Combinatorics, 2016 Fall, USTC Homework 4

- The due is on Tuesday, October 18, at beginning of the class.
- Solve all problems.

1. Draw all non-isomorphic graphs with the degree sequence $(6,3,3,3,3,3,3)$. And then prove that none was left out.
2. Construct as many pairwise non-isomorphic graphs with vertex set $[n]$ as possible (suppose that n is very large number). Prove that why your graphs are non-isomorphic. Can you find more than n^{2} of them? At least $2^{n / 10}$? Or even at least $2^{n^{2} / 10}$?
3. Let G be a graph in which all vertices have degree at least d. Prove that G contains a cycle of length at least $d+1$.
4. Let G be a graph with maximum degree 3. Prove that its vertices can be colored by 2 colors (each vertex gets one color) in such a way that there is no path of length two whose 3 vertices all have the same color.
5. Prove that any graph G with an even number of vertices has two vertices with an even number of common neighbors.
6. Sperner's lemma in dimension 3 .
(1). Consider a tetrahedron $T=A_{1} A_{2} A_{3} A_{4}$, where A_{i} is one of the four vertices, in the 3-dimensional space, and some subdivision of T into small tetrahedrons, such that each face of each small tetrahedron either lies on a face of the big tetrahedron or is also a face of another small tetrahedron. (Just imagine that the subdivision of T is as normal as you would divide into.) Let us label the vertices of the small tetrahedron by colors $1,2,3,4$, in such a way that the vertex A_{i} get the color i, the edge $A_{i} A_{j}$ only contains vertices colored by i and j, and the face $A_{i} A_{j} A_{k}$ has only colors i, j and k. Prove that there exists a small tetrahedron with colors $1,2,3,4$.
(2). Formulate and prove a 3-dimensional version of Brouwer's fixed point theorem (about continuous mappings of a tetrahedron into itself).
7. A family \mathcal{F} of $[n]$ is intersecting, if for any two subsets $A, B \in \mathcal{F}, A \cap B \neq \emptyset$. For any intersecting family \mathcal{F} of $[n]$, prove that there exists an intersecting family \mathcal{F}^{\prime} of $[n]$ such that $\mathcal{F} \subseteq \mathcal{F}^{\prime}$ and $\left|\mathcal{F}^{\prime}\right|=2^{n-1}$.
