Combinatorics, 2016 Fall, USTC Homework 5

- The due is on Tuesday, October 25, at beginning of the class.
- Solve all problems.
- 1. Let G be a graph such that for any two non-adjacent vertices u, v, it holds that $N_G(u) = N_G(v)$. Prove that G must be a complete multipartite graph (i.e., V(G) can be partitioned into $V_1, V_2, ..., V_k$ for some $k \geq 2$ such that for any $u \in V_i, v \in V_j$ where $i \neq j$, we have $uv \in E(G)$).
- **2.** Let n > 0 be an even integer. Let $\mathcal{F} \subset 2^{[n]}$ be a family of subsets of [n] such that \mathcal{F} contains no four distinct sets A, B, C, D satisfying $A \subset B \subset C \subset D$. Show that $|\mathcal{F}| \leq 3\binom{n}{n/2}$.
- **3.** Recall that in the second proof of Sperner's Theorem we define an equivalence \sim on the family $2^{[n]}$, by letting $M \sim M'$ hold if and only if both M and M' have the same partial pairing of their sequences.

Prove the claim that each equivalence class indeed is a symmetric chain.

- **4.** Show that the set families $\binom{X}{\lfloor n/2 \rfloor}$ and $\binom{X}{\lceil n/2 \rceil}$ are the only independent systems on an n-element set X with the largest possible number of sets.
- **5.** Let X be an n-element set and let $S_1, S_2, ..., S_n$ be subsets of X such that $|S_i \cap S_j| \le 1$ for any $i \ne j$. Prove that there exists some subset S_i with $|S_i| \le C\sqrt{n}$, for absolute constant C (independent of the choice of n).
- **6.** Show that if a graph G on n vertices does not contain $K_{s,t}$ as a subgraph, then it has at most $C \cdot n^{2-1/s}$ edges for some absolute constant C only depending on t and s.
- 7. A set S is sum-free if no elements x, y, z such that x + y = z. Let S be a sum-free subset of [n], where n is even. Prove that $|S| \le n/2$.

Extra points. Characterize all sum-free subsets S of [n] with |S| = n/2.