest of proof into the
following cases.

Case 1. G contains a copy of F ∈ H(k, 1) ∪ {F (k)}.

Let k be odd. Then G contains a copy of F ∈ H(k, 1), that is F = F (k, k, 1). Then by Proposi-
tion 2.3, it is easy to check that G is a subgraph of H(n, k, `). Moreover, we have s ≤ `+ 1, otherwise
G does not contain a copy of Ks, contradicting (8). Let k be even. If G contains a copy of F ∈ H(k, 1).
If F is F (k, k, 1) with Type II and |A| = 2, then by Proposition 2.6 we deduce that each vertex of
V (G)\(A∪B∪C) is an isolated vertex and is only adjacent to C, that is G is a subgraph of H(n, k, `).
If F is F (k, k, 1) with Type II and |A| = 1, then Proposition 2.6 implies G−(A∪B∪C) consists of star
forest. Let ci and ci+1 be the vertices in C which are adjacent to the unique edge in F [D]. Moreover,
since G is 2-connected with c(G) < k, each isolated vertex of G− (A∪B ∪C) can only be adjacent to
C, each non-trivial star is only adjacent to {ci, ci+1} and each leaf of a star on at least three vertices is
adjacent to only one of ci and ci+1. Thus G is a subgraph of G3(n, k). If F is F6(k, k, 1) with Type III,
applying Proposition 2.6 again, G − (A ∪ B ∪ C) consists isolated vertices. Moreover, if the isolated
vertex is adjacent to y1, then it can only be adjacent to {y1, c1}, otherwise the isolated vertex is only
adjacent to C. Thus G is a subgraph of G2(n, k). Moreover, we have s ≤ `+ 2, otherwise G does not
contain a copy of Ks, contradicting (8). Furthermore, if s = `+ 2, then G contains at most one copy
of Ks, hence by (8) there is a unique copy of Ks in G.

Now we may assume that F = F (k). Suppose that G − V (F ) contains an edge xy. Then by
Proposition 2.5, xy can only be adjacent to ui, uj ∈ C with 1 ≤ i < j ≤ `, whence, we find a path
starting from a1 ∈ A, through u1Pui, xy, ujPu`, B and uj−1Pui+1, and ending at a2 ∈ A, that is,
G contains a copy of F (k, k, 1) with Type II, and we are done by previous argument. Thus we can
assume that G − V (F ) consists of isolated vertices. Applying Proposition 2.5 again, each isolated
vertex can be only adjacent to at most one vertex of A ∪ B ∪ D and vertices of C. If each isolated
vertex only be adjacent to C, then clearly G is a subgraph of H(n, k, 1), and we are done. Assume
that there is an isolated vertex be adjacent to A∪B∪D. If the isolated vertex w is adjacent to a1 ∈ A
and ui ∈ C, then there is a path starting from a2 ∈ A, through u1Pui−1, a1wui and ui+1Pu`, and
ending at B. Thus G contains a copy of F (k, k, 1) with Type II, hence we are done. By symmetry
between the vertices in A and the vertices in B, if w is adjacent to a1 ∈ A and ui ∈ C, then G also
contains a copy of F (k, k, 1) with Type II. Suppose that w is adjacent to vi ∈ D and uj ∈ C. If vi
is adjacent to uj in F , then G contains a copy of F (k, k, 1) with Type II; if ui is not adjacent to uj
(without loss of generality suppose i < j), then a path starting from a1 ∈ A, through u1Pui, wvjPu`,
B and ui−1Pui+1, and ending at a2 ∈ A, implying that G contains a copy of F (k, k, 1) with Type II.
In both cases, we are done by previous argument.

Case 2. G contains a copy of F6(k, k, 2) or F ∈ F3(k, k, 2). Then by Proposition 2.3, each vertex of
V (G) \ (A ∪ B ∪ C) is an isolated vertex and can be only adjacent to {u1} ∪ C or {y1} ∪ C. If there
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is some vertex in V (G) \ (A ∪ B ∪ C) adjacent to u1 or y1, then we can see that V (G) \ ({w} ∪ C)
(w = u1 or w = y1) contains an independent edge and isolated vertices, and hence G is a subgraph of
H(n, k, `). If each vertex of V (G) \ (A ∪ B ∪ C) is only adjacent to C, then by Lemma 2.8 we have
Ns(G) ≤ f(n, k, `− 1) ≤ h(n, k, `− 1), contradicting (8).

Case 3. G contains a copy of F1(10, 10, 2) or F2(11, 10, 2). Then by Proposition 2.3, G− (A∪B ∪C)
is a star forest. Moreover, in G − (A ∪ B ∪ C), each isolated vertex and each independent edge are
only be adjacent to C; each leaf of a star on at least three vertices is adjacent to the same one vertex
of C. Therefore, G is a subgraph of a graph in G4(n, k).

Case 4. G contains a copy of F ∈ H(k, `− 1) ∪H(k, `).

Let k be odd. Then F ∈ H(k, ` − 1). Let ` ≥ 5, i.e., k ≥ 11. If s ≤ `, then by Lemma 4.3
Ns(G) ≤ hs(n, k, `− 1), contradicting (8). Let s = `+ 1. Since G is 2-connected with c(G) < k, each
copy of Ks shares two common vertices in C of F . If s ≥ `+ 2, then it follows from Theorem 4.1 that
Ns(G) ≤ 0, contradicting (8). Let k = 9. Then the longest C-path in G is on at most five vertices.
By Lemma 2.1, G− C consist of stars, triangles and complete bipartite graphs with one part of size
two. Therefore, by (8), G− C consist of θ(n) triangles.

Let k be even. If F = F (m, k, `) and k ≥ 11, then by Lemma 4.4 we have Ns(G) ≤ hs(n, k, `− 1),
a contradiction. If F = F (m, k, ` − 1) with Type II and |A| = ` + 1 or with Type III, then each
vertex of V (G)−A ∪B ∪ C is only connected to C (if some vertex of V (G)−A ∪B ∪ C is adjacent
to y1 or {x1, x2}, then G contains less copies of Ks). If s ≤ `, by Lemma 4.4 Ns(G) ≤ hs(n, k, `− 1),
contradicting (8). Let s = ` + 1. Since G is 2-connected with c(G) < k, each copy of Ks not in A
shares two common vertices in C of F . Note that there are at most `+ 2 copies of Ks in A. We are
done for s = `+ 1. If s ≥ `+ 2, then we can see that there is a unique copy of K`+2. The case k = 10
is similar to k = 9 and be omitted. Suppose that F = F (m, k, ` − 1) with Type II and |A| = `. If
there is a vertex in V (G) − A ∪ B ∪ C adjacent to A ∪ B, or the longest C-path is on at most ` + 1
vertices, then the result follows as before by applying Lemma 4.4. Thus there is a C-path on ` + 2
vertices. We may delete A, the resulting graph G′ is still 2-connected with c(G′) < k. Clearly, we
have Ns(G

′) ≥ max{hs(n − ` + 1, k, ` − 1), hs(n − ` + 1, k, δ + 1)}. Applying the previous proofs, we
are done, until there is no longest C-path is on at most ` + 2 vertices. But when n < 3`, there is
no longest C-path is on at most ` + 2 vertices, and hence we can finish our proof by repeating the
previous arguments.

Now we have the following immediate corollary, which can imply some of the main results in
[5, 6, 10].

Corollary 4.6. Let G be an n-vertex 2-connected graph with c(G) < k and minimum degree δ(G) = δ.
Let k ≥ 9 11 and `− 1 ≥ δ + 1. If

e(G) > max{h2(n, k, `− 1), h2(n, k, δ + 1)},

then one of the following holds:

• G is a subgraph of a graph in G(n, k);

• G is a subgraph of Z(n, k, δ);

• G is a subgraph of H(n, k, δ).

Proof. The proof is the same as the proof of Theorem 4.5 by applying Lemma 4.3.
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11we include the case k = 9, 10 which are not deal with in [10].
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and paths, II, Discrete Math. 341 (2018), 1253–1263.

[7] N. Ji and D. Ye, The number of cliques in graphs covered by long cycles, arXiv:2112.00070.

[8] G. N. Kopylov, On maximal paths and cycles in a graph, Soviet Math. Dokl. 18 (1977), 593–596.

[9] R. Luo, The maximum number of cliques in graphs without long cycles, J. Combin. Theory Ser.
B 128 (2018), 219–226.

[10] J. Ma and B. Ning, Stability results on the circumference of a graph, Combinatorica 40 (2020),
105–147.

[11] J. Ma and L. Yuan, A stability result of the Pósa lemma, submitted.
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