Combinatorics, 2016 Fall, USTC
Week 11, November 15 and 17

Poset
Poset: P=(X,=x)

Definition 1. An element x€ X is minimal, if x has no predecessor.
Definition 2. a(P) =max size of anti-chain in P. w(P)=max size of a chain
in P.

Fact: The set of all minimal element in P forms an anti-chain of P.

Then V poset P=(X,=), we have
a(P)-w(P) = |X]|

Proof. We inductively define a sequence of posets P, = (z;, <) and a sequence
of sets M; C P;, such that each M; is the seet of minimal elements of P;, and
X; =X = Y07 M;, where My = ¢.

Now suppose we obtain P, P, ..., P, and M; C P; for 1 <17 <.

By the Fact, each M; is an anti-chain of P;; since P; is the restricted

subposet of P on X;, M; is also an anti-chain of P. So
|M;| < oP).

It suffices to find a chain =1 < x5 < ... < 7y in P, such that z; € P, = (X}, X).
If this holds,

X = Jm ..M
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— |X| = Z |M;| < a(P) -1 < a(P)w(P).

We claim something stronger holds:
Ve € M;y, and Vi < [, Jy € M, such that y < x.
proof: By definition of M;.

Ramsey Theroem

The order from disorder!

Definition 3. (Erdds-Szekeres Theroem) Consider a squence X = (x1, za, ..., 2,)
of real number of length n. A subsequence (z;,,z,,...,x;,,) of X, where

i1 < iy < ... < i, is monotone, if either x;;, < z;,, < .. <ux; or (z; > x; >

For example, (10,9,7,4,5,1,2,3) — (10,9,7,5,1)

Theorem 4. (Erdos-Szekeres) For any sequence (1, T, ..., Tp211) of length

n? 4+ 1, there exists one monotone subsequence of length n+1.

Proof. Let X = [n? + 1]. We define a poset P = (X, <) as following:

t =X jif and only if ¢ < j and z; < z;.

It is easy to verify that P indeed is a poset(refecsive antisymmetric &
transitive)

By the previous result that a(P) - w(P) > | X| = n? 4+ 1, we have 2 cases
to consider:

case 1: a(P) >n+ 1.



So P has an anti-chian of size n+1, say {iy, s, ..,7,+1}. We may assume
i1 < idg < ... < ipy1. But each (i;,i;) is incomparable in P. Thus, assuming

ij < g, we see that x;, > z;,.

= Ty > Tiy > oo > Ty

. This is a decreasing subsequence of (1, xg, ..., Lp241)-
case 2: w(P) >n+ 1.

So P has a chain, say x;, < x;, = ... 2 x;,,,. By definition, we have
i < g < ... < ipy and 7 <y, << 2y, So we have an increasing

subsequence of length n+1.

Rmk: In fact, the proof shows that we can have a strickly increasing
subsequence or a decreasing subsequence.

Exercise: Find examples to show that E-S Thm is best possible.

The Pigeonhole Principle

Let X be a set with at least 1+Z?:1(ni—1) elements and let X, X, ..., X},
be disjoint sets forming a partition of X. Then, there exists i, s.t. |X| > n;.

(1)Two equal degrees.
Theorem 5. Any graph has two vertices of the same degree.

Proof. Let G be a graph with n vertices. The degrees are from 0 to n-1. So
the only exceptional case will be that there is exactly one vertex of degree i
for Vi € {0,1,...,n — 1}. But it is impossible to have a vertex with degree 0

and a vertex with degree n-1 at the same time. 1



Exercise: For Vn, find an n-vertex graph G, which has exactly two

veertices with the same degree.

(2)Subsets without divisors.

Question: How large a subset S C [2n] can be such that for Vi,j € S,
we have i{j & j1i?

Obviously, we can take S = {n + 1,n + 2,...,2n} with |S| = n.

Theorem 6. For any S C [2n] with |S| > n + 1, there exists i,j € S such
that i|j.

Proof. For each odd 2k-1, define Sy, = {2°- (2k — 1) € S, forsomei} for
some k=1,2,... n.

Clearly, S = |J;_; Sox—1 can be partitioned into n subsets. But |S| >
n+ 1, by P-P, 3k € [n], s.t. |Sar_1| > 2. |

(3)Rational approximation.

Theorem 7. Given n>0, for any x € R,there is a rational number p/q with

1§q§nsuchthat\x—’—q’]<niq.

Proof. Consider x>0, let {x} = x — [z be the fractional part of x. Consider
{ix}, for i=1,2,....n+1, where are n+1 real numbers in [0,1). Partition [0,1)
into n subintervals [0, %), [%, %), s [”T_l, 1). By P-P, there are 2 numbers say

{iz},{jx}(let {jz} > {iz}) belonging to the same subinterval.
= {(j — i)z} = {jz} — {iz} € [0, ;).
Let q=j-i, then gz = p + ¢, where e = {gz} € [0,2) and p € Z.

= 1 =L 4 < where || < L. |
a4 q! ™ ng



Erdos-Szekeres Theroem

Theorem 8. For any sequence of mn+1 real numbers {ag,ay, ..., Gmni1},
there is an increasing subsequence of length m+1 or a decreasing subsequence

of length n+1.

Proof. (the second proof)

For each i € {0,1,...,mn}, let t; be the maximum length of an increasing
subsequence starting at a;. If Ji, s.t.t; > m + 1,then we are done. So we may
assume t; € {1,2,....m} for Vi € {0,1,...,mn}. By P-P, there exists some
s € {1,2,...,m} such that there are at least n+1 many t,s satisfying that
t; = s. Let these indexes i's be i1 < 19 < ... < ly41.

Claim: a;, > a;, > ... > a;,, ;.

Proof. Otherwise, there Jj,s.t. a;; < a;,,,. Then we would extend the maxi-
mal increasing subsequence starting at a;,.,, by adding a,;, to get an increas-
ing subsequence starting at a;; of length s+1. Therefore, this contradicts

ti,:S. |

J

Ramsey’s Theorem

Fact:(A party of six) Suppose a party has 6 participants. Participants
may know each other or not. Then there must be 3 participants who know

each other or don’t know each other.

Proof. We can construct a graph G on [6]. Each vertex i represents one

participants: i and j are adjacent iff they know each other. Then we need to



show that there are 3 vertices in G which form a triangle K5 or an independent
set I5.

Consider vertex 1. From the point of view of 1. 1 is adjacent to > 3
vertices or i not adjacent to > 3 vertices. By symmetry, 1 is adjacent to
2,3,4. If one of pairs {2,3},{2,4},{3,4} is adjacent, then we have a Kj.
Otherwise, we have an I3 = {2,3,4}. |

Definition 9. A r-edge-coloring of K, is a function f:F(K,) — {1,2,...,7}

which assigns one of the colors 1,2,....,r to each edge of K.

Definition 10. Suppose there is an r-edge-coloring of K,,. A clique in K, is

called monochromatic, if all its edges are colored by the same color.

Theorem 11. (Ramsey’s Thm(2-colors-version)) Let k.l > 2 be integers.
There exists an integer N=N(k,l), s.t. any 2-edge-coloring of Ky (with colors
red and blue) has a blue Ky or a red K;.

Proof. We will prove by induction on k+1 that N = (kﬁf) will suffice.

Base case: k+ 1 =4 <<= k=10= 2.1t is trivial.

Assume that it holds for &'4+1" < k+1—1. Let N; = (klij), Ny = (k::?’),
and NV = (KH°2).

Note that Ny + N, = N.

Consider any 2-edge-coloring of K. Consider any vertex x. Let A =
{y € V(K,) — {z} : edge xy is blue} and B = {y € V(K,,) — {x} : edge xy
is red}. So |A] + |B] = N —1 = N; + Ny — 1. Thus, either |A] > N; or
B| > N;.

Case 1: |A| > N, = (klij)



The vertices of A contains a K (D=2 where edges are blue or red. By
(k—1)—1

induction on this K((k—1)+l—2) for the pair {k — 1,(}, so A has a blue Kj_; or
(k—1)—1
a red K;.We can add the vertex x to get a blue K. So we have done.
Case 2: |B| > N, = ("1'%).

Similarly. |

Definition 12. For &, > 2, the Ramsey Number R(k,]) denotes the smallest

integer N s.t. any 2-edge-coloring of Ky has a blue K}, or a red Kj.

Corollary 1: R(k,1) < (7%

Let us try to understand this definition more:
o R(k,l) < L <= any 2-edge-coloring of Ky, has a blue K} or a red K.

o R(k,l) > M <= there exists a 2-edge-coloring of Kj; which has no
blue K}, nor red K.

Corollary 2: (Exercise)R(k,l) < R(k —1,1) + R(k,l —1).

Fact 1: R(k,l) = R(l, k)

Fact 2: R(2,]) =1 and R(k,2) = k.

Fact 3: R(3,3) =6.

Why? A party of six tells us that R(3,3) < 6; in the other hand, the
following example tells us that R(3,3) > 5.



Fact 4: R(3,4) =9.
Consider the graph:

It has NO K3 nor I,. = R(3,4) > 8. The fact R(3,4) <9 will follow by a

theorem which we prove next time.



