Combinatorics, 2016 Fall, USTC Homework 10

- The due is on Tuesday, Dec. 6, at beginning of the class.
- Solve all problems.

1. We toss a fair coin n times and let X be the number of heads appearing. Compute the expectation of X.
2. Let $k \geq 4$ be an integer and $\mathcal{F} \subset\binom{X}{k}$ be a k-family. Prove that if

$$
|\mathcal{F}|<\frac{4^{k-1}}{3^{k}}
$$

then there is a coloring of elements of X with 4 colors such that in any set of family \mathcal{F} all 4 colors are represented.
3. Prove that if there is a real $p \in[0,1]$ such that

$$
\binom{n}{k} \cdot p^{\binom{k}{2}}+\binom{n}{t} \cdot(1-p)^{\binom{t}{2}}<1
$$

then Ramsey number $R(k, t)>n$. Using this, show that $R(4, t) \geq c \cdot\left(\frac{t}{\ln t}\right)^{3 / 2}$ for some constant $c>0$.
4. Prove that there exists an absolute constant $c>0$ with the following property. Let A be an n by n matrix with pairwise distinct entries. Then there is a permutation of the rows of A so that no column in the permuted matrix contains an increasing subsequence of length at least $c \sqrt{n}$.
5. Prove that for all integers n and $p \in[0,1]$,

$$
R(k, l)>n-\binom{n}{k} p^{\binom{k}{2}}-\binom{n}{l}(1-p)^{\binom{l}{2}}
$$

and then show

$$
R(4, k) \geq c \cdot\left(\frac{k}{\ln k}\right)^{2}
$$

for some constant $c>0$.
6. For any $\mathcal{F} \subseteq\binom{[n]}{3}$ with $m:=|\mathcal{F}| \geq n / 3$, prove that there exists a subset $A \subseteq[n]$ with

$$
|A| \geq \frac{2 n^{3 / 2}}{3 \sqrt{3 m}}
$$

such that none of the sets in \mathcal{F} is contained in A.
7. Recall the definition of $m(k)$. Given the following result: if there exists $p \in[0,1]$ with $t(1-p)^{k}+t^{2} p<1$, then $m(k)>2^{k-1} t$. Prove that

$$
m(k) \geq c \cdot 2^{k}\left(\frac{k}{\ln k}\right)^{1 / 2}
$$

for some constant $c>0$.

