Combinatorics, 2016 Fall, USTC

Homework 13

- The due is on Tuesday, Dec. 27, at beginning of the class.
- Solve all problems.

1. Let $\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ be an L-intersecting family of subsets of $[n]$, where each A_{i} is of a constant size, say k. Prove that $m \leq\binom{ n}{|L|}$. (Solve it if you did not do so in HW 10.)
(Hint: beginning with the same proof, and then adding a right number of some polynomials to show that all polynomials are linearly independent.)
2. Suppose $R_{1}, \ldots, R_{m} \subseteq[n]$ satisfy that $\left|R_{i}\right| \neq 0 \bmod 6$ for every i, and $\left|R_{i} \cap R_{j}\right|=0 \bmod 6$ for every $i \neq j$. Prove that $m \leq 2 n$.
3. Derive the following result from Bollobás's theorem. Let A_{1}, \ldots, A_{m} be subsets of size a and B_{1}, \ldots, B_{m} be subsets of size of b such that $\left|A_{i} \cap B_{i}\right|=t$ for all i and $\left|A_{i} \cap B_{j}\right|>t$ for all $i \neq j$. Then $m \leq\binom{ a+b-t}{a-t}$.
4. Let A_{1}, \ldots, A_{m} and B_{1}, \ldots, B_{m} be finite subsets such that $A_{i} \cap B_{i}=\emptyset$ for all i and $A_{i} \cap B_{j} \neq \emptyset$ for all $i<j$. If $\left|A_{i}\right| \leq a$ and $\left|B_{i}\right| \leq b$ for all i, then $m \leq\binom{ a+b}{a}$.
