Combinatorics, 2016 Fall, USTC Homework 2

- The due is on Tuesday, September 27, at beginning of the class.
- Solve any all problems.

1. How many functions $f:[n] \rightarrow[n]$ are there such that for all $i<j$, we have $f(i) \leq f(j)$?
2. Let $\pi(n)$ denote the number of primes not exceeding the number n.
(a) Show that the product of all primes p with $m<p \leq 2 m$ is at most $\binom{2 m}{m}$.
(b) For a prime p, show that if p^{k} divides $\binom{2 m}{m}$, then $p^{k} \leq 2 m$.
(c) Using (a) and (b), prove that there exist absolute constants $c_{1}, c_{2}>0$ such that

$$
c_{1} \cdot \frac{n}{\log n} \leq \pi(n) \leq c_{2} \cdot \frac{n}{\log n} .
$$

3. An equivalence of $[n]$ is just a partition of [n] into k non-ordered non-empty subsets for some k. Denote the $n^{\text {th }}$ Bell number B_{n} to be the total number of equivalence of $[n]$. Prove that

$$
B_{n}=\frac{1}{e} \sum_{i=0}^{\infty} \frac{i^{n}}{i!} .
$$

4. (a). Given a natural number N, determine the probability that two number $m, n \in[N]$ chosen independently at random are relatively prime.
(b). Prove that the limit of the probability in (a) for $N \rightarrow \infty$ equals the infinite product $\prod_{p}\left(1-1 / p^{2}\right)$, where p runs over all primes.
5. Show that the number $(6+\sqrt{37})^{999}$ has at least 999 zero following the decimal point.
6. Let $f_{n}(x)=x(x-1) \ldots(x-n+1)$. Prove that

$$
f_{n}(x+y)=\sum_{k=0}^{n}\binom{n}{k} f_{k}(x) f_{n-k}(y)
$$

7. Let A_{n} be the number of ways of going up n stairs, if we may take one or two steps at a time. Find the generating function $f(x)$ of $\left\{A_{n}\right\}_{n \geq 0}$.
