Combinatorics, 2016 Fall, USTC Homework 12

- The due is on Tuesday, Dec. 20, at beginning of the class.
- Solve all problems.

1. Given a graph G with $\chi(G)=n$ and a proper coloring $f: V(G) \rightarrow[n]$, prove that for any color $i \in[n]$, there exists a vertex of color i adjacent to a vertex of every other color.
2. Let $\mathcal{F} \subseteq 2^{[n]}$ be such that

- $|A|$ is even for all $A \in \mathcal{F}$, and
- $|A \cap B|$ is even for all distinct $A, B \in \mathcal{F}$.

Prove that $\mathcal{F} \leq 2^{n / 2}$.
3. Let m red clubs $R_{1}, \ldots, R_{m} \subseteq[n]$ and m blue clubs $B_{1}, \ldots, B_{m} \subseteq[n]$ be such that

- $\left|R_{i} \cap B_{i}\right|$ is odd for every i, and
- $\left|R_{i} \cap B_{j}\right|$ is even for every $i \neq j$.

Show that $m \leq n$. And then answer the question if you can weaken the second condition to all $i<j$ (explain why).
4. (s-distance sets.) Let $s \geq 3$ be an integer. Let $a_{1}, a_{2}, \ldots, a_{m}$ be points in \mathcal{R}^{n} and suppose that the pairwise distances between them take at most s values. Prove that $m \leq\binom{ n+s+1}{s}$.
5. Construct a two-distance set of size $\binom{n+1}{2}$ in some \mathbb{R}^{n}.
6. Prove that among any $2^{k-1}+1$ vectors in \mathbb{F}_{2}^{n}, there are k vectors which are linearly independent.

