Combinatorics, 2016 Fall, USTC Homework 5

- The due is on Tuesday, October 25, at beginning of the class.
- Solve all problems.

1. Let G be a graph such that for any two non-adjacent vertices u, v, it holds that $N_{G}(u)=$ $N_{G}(v)$. Prove that G must be a complete multipartite graph (i.e., $V(G)$ can be partitioned into $V_{1}, V_{2}, \ldots, V_{k}$ for some $k \geq 2$ such that for any $u \in V_{i}, v \in V_{j}$ where $i \neq j$, we have $\left.u v \in E(G)\right)$.
2. Let $n>0$ be an even integer. Let $\mathcal{F} \subset 2^{[n]}$ be a family of subsets of $[n]$ such that \mathcal{F} contains no four distinct sets A, B, C, D satisfying $A \subset B \subset C \subset D$. Show that $|\mathcal{F}| \leq 3\binom{n}{n / 2}$.
3. Recall that in the second proof of Sperner's Theorem we define an equivalence \sim on the family $2^{[n]}$, by letting $M \sim M^{\prime}$ hold if and only if both M and M^{\prime} have the same partial pairing of their sequences.

Prove the claim that each equivalence class indeed is a symmetric chain.
4. Show that the set families $\binom{X}{\lfloor n / 2\rfloor}$ and $\binom{X}{[n / 2\rceil}$ are the only independent systems on an n-element set X with the largest possible number of sets.
5. Let X be an n-element set and let $S_{1}, S_{2}, \ldots, S_{n}$ be subsets of X such that $\left|S_{i} \cap S_{j}\right| \leq 1$ for any $i \neq j$. Prove that there exists some subset S_{i} with $\left|S_{i}\right| \leq C \sqrt{n}$, for absolute constant C (independent of the choice of n).
6. Show that if a graph G on n vertices does not contain $K_{s, t}$ as a subgraph, then it has at most $C \cdot n^{2-1 / s}$ edges for some absolute constant C only depending on t and s.
7. A set S is sum-free if no elements x, y, z such that $x+y=z$. Let S be a sum-free subset of $[n]$, where n is even. Prove that $|S| \leq n / 2$.
Extra points. Characterize all sum-free subsets S of $[n]$ with $|S|=n / 2$.

