Combinatorics, 2016 Fall, USTC

Week 10, November 8

Partially Ordered Sets

Let X be a finite set.

Definition 1. R is called a "relation" on the set X, if $R \subseteq X \times X$ where $X \times X = \{(x_1, x_2) : x_1, x_2 \in X\}$. Denote the Cartesion product if $(x, y) \in R$, then xRy.

Definition 2. A partially ordered set (poset for short) is an ordered pair (X, R), where X is a finite set and R is a relation on X such that the following holds:

- (1) R is reflective: xRy for $\forall x \in X$
- (2) R is antisymmetric: if xRy and yRx, then x=y
- (3) R is transitive: if xRy and yRz, then xRz

Examples. Consider the poset $(2^{[n]}, \subseteq)$, where " \subseteq " denotes the inclusion relationship.

We often use " \preccurlyeq " to replace the use of "R". So $(X, R) \Rightarrow (X, \preccurlyeq)$. If $x \preccurlyeq y$ but $x \neq y$, then $x \prec y$, and we say x is predecessor of y.

Definition 3. Let (X, \preceq) be a poset, we say element x is an immediate predecessor of y, if

(1) $x \prec y$

(2) NO $t \in X$ s.t. $x \prec t \prec y$

If x sa an immediate predecessor of y, then we write $x \triangleleft y$.

Fact: For $x, y \in (X, \preceq)$, $x \prec y$ if and only if there exists $x_1, x_2, ..., x_k \in X$ s.t. $x \lhd x_1 \lhd x_2 \lhd ... \lhd x_k \lhd y$ (Note that k = 0 i.e. $x \lhd y$).

Proof. (\Leftarrow) trivial

(\Rightarrow) For $x \prec y$, let $M_{xy} = \{t \in X : x \prec t \prec y\}$. We prove by induction on $|M_{xy}|$. Because $|M_{xy}| = 0 \Rightarrow x \vartriangleleft y$. So suppose it holds for $x \prec y$ with $|M_{xy}| < n$. Consider $x \prec y$ with $|M_{xy}| = n \geqslant 1$. Pick any $t \in M_{xy}$, consider M_{xt} , M_{ty} . Clearly $M_{xt} \subsetneq M_{xy}$ and $M_{ty} \subsetneq M_{xy}$ (Because of transitivity). By induction on M_{xt} , M_{ty} , there exists $x_1, x_2, ..., x_k \in X$ and $y_1, y_2, ..., y_l \in X$ s.t. $x \vartriangleleft x_1 \vartriangleleft x_2 \vartriangleleft ... \vartriangleleft x_k \vartriangleleft t$ and $t \vartriangleleft y_1 \vartriangleleft y_2 \vartriangleleft ... \vartriangleleft y_l \vartriangleleft y$, $\Rightarrow x \vartriangleleft x_1 \vartriangleleft x_2 \vartriangleleft x_k \vartriangleleft t \vartriangleleft y_1 \vartriangleleft ... \vartriangleleft y_l \vartriangleleft y$. We are done.

One property that posets have is that we can express them in diagrams **Definition 4.** The Hassa diagrams of a poset (X, \preceq) is a drawning in the plane such that

- (1) Each element of X is drawn as a nod in the plane
- (2) Each pair x, y with $x \triangleleft y$ is connected by a line segment
- (3) If $x \triangleleft y$, then the nod x must appear lower in the plane then the nod y

The fact that $x \prec y$ iff $x \lhd x_1 \lhd x_2 \lhd ... \lhd x_k \lhd y$ now can be restated as follows: $x \prec y$ if and only if we can find a path in the Hassa diagram from nod x to nod y, strictly from bottom to top.

Definition 5. Let (X, \preceq) and (X', \preceq') be two posets. A mapping $f: X \to X'$ is called an embedding of (X, \preceq) and (X', \preceq') if

- (1) f is injective
- (2) $f(x) \leq f(y)$ iff $x \leq y$.

Theorem 6. For every poset (X, \preceq) there exists an embedding into the poset $\mathscr{B}_X = (2^X, \subseteq)$

Proof. Consider the mapping $f: X \to 2^X$ by $f(x) = \{y \in X : y \leq x\}$. Let us verify that such f is an embedding of (X, \leq) into \mathscr{B}_X .

Firstly, f is injective

Suppose f(x) = f(y) for $x, y \in X \implies x \in f(y) \implies x \leq y$, similarly $y \leq x$. Thus x = y.

Secondly, $f(x) \subseteq f(y)$ iff $x \leq y$.

If
$$x \leq y$$
, then $\forall t \in f(x)$ has $t \leq x \leq y \Rightarrow t \in f(y) \Rightarrow f(x) = f(y)$.
If $f(x) \subseteq f(y)$, then $x \subseteq f(x) \subseteq f(y) \Rightarrow x \leq y$

Definition 7. Let $P = (X, \preceq)$ be a poset.

- (1) For distinct $x, y \Rightarrow X$, if $x \prec y$ or $y \prec x$, then we say x, y are comparable. Otherwise x, y are incomparable
- (2) The set $A \subseteq X$ is an antichain of P, if any two elements of A are incomparable. Let $\alpha(P)$ be the maximum size of an antichain in P
- (3) The set $A \subset X$ is a chain of P, if any two elements of A are comparable. Let $\omega(P)$ be the maximum size of a chain of P

Consider the Hassa diagram, $\omega(P)$ means the max length of a path (from bottom to top) in this diagram. So $\omega(P)$ is also called the height of P. And $\alpha(P)$ is called the width of P.

Definition 8. An element $x \in X$ is minimal in $P = (X, \preceq)$, if x has NO predecessor in P.

Fact: The set of minimal elements of $P = (X, \preceq)$ forms an antichain of P.

Theorem 9. For
$$\forall$$
 poset $P = (X, \preccurlyeq)$, $\alpha(P) \cdot \omega(P) = |X|$

Proof. We will inductively define a sequence of poset P_i and set M_i for $1 \le i \le l$ s.t. M_i is the set of minimal elements of $P_i = (X_i, \preccurlyeq)$ and $X_i = X - \bigcup_{j=1}^{i-1} M_j$ as following. First, set $P_1 = P = (X, \preccurlyeq), X_1 = X$ and $M_1 = \varnothing$. Assume posets $P_i = (X_i, \preccurlyeq)$ and M_{i-1} are defined for all $1 \le i \le k$. Let $M_i = \{$ all minimal elements of $P_i\}$ and let $X_{i+1} = X - M_1 \bigcup ... \bigcup M_i$. Then let P_{i+1} be the subposet of P restricted on X_{i+1} . We keep doing this until $X_{l+1} = \varnothing$. By Fact 2, each M_i for $1 \le i \le l$ is an antichain of P_i and thus it is also an antichain of P. So $|M_i| \le \alpha(P)$