
Combinatorics, 2016 Fall, USTC

Week 11, November 15 and 17

Poset
Poset: P=(X,�)

Definition 1. An element x∈ X is minimal, if x has no predecessor.

Definition 2. α(P ) =max size of anti-chain in P. w(P )=max size of a chain

in P.

Fact: The set of all minimal element in P forms an anti-chain of P.

Then ∀ poset P=(X,�), we have

α(P ) · w(P ) ≥ |X|

Proof. We inductively define a sequence of posets Pi = (xi,�) and a sequence

of sets Mi ⊂ Pi, such that each Mi is the seet of minimal elements of Pi, and

Xi = X −
∑i−1

j=0Mj, where M0 = φ.

Now suppose we obtain P1, P1, ..., Pl and Mi ⊂ Pi for 1 ≤ i ≤ l.

By the Fact, each Mi is an anti-chain of Pi; since Pi is the restricted

subposet of P on Xi, Mi is also an anti-chain of P. So

|Mi| ≤ α(P ).

It suffices to find a chain x1 < x2 < ... < xl in P, such that xi ∈ Pi = (Xi,�).

If this holds,

X =M1

⋃
M2

⋃
...
⋃

Ml
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=⇒ |X| =
l∑

i=1

|Mi| ≤ α(P ) · l ≤ α(P )w(P ).

We claim something stronger holds:

∀x ∈Mi+1 and ∀i < l, ∃y ∈M , such that y < x.

proof: By definition of Mi.

Ramsey Theroem
The order from disorder!

Definition 3. (Erdös-Szekeres Theroem) Consider a squenceX = (x1, x2, ..., xn)

of real number of length n. A subsequence (xi1 , xi2 , ..., xim) of X, where

i1 < i2 < ... < im is monotone, if either xi1 ≤ xi2 ≤ ... ≤ xim or (xi1 ≥ xi2 ≥

... ≥ xim .

For example, (10, 9, 7, 4, 5, 1, 2, 3) −→ (10, 9, 7, 5, 1)

Theorem 4. (Erdös-Szekeres) For any sequence (x1, x2, ..., xn2+1) of length

n2 + 1, there exists one monotone subsequence of length n+1.

Proof. Let X = [n2 + 1]. We define a poset P = (X,�) as following:

i � j if and only if i ≤ j and xi ≤ xj.

It is easy to verify that P indeed is a poset(refecsive antisymmetric &

transitive)

By the previous result that α(P ) · w(P ) ≥ |X| = n2 + 1, we have 2 cases

to consider:

case 1: α(P ) ≥ n+ 1.
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So P has an anti-chian of size n+1, say {i1, i2, .., in+1}. We may assume

i1 < i2 < ... < in+1. But each (ij, ik) is incomparable in P. Thus, assuming

ij < ik, we see that xij > xik .

=⇒ xi1 > xi2 > ... > xin+1

. This is a decreasing subsequence of (x1, x2, ..., xn2+1).

case 2: w(P ) ≥ n+ 1.

So P has a chain, say xi1 � xi2 � ... � xin+1 . By definition, we have

i1 < i2 < ... < in+1 and xi1 ≤ xi2 ≤ ... ≤ xin+1 . So we have an increasing

subsequence of length n+1.

Rmk: In fact, the proof shows that we can have a strickly increasing

subsequence or a decreasing subsequence.

Exercise: Find examples to show that E-S Thm is best possible.

The Pigeonhole Principle
Let X be a set with at least 1+

∑k
i=1(ni−1) elements and letX1, X2, ..., Xk

be disjoint sets forming a partition of X. Then, there exists i, s.t. |X| ≥ ni.

(1)Two equal degrees.

Theorem 5. Any graph has two vertices of the same degree.

Proof. Let G be a graph with n vertices. The degrees are from 0 to n-1. So

the only exceptional case will be that there is exactly one vertex of degree i

for ∀i ∈ {0, 1, ..., n− 1}. But it is impossible to have a vertex with degree 0

and a vertex with degree n-1 at the same time.
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Exercise: For ∀n, find an n-vertex graph G, which has exactly two

veertices with the same degree.

(2)Subsets without divisors.

Question: How large a subset S ⊂ [2n] can be such that for ∀i, j ∈ S,

we have i - j & j - i ?

Obviously, we can take S = {n+ 1, n+ 2, ..., 2n} with |S| = n.

Theorem 6. For any S ⊂ [2n] with |S| ≥ n + 1, there exists i, j ∈ S such

that i|j.

Proof. For each odd 2k-1, define S2k−1 = {2i · (2k − 1) ∈ S, forsomei} for

some k=1,2,...,n.

Clearly, S =
⋃n
k=1 S2k−1 can be partitioned into n subsets. But |S| ≥

n+ 1, by P-P, ∃k ∈ [n], s.t. |S2k−1| ≥ 2.

(3)Rational approximation.

Theorem 7. Given n>0, for any x ∈ R,there is a rational number p/q with

1 ≤ q ≤ n such that |x− p
q
| < 1

nq
.

Proof. Consider x>0, let {x} = x−bxc be the fractional part of x. Consider

{ix}, for i=1,2,...,n+1, where are n+1 real numbers in [0,1). Partition [0,1)

into n subintervals [0, 1
n
), [ 1

n
, 2
n
), ..., [n−1

n
, 1). By P-P, there are 2 numbers say

{ix}, {jx}(let {jx} > {ix}) belonging to the same subinterval.

=⇒ {(j − i)x} = {jx} − {ix} ∈ [0, 1
n
).

Let q=j-i, then qx = p+ ε, where ε = {qx} ∈ [0, 1
n
) and p ∈ Z.

=⇒ x = p
q
+ ε

q
, where | ε

q
| < 1

nq
.

4



Erdös-Szekeres Theroem

Theorem 8. For any sequence of mn+1 real numbers {a0, a1, ..., amn+1},

there is an increasing subsequence of length m+1 or a decreasing subsequence

of length n+1.

Proof. (the second proof)

For each i ∈ {0, 1, ...,mn}, let ti be the maximum length of an increasing

subsequence starting at ai. If ∃i, s.t.ti ≥ m+1,then we are done. So we may

assume ti ∈ {1, 2, ...,m} for ∀i ∈ {0, 1, ...,mn}. By P-P, there exists some

s ∈ {1, 2, ...,m} such that there are at least n+1 many t′is satisfying that

ti = s. Let these indexes i’s be i1 < i2 < ... < in+1.

Claim: ai1 ≥ ai2 ≥ ... ≥ ain+1 .

Proof. Otherwise, there ∃j,s.t. aij < aij+1
. Then we would extend the maxi-

mal increasing subsequence starting at aij+1
, by adding aij , to get an increas-

ing subsequence starting at aij of length s+1. Therefore, this contradicts

tij = s.

Ramsey’s Theorem
Fact:(A party of six) Suppose a party has 6 participants. Participants

may know each other or not. Then there must be 3 participants who know

each other or don’t know each other.

Proof. We can construct a graph G on [6]. Each vertex i represents one

participants: i and j are adjacent iff they know each other. Then we need to
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show that there are 3 vertices in G which form a triangleK3 or an independent

set I3.

Consider vertex 1. From the point of view of 1. 1 is adjacent to ≥ 3

vertices or i not adjacent to ≥ 3 vertices. By symmetry, 1 is adjacent to

2,3,4. If one of pairs {2, 3}, {2, 4}, {3, 4} is adjacent, then we have a K3.

Otherwise, we have an I3 = {2, 3, 4}.

Definition 9. A r-edge-coloring of Kn is a function f:E(Kn) −→ {1, 2, ..., r}

which assigns one of the colors 1,2,...,r to each edge of Kn.

Definition 10. Suppose there is an r-edge-coloring of Kn. A clique in Kn is

called monochromatic, if all its edges are colored by the same color.

Theorem 11. (Ramsey’s Thm(2-colors-version)) Let k, l ≥ 2 be integers.

There exists an integer N=N(k,l), s.t. any 2-edge-coloring of KN(with colors

red and blue) has a blue Kk or a red Kl.

Proof. We will prove by induction on k+l that N =
(
k+l−2
k−1

)
will suffice.

Base case: k + l = 4⇐⇒ k = l = 2. It is trivial.

Assume that it holds for k′+l′ ≤ k+l−1. Let N1 =
(
k+l−3
k−2

)
, N2 =

(
k+l−3
k−1

)
,

and N =
(
k+l−2
k−1

)
.

Note that N1 +N2 = N .

Consider any 2-edge-coloring of KN . Consider any vertex x. Let A =

{y ∈ V (Kn) − {x} : edge xy is blue} and B = {y ∈ V (Kn) − {x} : edge xy

is red}. So |A| + |B| = N − 1 = N1 + N2 − 1. Thus, either |A| ≥ N1 or

|B| ≥ N2.

Case 1: |A| ≥ N1 =
(
k+l−3
k−2

)
.
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The vertices of A contains a K((k−1)+l−2
(k−1)−1 )

where edges are blue or red. By

induction on this K((k−1)+l−2
(k−1)−1 )

for the pair {k− 1, l}, so A has a blue Kk−1 or

a red Kl.We can add the vertex x to get a blue Kk. So we have done.

Case 2: |B| ≥ N2 =
(
k+l−3
k−1

)
.

Similarly.

Definition 12. For k, l ≥ 2, the Ramsey Number R(k,l) denotes the smallest

integer N s.t. any 2-edge-coloring of KN has a blue Kk or a red Kl.

Corollary 1: R(k, l) ≤
(
k+l−2
k−1

)
.

Let us try to understand this definition more:

• R(k, l) ≤ L⇐⇒ any 2-edge-coloring of KL has a blue Kk or a red Kl.

• R(k, l) ≥ M ⇐⇒ there exists a 2-edge-coloring of KM which has no

blue Kk nor red Kl.

Corollary 2: (Exercise)R(k, l) ≤ R(k − 1, l) +R(k, l − 1).

Fact 1: R(k, l) = R(l, k)

Fact 2: R(2, l) = l and R(k, 2) = k.

Fact 3: R(3, 3) = 6.

Why? A party of six tells us that R(3, 3) ≤ 6; in the other hand, the

following example tells us that R(3, 3) > 5.
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Fact 4: R(3, 4) = 9.

Consider the graph:

It has NO K3 nor I4. =⇒ R(3, 4) > 8. The fact R(3, 4) ≤ 9 will follow by a

theorem which we prove next time.
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