Combinatorics, 2016 Fall, USTC Homework 8

- The due is on Tuesday, Nov. 22, at beginning of the class.
- Solve all problems.

1. Find the maximum number of line segments that a Hasse diagram of poset (X, \prec) with |X| = n can have. Then define a poset which achieves this maximum number and draw its Hasse diagram.

2. For two natural numbers a, b, the symbol a|b means that "a divides b". In other words, there exists a natural number c such that b = ac. First verify that the relation "|" is a partial ordering on the set **N** of natural numbers. Then prove that every finite poset can be embedded into $(\mathbf{N}, |)$.

3. For any point $p \in \mathbb{R}^d$ in *d*-dimension, write $p = (p_1, p_2, ..., p_d)$. A set \mathcal{P} of points in \mathbb{R}^d is called *good*, if for each $i \in [d]$, the i^{th} coordinates of these points are distinct. Given two points $p, q \in \mathbb{R}^d$, define $box(p,q) := \{x \in \mathbb{R}^d : \min\{p_i, q_i\} \le x_i \le \max\{p_i, q_i\}$ for each $i\}$ as the box determined by points p, q.

Prove that in any good set \mathcal{P} of $2^{2^{d-1}} + 1$ points of \mathbb{R}^d , there is a point $x \in \mathcal{P}$ which is in the box determined by two of the other points in \mathcal{P} .

4. For any integers $k, l \ge 1$, construct a sequence of kl distinct integers with no increasing subsequence of length k + 1 and with no decreasing subsequence of length l + 1.

5. Let $P = (X, \prec)$ be a finite partial ordered set. Show that X can be expressed as a disjoint union of at most $\alpha(P)$ chains.

Hint: by induction on |X|.

6. Construct an explicit 2-edge-coloring of K_{kl} to show that $R(k+1, l+1) \ge kl+1$.

7. Use Ramsey's theorem to prove: for every integer $k \ge 2$, there is an integer n such that every sequence of n distinct real numbers contains a monotone subsequence of k real numbers.

(You must use Ramsey's theorem and cannot use the Erdős-Szekeres theorem.)

8. For integers $k \ge 2$ and $s_1, s_2, ..., s_k \ge 2$, the Ramsey number $R_k(s_1, s_2, ..., s_k)$ is the least number of integer n such that any k-edge-coloring of K_n has a monochromatic clique K_{s_i} in color i. Prove that for any integers $s_1, s_2, ..., s_k \ge 2$, the Ramsey Number

$$R_k(s_1, s_2, ..., s_k) < +\infty.$$

9. Prove that $2^k \leq R_k(3, 3, ..., 3) \leq (k+1)!$