Combinatorics, 2016 Fall, USTC Homework 7

- The due is on Tuesday, Nov. 8, at beginning of the class.
- Solve all problems.

1. Let $1 \leq d_{1} \leq \ldots \leq d_{n}$ be integers. Prove that there exists a tree with degrees d_{1}, \ldots, d_{n} if and only if $\sum_{i=1}^{n} d_{i}=2 n-2$.
2. Given a tree T and two vertices x, y of T, let $d(x, y)$ be the length of the unique path in T between x and y. Determine those trees T on n vertices for which

$$
\sum_{x, y \in V(T)} d(x, y)
$$

is maximal and minimal, respectively.
3. Show that any tree has more leaves than vertices of degree at least 3 .
4. Let $n=2 k$. Characterize all interesting families $\mathcal{F} \subseteq\binom{[n]}{k}$ with $|\mathcal{F}|=\binom{n-1}{k-1}$.

