Combinatorics, 2016 Fall, USTC Homework 1

- The due is on Tuesday, Sep. 13.
- Solve all problems.

1. How many 9 -digit numbers can be made of digits $1,2, \ldots, 9$ so that no i is put in the i 'th position, and the number of not a palindrome. (A palindrome is a word or a number that reads the same in either direction. For example, "rotator" and " 12321 " are palindromes, but " 1231231 " is not.)
2. Let n, r be be positive integers and $n \geq r$. Give a combinatorial proof of

$$
\binom{2 n}{2 r} \equiv\binom{n}{r}(\bmod 2) .
$$

3. Find a closed formula for

$$
\sum_{k=m}^{n}\binom{k}{m}\binom{n}{k}
$$

4. Suppose there are n objects of r different kinds, where the i th kind has k_{i} identical objects and $k_{1}+k_{2}+\ldots+k_{r}=n$. How many distinct arrangements of those n objects (listed in a row from left to right) in total are there?
5. Let n be a positive integer. Prove that the identity

$$
x^{n}=\sum_{k=1}^{n} S(n, k)(x)_{k}
$$

holds for every real number x, where $S(n, k)$ is the Stirling number of the second kind, and $(x)_{k}:=x(x-1) \ldots(x-k+1)$.

Hint: first prove the case when x is a positive integer by double-counting certain mappings.
6. Find a closed formula of

$$
\sum_{k=0}^{\lfloor n / 7\rfloor}\binom{n}{7 k} .
$$

(Try to simplify this expression to a summation with at most four terms)
Hint: let $\epsilon=e^{2 \pi i / 7}$, where i is the imaginary unit, and then consider the value of $\sum_{j=0}^{6} \epsilon^{k j}$.
7. Let $n \geq m$. Prove

$$
\sum_{k=0}^{m}\binom{m}{k}\binom{n+k}{m}=\sum_{k=0}^{m}\binom{m}{k}\binom{n}{k} 2^{k} .
$$

