Combinatorics, 2016 Fall, USTC Homework 8

- The due is on Tuesday, Nov. 22, at beginning of the class.
- Solve all problems.

1. Find the maximum number of line segments that a Hasse diagram of poset (X, \prec) with $|X|=n$ can have. Then define a poset which achieves this maximum number and draw its Hasse diagram.
2. For two natural numbers a, b, the symbol $a \mid b$ means that " a divides b ". In other words, there exists a natural number c such that $b=a c$. First verify that the relation "" is a partial ordering on the set \mathbf{N} of natural numbers. Then prove that every finite poset can be embedded into ($\mathbf{N}, \mid)$.
3. For any point $p \in R^{d}$ in d-dimension, write $p=\left(p_{1}, p_{2}, \ldots, p_{d}\right)$. A set \mathcal{P} of points in R^{d} is called good, if for each $i \in[d]$, the $i^{\text {th }}$ coordinates of these points are distinct. Given two points $p, q \in R^{d}$, define $\operatorname{box}(p, q):=\left\{x \in R^{d}: \min \left\{p_{i}, q_{i}\right\} \leq x_{i} \leq \max \left\{p_{i}, q_{i}\right\}\right.$ for each $\left.i\right\}$ as the box determined by points p, q.

Prove that in any good set \mathcal{P} of $2^{2^{d-1}}+1$ points of R^{d}, there is a point $x \in \mathcal{P}$ which is in the box determined by two of the other points in \mathcal{P}.
4. For any integers $k, l \geq 1$, construct a sequence of $k l$ distinct integers with no increasing subsequence of length $k+1$ and with no decreasing subsequence of length $l+1$.
5. Let $P=(X, \prec)$ be a finite partial ordered set. Show that X can be expressed as a disjoint union of at most $\alpha(P)$ chains.

Hint: by induction on $|X|$.
6. Construct an explicit 2-edge-coloring of $K_{k l}$ to show that $R(k+1, l+1) \geq k l+1$.
7. Use Ramsey's theorem to prove: for every integer $k \geq 2$, there is an integer n such that every sequence of n distinct real numbers contains a monotone subsequence of k real numbers.
(You must use Ramsey's theorem and cannot use the Erdős-Szekeres theorem.)
8. For integers $k \geq 2$ and $s_{1}, s_{2}, \ldots, s_{k} \geq 2$, the Ramsey number $R_{k}\left(s_{1}, s_{2}, \ldots, s_{k}\right)$ is the least number of integer n such that any k-edge-coloring of K_{n} has a monochromatic clique $K_{s_{i}}$ in color i. Prove that for any integers $s_{1}, s_{2}, \ldots, s_{k} \geq 2$, the Ramsey Number

$$
R_{k}\left(s_{1}, s_{2}, \ldots, s_{k}\right)<+\infty
$$

9. Prove that $2^{k} \leq R_{k}(3,3, \ldots, 3) \leq(k+1)$!
