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1 Enumeration

First we give some standard notation that will be used throughout this course. Let n be a positive
integer. We will use [n] to denote the set {1, 2, ..., n}. Given a set X, |X| denotes the number
of elements contained in X. Sometimes we also use “#” to express the word “number”. The
factorial of n is the product

n! = n · (n− 1) · · · 2 · 1,

which can be extended to all non-negative integers by letting 0! = 1.

1.1 Binomial Coefficients

Let X be a set of size n. Define 2X = {A : A ⊆ X} to be the family of all subsets of X. So
|2X | = 2|X| = 2n. Let

(
X
k

)
= {A : A ⊆ X, |A| = k}.

Fact 1.1. For integers n > 0 and 0 ≤ k ≤ n, we have |
(
X
k

)
| =

(
n
k

)
= n!

k!(n−k)! .

Proof. If k = 0, then it is clear that |
(
X
0

)
| = |{∅}| = 1 =

(
n
0

)
. Now we consider k > 0. Let

(n)k := n(n− 1) · · · (n− k + 1) =
n!

(n− k)!
.

First we will show that number of ordered k-tuples (x1, x2, ..., xk) with distinct xi ∈ X is (n)k.
There are n choices for the first element x1. When x1, ..xi is chosen, there are exactly n − i
choices for the element xi+1. So the number of ordered k-tuples (x1, x2, ..., xk) with distinct
xi ∈ X is (n)k. Since any subset A ∈

(
X
k

)
correspond to k! ordered k-tuples, it follows that

|
(
X
k

)
| = (n)k

k! = n!
k!(n−k)! . This finishes the proof.

Next we discuss more properties of binomial coefficients. For a positive integer n strictly less
than k, we let

(
n
k

)
= 0.

Fact 1.2. (1).
(
n
k

)
=
(
n

n−k
)

for 0 ≤ k ≤ n.

(2). 2n =
∑

0≤k≤n
(
n
k

)
.

(3).
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
.
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Proof. (1) is trivial. Since 2[n] = ∪0≤k≤n
([n]
k

)
, we see 2n =

∑
0≤k≤n

(
n
k

)
, proving (2). Finally,

we consider (3). Note that the first term on the right hand side
(
n−1
k−1

)
is the number of k-sets

containing a fixed element, while the second term
(
n−1
k

)
is the number of k-sets avoiding this

element. So their summation gives the total number of k-sets in [n], which is
(
n
k

)
. This finishes

the proof.

Pascal’s triangle is a triangular array constructed by summing adjacent elements in preced-
ing rows. By Fact 1.2 (3), in the following graph we have that the k-th element in the n row is(
n
k−1

)
.

1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1
10 1 10 45 120 210 252 210 120 45 10 1

Fact 1.3. The number of integer solutions (x1, ..., xn) to the equation x1 + · · ·xn = k with each
xi ∈ {0, 1} is

(
n
k

)
.

Fact 1.4. The number of integer solution (x1, ...xn) with each xi ≥ 0, to the equation x1+· · ·xn =
k is

(
n+k−1
n−1

)
.

Proof. Suppose we have k sweets (of the same sort), which we want to distribute to n children.
In how many ways can we do this? Let xi denote the number of sweets we give to the i-th child,
this question is equivalent to that state above.

We lay out the sweets in a single row of length r and let the first child pick them up from left
to right (can be 0). After a while we stop him/her and let the second child pick up sweets, etc.
The distribution is determined by the specifying the place of where to start a new child. Equal
to select n − 1 elements from n + r − 1 elements to be the child, others be the sweets (the first
child always starts at the beginning). So the answer is

(
n+k−1
n−1

)
.

Exercise 1.5. Prove that

m∑
k=0

(
m

k

)(
n+ k

m

)
=

m∑
k=0

(
n

k

)(
m

k

)
2k.

1.2 Counting Mappings

Define XY to be the set of all functions f : Y → X.

Fact 1.6. |XY | = |X||Y |.

Proof. Let |Y | = r. We can view XY as the set of all strings x1x2...xr with elements xi ∈ X,
indexed by the r element of Y . So |XY | = |X||Y |.
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Fact 1.7. The number of injective functions f : [r]→ [n] is (n)r.

Proof. We can view the injective function f as a ordered k-tuples (x1, x2, ..., xr) with distinct
xi ∈ X, so the number of injective functions f : [r]→ [n] is (n)r.

Definition 1.8 (The Stirling number of the second kind). Let S(r,n) be the number of
partition of [r] into n unordered non-empty parts.

Exercise 1.9. Prove that

S(r, 2) =
2r − 2

2
=

1

2

r−1∑
i=1

(
r

i

)
.

Fact 1.10. The number of surjective functions f : [r]→ [n] is n!S(r, n).

Proof. Since f is a surjective function if and only if for any i ∈ [n], f−1(i) 6= ∅ if and only if
∪i∈[n]f

−1(i) = [r], and S(r, n) is the number of partition of [r] into n unordered non-empty parts,
we have the number of surjective functions f : [r]→ [n] is n!S(r, n).

We say that any injective f : X → X is a permutation of X (also a bijection). We may
view a permutation in two ways: (1) it is a bijective from X to X. (2) a reordering of X.

Cycle notation describes the effect of repeatedly applying the permutation on the elements of
the set. It expresses the permutation as a product of cycles; since distinct cycles are disjoint, this
is referred to as “decomposition into disjoint cycles”.

Definition 1.11. The Stirling number of the first kind s(r, n) is (−1)(r−n) times the number of
permutations of [r] with exactly n cycles.

The following fact is a direct consequence of Fact 1.7.

Fact 1.12. The number of permutation of [n] is n!.

Exercise 1.13. (1) Let S(r, n) =

{
r
n

}
. Then

{
n
k

}
=

{
n− 1
k − 1

}
+ k

{
n− 1
k

}
. (give a Combina-

torial proof.)

(2) Let s(n, k) = (−1)n−k
[
n
k

]
. Then

[
n
k

]
=

[
n− 1
k − 1

]
+ (n− 1)

[
n− 1
k

]
1.3 The Binomial Theorem

Define [xk]f to be the coefficient of the term xk in the polynomial f(x).

Fact 1.14. For j = 1, 2, ..., n, let fj(x) =
∑

k∈Ij x
k where Ij is a set of non-negative integers, and

let f(x) =
∏n
j=1 fj(x). Then, [xk]f equals the number of solutions (i1, i2, ..., in) to i1+i2+...+in =

k, where ij ∈ Ij.

Fact 1.15. Let f1, ..., fn be polynomials and f = f1f2...fn. Then,

[xk]f =
∑

i1+···+in=k,ij≥0

 n∏
j=1

[xij ]fj

 .
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Theorem 1.16 (The Binomial Theorem). For any real x and any positive integer n, we have

(1 + x)n =
n∑
i=0

(
n

i

)
xi.

Proof 1. Let f = (1+x)n. By Fact 1.14 we have [xk]f equals the number of solutions (i1, i2, ..., in)
to i1 + i2 + ...+ in = k where ij ∈ {0, 1}, so [xk]f =

(
n
k

)
.

Proof 2. By induction on n. When n = 1, it is trivial. If the result holds for n − 1, then
(1 + x)n = (1 + x)(1 + x)n−1 = (1 + x)

∑n−1
i=0

(
n−1
i

)
xi =

∑n−1
i=1 (

(
n−1
i

)
+
(
n−1
i−1

)
)xi + 1 + xn. Since(

n−1
i

)
+
(
n−1
i−1

)
=
(
n
i

)
and

(
n
0

)
=
(
n
n

)
= 1, we have (1 + x)n =

∑n
i=0

(
n
i

)
xi.

Fact 1.17.
(

2n
n

)
=
∑n

i=0

(
n
i

)2
=
∑n

i=0

(
n
i

)(
n
n−i
)
.

Proof 1. Since (1 + x)2n = (1 + x)n(1 + x)n, by Fact 1.15, we have
(

2n
n

)
= [xn](1 + x)2n =∑n

i=0([xi](1 + x)n)([xn−i](1 + x)n) =
∑n

i=0

(
n
i

)(
n
n−i
)

=
∑n

i=0

(
n
i

)2
.

Proof 2. (It is easy to find a combinatorial proof.)

Exercise 1.18 (Vandermonde’s Convolution Formula).(
n+m

k

)
=

k∑
j=0

(
n

j

)(
m

k − j

)
.

Fact 1.19. (1). ∑
all even k

(
n

k

)
=

∑
all odd k

(
n

k

)
= 2n−1.

(2).
n∑
k=0

k

(
n

k

)
= n2n−1.

Proof. (1). We see that (1 + x)n =
∑n

i=0

(
n
i

)
. Taking x = 1 and x = −1, we have

∑
all even k

(
n

k

)
=

∑
all odd k

(
n

k

)
= 2n−1.

(2). Let f(x) = (1 + x)n =
∑n

k=0 x
k. Then f ′(x) = n(1 + x)n−1 =

∑n
k=0 k

(
n
k

)
xk−1. Let x = 1,

then we have
∑n

k=0 k
(
n
k

)
= n2n−1.

Definition 1.20. Let kj ≥ 0 be integers satisfying that k1 + k2 + · · ·+ km = n. We define(
n

k1, k2, ..., km

)
:=

n!

k1!k2!...km!
.
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The following theorem is a generalization of the binomial theorem.

Theorem 1.21 (Multinomial Theorem). For any reals x1, ..., xm and any positive integer
n ≥ 1, we have

(x1 + x2 + · · ·+ xm)n =
∑

k1+k2+···+km=n, kj≥0

(
n

k1, k2, ..., km

)
xk11 x

k2
2 · · ·x

km
m .

Proof. Omit.

Exercise 1.22. Suppose
∑m

i=1 ki = n with ki ≥ 1 for all i ∈ m. Then(
n

k1, k2, ..., km

)
=

(
n− 1

k1 − 1, k2, ..., km

)
+ · · ·+

(
n− 1

k1, k2, ..., km − 1

)
.

1.4 Estimating Binomial Coefficients

Theorem 1.23. For any integer n ≥ 1, we have

e
(n
e

)n
≤ n! ≤ en

(n
e

)n
, (1.1)

where e = lim
n→∞

(1 + 1
n)n is the Euler number.

Proof. We have

ln(n!) =
n∑
i=1

ln i ≤
∫ n+1

1
lnx dx = (x lnx− x)

∣∣∣∣x=n+1

x=1

= (n+ 1) ln(n+ 1)− n.

Then it follows that

n! ≤ (n+ 1)n+1

en
.

Reset n = n− 1, we have

(n− 1)! ≤ nn

en−1
⇐⇒ n! ≤ ne

(n
e

)n
.

Similarly we have

ln(n!) ≥
∫ n

1
lnx dx = (x lnx− x)

∣∣∣∣n
1

= n lnn− (n− 1),

which implies that

n! ≥ nn

en−1
= e

(n
e

)n
,

as desired.

Modifying the above proof, we can obtain the following improvement.
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Exercise 1.24. Prove that
n! ≤ e

√
n
(n
e

)n
.

Definition 1.25. Define f ∼ g for functions f and g, if lim
n→∞

f(n)
g(n) = 1.

The following formula is well-known.

Theorem 1.26 (Stirling’s formula.). n! ∼
√

2πn(ne )n.

It is easy to show the following two facts.

Fact 1.27. Let n be a fix integer. We can view
(
n
k

)
as a function with k ∈ {0, 1, 2, ..., n}. It is

increasing when k ≤
⌊
n
2

⌋
, and decreasing when k >

⌊
n
2

⌋
. Therefore,

(
n
k

)
achievers its maximum

at k =
⌊
n
2

⌋
or
⌈
n
2

⌉
.

Fact 1.28. 2n

n ≤
( n
bn2 c
)
≤ 2n

Exercise 1.29. For any even integer n > 0, we have

2n√
2n
≤
(
n

n/2

)
≤ 2n√

n
.

If we are allowed to use Stirling’s formula, then we can get(
n
n
2

)
∼
√

2

π

2n√
n
.

Fact 1.30.
(
n
k

)
= (n)k

k! ≤
nk

k! .

Exercise 1.31. 1 + x ≤ ex holds for any real x.

Theorem 1.32. For any integers 1 ≤ k ≤ n, we have (nk )k ≤
(
n
k

)
≤ ( enk )k.

Proof. Since n−i
k−i ≥

n
k for each 0 ≤ i ≤ k − 1, we have(

n

k

)
=
n · (n− 1) · · · (n− k + 1)

k · (k − 1) · · · 1
=
(n
k

)
·
(
n− 1

k − 1

)
· · ·
(
n− k + 1

k

)
≥
(n
k

)k
.

For the upper bound, since k! ≥ e(ke )k > (ke )k, by Fact 1.30 we have(
n

k

)
≤ nk

k!
≤
(en
k

)k
,

as desired.

We can also prove the following strengthening.

Theorem 1.33. For any integers 1 ≤ k ≤ n,(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

k

)
≤
(en
k

)k
.
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Proof. By the binomial theorem, we have(
n

0

)
+

(
n

1

)
x+ · · ·+

(
n

k

)
xk ≤ (1 + x)n

for any 0 < x ≤ 1. Then for any 0 < x ≤ 1, it gives that(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

k

)
≤
(
n
0

)
xk

+

(
n
1

)
xk−1

+ · · ·+
(
n
k

)
1
≤ (1 + x)n

xk
.

Taking x = k
n ∈ (0, 1], we have(

n

0

)
+

(
n

1

)
+ · · ·+

(
n

k

)
≤ (1 + x)n

xk
≤ exn

xk
=
(en
k

)k
,

as desired.

1.5 Inclusion and Exclusion

This lecture is devoted to Inclusion-Exclusion formula and its applications.
Let Ω be a ground set and let A1, A2, ..., An be subsets of Ω. Write Aci = Ω\Ai. Throughout

this lecture, we use the following notation.

Definition 1.34. Let A∅ = Ω. For any nonempty subset I ⊆ [n], let

AI =
⋂
i∈I

Ai.

For any integer k ≥ 0, let

Sk =
∑

I∈([n]k )

|AI |.

Now we introduce Inclusion-Exclusion formula (in three equivalent forms) and give two proofs
as following.

Theorem 1.35 (Inclusion-Exclusion Formula). We have

|A1 ∪A2 ∪ ... ∪An| =
n∑
k=1

(−1)k+1Sk,

which is equivalent to to∣∣∣∣∣Ω∖
n⋃
i=1

Ai

∣∣∣∣∣ = |Ac1 ∩Ac2 ∩ ... ∩Acn| =
n∑
k=0

(−1)kSk,

i.e., ∣∣∣∣∣Ω∖
n⋃
i=1

Ai

∣∣∣∣∣ = |Ac1 ∩Ac2 ∩ ... ∩Acn| =
∑
I⊆[n]

(−1)|I||AI |.
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Proof (1). For any subset X ⊆ Ω, we define its characterization function 1X : Ω → {0, 1} by
assigning

1X(x) =

{
1, x ∈ X
0, x /∈ X.

Then
∑

x∈Ω 1X(x) = |X|. Let A = A1 ∪A2 ∪ ... ∪An. Our key observation is that

(1A − 1A1)(1A − 1A2) · · · (1A − 1An)(x) ≡ 0

holds for any x ∈ Ω. Next we expand this product into a summation of 2n terms as following:∑
I⊆[n]

(−1)|I|(
∏
i∈I

1Ai) ≡ 0 ⇐⇒ 1A(x) +
∑

I⊆[n], I 6=∅

(−1)|I|1AI (x) ≡ 0

holds for any x ∈ Ω. Summing over all x ∈ Ω, this gives that

|A|+
∑

I⊆[n], I 6=∅

(−1)|I||AI | = 0,

which implies that

|A1 ∪A2 ∪ ... ∪An| = |A| =
∑
I⊆[n]
I 6=∅

(−1)|I|+1|AI | =
n∑
k=1

(−1)k+1Sk,

finishing the proof.

Proof (2). It suffices to prove that

1A1∪A2∪...∪An(x) =
n∑
k=1

(−1)k+1
∑

I∈([n]k )

1AI (x)

holds for all x ∈ Ω. Denote by LHS (resp. RHS) the left (resp. right) side of the above equation.
Assume that x is contained in exactly ` subsets, say A1, A2, · · · , A`. If ` = 0, then clearly

LHS = 0 = RHS, so we are done. So we may assume that ` ≥ 1. In this case, we have LHS = 1
and

RHS = `−
(
`

2

)
+

(
`

3

)
+ · · ·+ (−1)`+1

(
`

`

)
= 1.

Note that the above equation holds since
∑`

i=0(−1)i
(
`
i

)
= (1− 1)` = 0. This finishes the proof.

Next, we will demonstrate the power of Inclusion-Exclusion formula by using it to solve several
problems.

Definition 1.36. Let ϕ(n) be the number of integers m ∈ [n] which are relatively prime1 to n.

1Here, “m is relatively prime to n” means that the greatest common divisor of m and n is 1.
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Theorem 1.37. If we express n = pa11 p
a2
2 · · · p

at
t , where p1 · · · pt are distinct primes, then

ϕ(n) = n

t∏
i=1

(1− 1

pi
).

Proof. Let Ai = {m ∈ [n] : pi|m} for i ∈ {1, 2, · · · , t}. It implies

ϕ(n) =
∣∣{m ∈ [n] : m /∈ Ai for all i ∈ [t]}

∣∣ =
∣∣[n]\(A1 ∪A2 ∪ · · · ∪At)

∣∣.
By Inclusion-Exclusion formula,

ϕ(n) =
∑
I⊆[t]

(−1)|I||AI |,

where AI = ∩i∈IAi = {m ∈ [n] : (
∏
i∈I pi)|m} and thus |AI | = n/

∏
i∈I pi. We can derive that

ϕ(n) =
∑
I⊆[t]

(−1)|I|
n∏
i∈I pi

= n(1− 1

p1
)(1− 1

p2
) · · · (1− 1

pt
),

as desired.

Definition 1.38. A permutation σ : [n]→ [n] is called a derangement of [n] if σ(i) 6= i for all
i ∈ [n].

Theorem 1.39. Let Dn be the family of all derangement of [n]. Then

|Dn| = n!

n∑
k=0

(−1)k

k!
.

Proof. Let
Ai = {all permutations σ : [n]→ [n] such that σ(i) = i}.

Then
Dn = Ac1 ∩Ac2 ∩ · · · ∩Acn and |AI | = (n− |I|)!.

By Inclusion-Exclusion formula, we get

|Dn| =
∑
I⊆[n]

(−1)|I||AI | =
n∑
k=0

(−1)k
(
n

k

)
(n− k)! =

n∑
k=0

(−1)k
n!

k!
= n!

n∑
k=0

(−1)k

k!
,

as desired.

Remark 1.40. We have that

|Dn| →
n!

e
as n→∞.

It is because
∑+∞

k=0
(−1)k

k! = e−1 (by the Taylor series of ex =
∑+∞

k=0
xk

k! ).

Next we recall the definition of S(n, k) and aim to give a precise formula for it. We know that

10



(1.) S(n, k) is equal to the number of partitions of [n] into k non-ordered non-empty set.

(2.) S(n, k)k! is equal to the number of surjective functions f : [n]→ [k].

Theorem 1.41. We have

S(n, k) =
1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n.

Proof. For i ∈ [k], let
Ai = {all functions f : [n]→ [k]\{i}}.

Then
Ac1 ∩Ac2 ∩ · · · ∩Ack = {all surjective f : [n]→ [k]}.

So

S(n, k)k! = the number of surjective f : [n]→ [k] =

k∑
i=0

(−1)iSi,

where

Si =
∑
I∈([k]i )

|AI | =
(
k

i

)
(k − i)n.

Finally, we get

S(n, k) =
1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n.

1.6 Generating Functions

Definition 1.42. The (ordinary) generating function for an infinity sequence {a0, a1, · · · } is
a power series

f(x) =
∑
n≥0

anx
n.

We have two ways to view this power series.

(i). When the power series
∑

n≥0 anx
n converges (i.e. there exists a radius R > 0 of con-

vergence), we view GF as a function of x and we can apply operations of calculus on it
(including differentiation and integration). For example, we know that

an =
f (n)(0)

n!
.

Recall the following sufficient condition on the radius of convergence that if |an| ≤ Kn for
some K > 0, then

∑
n≥0 anx

n converges in the interval (− 1
K ,

1
K ).

11



(ii). When we are not sure of the convergence, we view the generating function as a formal
object with additions and multiplications. Let a(x) =

∑
n≥0 anx

n and b(x) =
∑

n≥0 bnx
n.

Addition.
a(x) + b(x) =

∑
n≥0

(an + bn)xn.

Multiplication. Let cn =
∑n

i=0 aibn−i. Then

a(x)b(x) =
∑
n≥0

cnx
n.

Example 1.43. We see 1
1−x =

∑∞
n=0 x

n holds for all −1 < x < 1. By the point view of (i), its
first derivative gives

1

(1− x)2
=

∞∑
n=1

nxn−1 =

∞∑
n=0

(n+ 1)xn.

Problem 1.44. Let a0 = 1 and an = 2an−1 for n ≥ 1. Find an.

Solution. Consider the generating function,

f(x) =
∞∑
n=0

anx
n = 1 +

∞∑
n=1

anx
n = 1 + 2x

∞∑
n=1

an−1x
n−1 = 1 + 2xf(x).

So f(x) = 1
1−2x , which implies that f(x) =

∑+∞
n=0 2nxn and an = 2n.

From this problem, we see one of the basic ideas for using generating function: in order to find
the general expression of an, we work on its generating function f(x); once we find the formula
of f(x), then we can expand f(x) into a power series and get an by choosing the coefficient of
the right term.

Fact 1.45. For j ∈ [n], let fj(x) :=
∑

i∈Ij x
i, where Ij ⊂ Z. Let bk be the number of solutions to

i1 + i2 + ...+ in = k for ij ∈ Ij. Then

n∏
j=1

fj(x) =

∞∑
k=0

bkx
k.

Fact 1.46. If f(x) =
∏k
i=1 fi(x) for polynomials f1, ..., fk, then

[xn]f =
∑

i1+i2+···+ik=n

k∏
j=1

(
[xij ]fj

)
,

where [xn]f is the coefficient of xn in f .

Problem 1.47. Let An be the set of strings of length n with entries from the set {a, b, c} and
with no “aa” occuring (in the consecutive positions). Find |An| for n ≥ 1.

12



Solution. Let an = |An|. We first observe that a1 = 3, a2 = 8. For n ≥ 3, we will find an by
recursion as following. If the first string is ‘a’, the second string has two choices, ‘b’ or ‘c’. Then
the last n− 2 strings have an−2 choices. If the first string is ‘b’ or ‘c’, the last n− 1 strings have
an−1 choices. They are all different. Totally, for n ≥ 3, we have

an = 2an−1 + 2an−2.

Set a0 = 1, then an = 2an−1 + 2an−2 holds for n ≥ 2. The generating function of {an} is

f(x) =
∑
n≥0

anx
n = a0 + a1x+

∑
n≥2

(2an−1 + 2an−2)xn = 1 + 3x+ 2x(f(x)− 1) + 2x2f(x),

which implies that

f(x) =
1 + x

1− 2x− 2x2
.

By Partial Fraction Decomposition, we calculate that

f(x) =
1−
√

3

2
√

3

1√
3 + 1 + 2x

+
1 +
√

3

2
√

3

1√
3− 1− 2x

,

which implies that

an =
1−
√

3

2
√

3

1√
3 + 1

(
−2√
3 + 1

)n
+

1 +
√

3

2
√

3

1√
3− 1

(
2√

3− 1

)n
.

Note that an must be an integer but its expression is of a combination of irrational terms! Observe

that
∣∣∣ −2√

3+1

∣∣∣ < 1, so
(
−2√
3+1

)n
→ 0 as n → ∞. Thus, when n is sufficiently large, this integer an

is about the value of the second term 1+
√

3
2
√

3
1√
3−1

(
2√
3−1

)n
. Equivalently an will be the nearest

integer to that.

Definition 1.48. For any real r and an integer k ≥ 0, let(
r

k

)
=
r(r − 1)...(r − k + 1)

k!
.

Theorem 1.49 (Newton’s Binomial Theorem). For any real number r and x ∈ (−1, 1),

(1 + x)r =
∞∑
k=0

(
r

k

)
xk.

Proof. By Taylor series, it is obvious.

Corollary 1.50. Let r = −n for some integer n ≥ 0. Then(
−n
k

)
=

(−n)(−n− 1) · · · (−n− k + 1)

k!
= (−1)k

(
n+ k − 1

k

)
.

Therefore

(1 + x)−n =

∞∑
k=0

(−1)k
(
n+ k − 1

k

)
xk.
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Problem 1.51. Let an be the number of ways to pay n Yuan using 1-Yuan bills, 2-Yuan bills
and 5-Yuan bills. What is the generating function of this sequence {an}?

Solution. Observe that an is the number of integer solutions (i1, i2, i3) to i1 + i2 + i3 = n, where
i1 ∈ I1 := {0, 1, 2, ...}, i2 ∈ I2 := {0, 2, 4, ...} and i3 ∈ I3 := {0, 5, 10, ...}. Let fj(x) :=

∑
m∈Ij x

m

for j = 1, 2, 3. By Fact 1.45, we have

+∞∑
n=0

anx
n = f1(x)f2(x)f3(x) =

1

1− x
· 1

1− x2
· 1

1− x5
.

1.7 Integer Partitions

How many ways are there to write a natural number n as a sum of several natural numbers? The
total number of ordered partitions of n is

∑
1≤k≤n

(
n−1
k−1

)
= 2n−1. Here “ordered partition” means

that we will view 1 + 1 + 2, 1 + 2 + 1 as two different partitions of 4.
We then consider the unordered partitions. For instance, we will view 1 + 2 + 3 and 3 + 2 + 1

of 6 as the same one.
Let pn be the number of unordered partitions of n. So p1 = 1, p2 = 2, p3 = 3 and p4 = 5. We

have the following theorem.

Theorem 1.52. The generating function P (x) of {pn}n≥0 is an infinite product of polynomials

P (x) =

+∞∏
k=1

1

1− xk
.

Proof. Let nj be the number of the j’s in such a partition of n. Then it holds that∑
j≥1

j · nj = n.

If we use ij to express the contribution of the addends equal to j in a partition of n (i.e., ij = j ·nj),
then ∑

j≥1

ij = n, where ij ∈ {0, j, 2j, 3j, ...}.

Note that in the above summation, j can run from 1 to infinity, or run from 1 to n. So by the
fact we discussed earlier, pn is the coefficient of xn in the product

P (x) = (1 + x+ x2 + · · · )(1 + x2 + x4 + · · · ) · · · (1 + xn + x2n + · · · ) · · · =
+∞∏
k=1

1

1− xk
.

This finishes the proof of this theorem.
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1.8 The Catalan Number

First let us recall the definition of
(
r
k

)
for real numbers r and positive integers k, and the Newton’s

binomial Theorem. We obtained that(1
2

k

)
=

(−1)k−12

4k
· (2k − 2)!

k!(k − 1)!
.

Let n-gon be a polygon with n corners, labeled as corner 1, corner 2,..., corner n.

Definition 1.53. A triangulation of the n-gon is a way to add lines between corners to make
triangles such that these lines do not cross inside of the polygon.

Then we have the following theorem.

Theorem 1.54. The total number of triangulations of the (k + 2)-gon is 1
k+1

(
2k
k

)
, which is also

called the kth Catalan number.

Proof. Let bn−1 be the number of triangulations of the n-gon, for n ≥ 3. It is not hard to see
that b2 = 1, b3 = 2, b4 = 5. We want to find a general formula of bn.

Consider the triangle T in a triangulation of n-gon which contains corners 1 and 2. The
triangle T should contain a third corner, say i, where 3 ≤ i ≤ n. We have the following two cases.

Case 1. If i = 3 or n, the triangle T divides the n-gon into the triangle T itself plus an
(n− 1)-gon, which results in bn−2 triangulations of n-gon.

Case 2. For 4 ≤ i ≤ n− 1, the triangle T divides the n-gon into three regions: an (n− i+ 2)-
gon, triangle T and an (i − 1)-gon, therefore it results in bi−2 × bn−i+1 many triangulations of
n-gon.

Therefore, combining Cases 1 and 2, we get that

bn−1 = bn−2 +
n−1∑
i=4

bi−2bn−i+1 + bn−2 = bn−2 +
n−3∑
j=2

bjbn−j−1 + bn−2.

By letting b0 = 0 and b1 = 1, we get

bn−1 =

n−1∑
j=0

bjbn−1−j for n ≥ 3 or bk =

k∑
j=0

bjbk−j for k ≥ 2.

Let f(x) =
∑

k≥0 bkx
k. Note that f2(x) =

∑
k≥0

(∑k
j=0 bjbk−j

)
xk. Therefore

f(x) = x+
∑
k≥2

bkx
k = x+

∑
k≥2

 k∑
j=0

bjbk−j

xk = x+
∑
k≥0

 k∑
j=0

bjbk−j

xk = x+ f2(x).

Solving f2(x)− f(x) + x = 0, we get that f(x) = 1+
√

1−4x
2 or 1−

√
1−4x
2 . But notice that f(0) = 0,

so it has to be the case that

f(x) =
1−
√

1− 4x

2
.
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Next, we apply the Newton’s binomial theorem to get that

f(x) =
1

2
− 1

2

∑
k≥0

(1
2

k

)
(−4x)k =

∑
k≥1

(−1)k+14k

2

(1
2

k

)
xk.

After plugging the obtained expression of
( 1

2
k

)
= (−1)k−12

4k
· (2k−2)!
k!(k−1)! , we get that

f(x) =
∑
k≥1

(2k − 2)!

k!(k − 1)!
xk =

∑
k≥1

1

k

(
2k − 2

k − 1

)
xk.

Note that f(x) is the generating function of {bk}, therefore

bk =
1

k

(
2k − 2

k − 1

)
.

This finishes the proof.

1.9 Random Walks

Consider a real axis with integer points (0,±1,±2,±3, · · · ) marked. A frog leaps among the
integer points according to the following rules:

(1). At beginning, it sits at 1.

(2). In each coming step, the frog leaps either by distance 2 to the right (from i to i+ 2), or by
distance 1 to the left (from i to i − 1), each of which is randomly chosen with probability
1
2 independently of each other.

Problem 1.55. What is the probability that the frog can reach “ 0”?

Solution. In each step, we use “+” or “−” to indicate the choice of the frog that is either to leap
right or leap left. Then the probability space Ω can be viewed as the set of infinite vectors, where
each entry is in {+,−}.

Let A be the event that the frog reaches 0. Let Ai be the event that the frog reaches 0 at the
ith step for the first time. So A = ∪+∞

i=1Ai is a disjoint union. So P (A) =
∑+∞

i=1 P (Ai).
To compute P (Ai), we can define ai to be the number of trajectories (or vectors) of the first

i steps such that the frog starts at 1 and reaches 0 at the ith step for the first time. So

P (Ai) =
ai
2i
.

Then,

P (A) =

+∞∑
i=1

ai
2i
.

Let f(x) =
∑+∞

i=0 aix
i be the generating function of {ai}i≥0, where a0 := 0. Thus,

P (A) =

+∞∑
i=1

ai
2i

= f

(
1

2

)
.
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We then turn to find the expression of f(x).
Let bi be the number of trajectories of the first i steps such that the frog starts at “2” and

reaches “0” at the ith step for the first time.
Let ci be the number of trajectories of the first i steps such that the frog starts at “3” and

reaches “0” at the ith step for the first time.
First we express bi in terms of {aj}j≥1. Since the frog only can leap to left by distance 1,

if the frog can successfully jump from “i” to “0” in i steps, then this frog must reach “1” first.
Let j be the number of steps by which the frog reaches “1” for the first time. So there are aj
trajectories from “2” to “1” at the jth step for the first time.in the remaining i− j steps the frog
must jump from “1” to “0” and reach “0” at the coming (i− j)th step for the first time, so there
are ai−j trajectories that the frog can finish in exactly i− j steps. In total,

bi =
i−1∑
j=1

ajai−j .

As aj = 0,

bi =
i∑

j=0

ajai−j .

We can get ∑
i≥0

bix
i = (

∑
i≥0

aix
i)2 = f2(x).

Similarly, if we count the number ci of trajectories from 3 to 0, we can obtain that

ci =
i∑

j=0

ajbi−j ,

which implies that ∑
i≥0

cix
i =

∑
i≥0

bix
i

∑
i≥0

aix
i

 = f3(x).

Let us consider ai from another point of view. After the first step, either the frog reaches “0”
directly (if it leaps to left, so a1 = 1), or it leaps to “3”. In the latter case, the frog needs to jump
from “3” to “0” using i− 1 steps. Thus for i ≥ 2, ai = ci−1.

Combining the above facts, we have

f(x) =
+∞∑
i=0

aix
i = x+

∑
i≥2

aix
i = x+

∑
i≥2

ci−1x
i = x+ x

+∞∑
j=0

cjx
j

 = x+ x · f3(x).

Let a := P (A) = f(1/2). Then a = 1
2 + a3

2 , i.e., (a− 1)(a2 + a− 1) = 0, implying that

a = 1,

√
5− 1

2
, or

−
√

5− 1

1
.

Since P (A) ∈ [0, 1], we see P (A) = 1 or
√

5−1
2 .
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Note that f(x) = x + xf3(x). Consider the inverse function of f(x), that is, g(x) := x
1+x3

.

Consider the figure of g(x). We find that g(x) is increasing around
√

5−1
2 but decreasing around

1. Since f(x) =
∑
aix

i is increasing, g(x) also increases. Thus it doesn’t make sense for g(x)

being around x = 1. This explains that P (A) =
√

5−1
2 .

1.10 Exponential Generating Functions

Let N,Ne and No be the sets of non-negative integers, non-negative even integers and non-negative
odd integers, respectively.

Given n sets Ij of non-negative integers for j ∈ [n], let fj(x) =
∑

i∈Ij x
i. Let ak be the

number of integer solutions to i1 + i2 + ... + in = k, where ij ∈ Ij . Then
∏n
j=1 fj(x) is the

ordinary generating function of {ak}k≥0.

Problem 1.56. Let Sn be the number of selections of n letters chosen from an unlimited supply
of a’s, b’s and c’s such that both of the numbers of a’s and b’s are even.

Solution. We can write Sn as

Sn =
∑

e1+e2+e3=n, e1,e2∈Ne, e3∈N
1.

Using the previous fact, we see that Sn = [xn]f , where

f(x) =

(∑
i∈Ne

xi

)2
∑
j∈N

xj

 =

(
1

1− x2

)2

· 1

1− x
.

Problem 1.57. Let Tn be the number of arrangements (or words) of n letters chosen from an
unlimited supply of a’s, b’s and c’s such that both of the numbers of a’s and b’s are even. What
is the value of Tn?

Solution. To solve this, we define a new kind of generating functions.

Definition 1.58. The exponential generating function for the sequence {an}n≥0 is the power
series

f(x) =

∞∑
n=0

an ·
xn

n!
.

Then we have the following fact.

Fact 1.59. If we have n letters including x a’s, y b’s and z c’s (i.e. x+ y+ z = n), then we can
form n!

x!y!z! distinct words using them.

Therefore, a selection (say x a’s, y b’s and z c’s) can contribute n!
x!y!z! arrangements to Tn.

This implies that

Tn =
∑

e1+e2+e3=n, e1,e2∈Ne, e3∈N

n!

e1!e2!e3!
.
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Similar to defining the above f(x) for Sn, we define the following for Tn. Let

g(x) :=

(∑
i∈Ne

xi

i!

)2
∑
j∈N

xj

j!

 .

Claim. We have

[xn]g =
Tn
n!
.

Proof. To see this, we expand g(x). Then the term xn in g(x) becomes

∑
e1+e2+e3=n,
e1,e2∈Ne, e3∈N

xe1

e1!
· x

e2

e2!
· x

e3

e3!
=

 ∑
e1+e2+e3=n,
e1,e2∈Ne, e3∈N

n!

e1!e2!e3!

 xn

n!
= Tn ·

xn

n!
.

So [xn]g = Tn
n! , i.e., g(x) is the exponential generating function of {Tn}. This finishes the proof

of Claim.

Using Taylor series: ex =
∑

j≥0
xj

j! and e−x =
∑

j≥0(−1)j x
j

j! , we have

ex + e−x

2
=
∑
j∈Ne

xj

j!
and

ex − e−x

2
=
∑
j∈No

xj

j!
.

By the previous fact, we get

g(x) =

(
ex + e−x

2

)2

· ex =
e3x + 2ex + e−x

4
=
∑
n≥0

(
3n + 2 + (−1)n

4

)
· x

n

n!
.

Therefore, we get that

Tn =
3n + 2 + (−1)n

4
.

Recall that the exponential generating function for the sequence {an}n≥0 is the power series

f(x) =
+∞∑
n=0

an ·
xn

n!
.

As we shall see, ordinary generation functions can be used to find the number of selections;
while exponential generation functions can be used to find the number of arrangements or some
combinatorial objects involving ordering. We summarize this as the following facts.

Fact 1.60. Given Ij ⊆ N+ for j ∈ [n], let fj(x) =
∑
i∈Ij

xi. And let ak =
∑

i1+...+in=k,
ij∈Ij

1. Then

n∏
j=1

fj(x) =
+∞∑
k=0

akx
k.
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Fact 1.61. Given Ij ⊆ N+ for j ∈ [n], let gj(x) =
∑
i∈Ij

xi

i! . And let bk =
∑

i1+...+in=k,
ij∈Ij

k!
i1!i2!...in! . Then

n∏
j=1

gj(x) =

+∞∑
k=0

bk
k!
xk.

Fact 1.62. Let f(x) =
n∏
j=1

fj(x). Then

[xk]f =
∑

i1+...+in=k,
ij≥0

n∏
j=1

[xij ]fj .

Fact 1.63. Let f(x) =
n∏
j=1

fj(x) and let fj(x) =
+∞∑
k=0

a
(j)
k
k! x

k. Then

f(x) =
+∞∑
k=0

Ak
k!
xk,

if and only if

Ak =
∑

i1+...+in=k,
ij≥0

k!

i1!i2!...in!

( n∏
j=1

a
(j)
ij

)
.

Exercise 1.64. Find the number an of ways to send n students to 4 different classrooms (say
R1, R2, R3, R4) such that each room has at least 1 students.

Solution.

an =
∑

i1+i2+i3+i4=n,
ij≥1

n!

i1!i2!i3!i4!
.

Let Ij = {1, 2, ...} for j ∈ [4] and gj(x) =
∑
i≥1

xi

i! = ex − 1. By Fact 1.61, we have that

g1g2g3g4 =
+∞∑
n=0

an
n!
xn = (ex − 1)4 = e4x − 4e3x + 6e2x − 4ex + 1.

Thus an = 4n − 4 · 3n + 6 · 2n − 4 for n ≥ 4.

Exercise 1.65. Let an be the number of arrangements of type A for a group of n people, and let
bn be the number of arrangements of type B for a group of n people.

Define a new arrangement of n people called type C as follows:

• Divide the n people into 2 groups (say 1st and 2nd).

• Then arrange the 1st group by an arrangement of type A, and arrange the 2nd group by an
arrangement of type B.
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Let cn be the number of arrangements of type C of n people. Let A(x), B(x), C(x) be the
exponential generation function for {an}, {bn}, {cn} respectively. Prove that C(x) = A(x)B(x).

Proof. We can easily see that

cn =
∑
i+j=n,
i,j≥0

n!

i!j!
aibj .

Then by Fact 1.63, C(x) = A(x)B(x).

2 Basic of Graphs

In this second part of our course, we will discuss many interesting results in graph theory. We
first introduce several basic definitions about graphs.

Definition 2.1. A graph G = (V,E) consists of a vertex set V and an edge set E, where the
elements of V are called vertices and the elements of E ⊆

(
V
2

)
= {(x, y) : x, y ∈ V } are called

edges.

• If E contains unordered pairs, then G is an undirected graph, otherwise G is a directed
graph.

• In this course, all graphs are undirected and simple, i.e., it has NO loops or multiple edges.

• We say vertices x and y are adjacent if (x, y) ∈ E, write x ∼G y or x ∼ y or xy ∈ E.

• We say the edge xy is incident to the endpoints x and y.

• Let e(G) be the number of edges in G, i.e., e(G) = |E(G)|.

• The degree of a vertex v in G, denoted by dG(v), is the number of edges in G incident to v.

• The neighborhood of a vertex v is the set of vertices u that is adjacent to v, i.e., NG(v) =
{u ∈ V (G) : u ∼ v}. Thus we have dG(v) = |NG(v)|.

• A graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E∩
(
V ′

2

)
, i.e., G′ ⊆ G.

• A subgraph G′ = (V ′, E′) of G = (V,E) is induced, if E′ = E ∩
(
V ′

2

)
.

Definition 2.2. Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic if there exists a
bijection f : V → V ′ such that i ∼G j if and only if f(i) ∼G′ f(j).

• A graph on n vertices is a complete graph (or a clique), denoted by Kn, if all pairs of vertices
are adjacent. So we have e(Kn) =

(
n
2

)
.

• A graph on n vertices is called an independent set, denoted by In, if it contains no edges at
all.

• Given a graph G = (V,E), its complement is a graph G = (V,Ec) with Ec =
(
V
2

)
\E.

• The degree sequence of a graph G = (V,E) is a sequence of degrees of all vertices listed in
a non-decreasing order.
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• The path Pk of length k − 1 is a graph v1v2...vk where vi ∼ vi+1 for i ∈ [k − 1]. Note that
the length of a path P (denoted by |P |) is the number of edges in P.

• A cycle Ck of length k is a graph v1v2...vkv1 where vi ∼ vi+1 for i ∈ [k], where vk+1 = v1.

• A graph G is planar, if we can draw G on the plane such that its intersects only at their
endpoints.

Exercise 2.3. Show that K4 is planar but K5 is not.

The following Handshaking Lemma is the most basic lemma in graph theory.

Lemma 2.4 (Handshaking Lemma). In any graph G = (V,E),∑
v∈V

dG(v) = 2e(G).

Proof. Let F = {(e, v) : e ∈ E(G), v ∈ V (G) such that v is adjacent to e}. Then∑
e∈E(G)

2 = |F | =
∑
v∈V

dG(v).

Corollary 2.5. In any graph G, the number of vertices with odd degree is even.

Proof. Let O = {v ∈ V (G) : d(v) is odd} and E = {v ∈ V (G) : d(v) is even}. Then by Lemma
2.4,

2e(G) =
∑
v∈O

dG(v) +
∑
v∈E

dG(v).

Thus we have
∑

v∈O dG(v) is even, moreover we have |O| is even.

Corollary 2.6. In any graph G, if there exists a vertex with odd degree, then there are at least
two vertices with odd degree.

3 Sperner’s Lemma

Let us consider the following application of Corollary 2.6. First we draw a triangle in the plane,
with 3 vertices A1A2A3. Then we divide this triangle 4 = A1A2A3 into small triangles such that
no triangle can have a vertex inside an edge of any other triangle. Then we assign 3 colors (say
1,2,3) to all vertices of these triangles, under the following rules.

(1) The vertex Ai is assigned by color i for i ∈ [3].

(2) All vertices lying on the edge AiAj of the large triangle are assigned by the color i or j.

(3) All interior vertices are assigned by any color 1,2,3.

Lemma 3.1 (Sperner’s Lemma (a planar version)). For any assignment of colors described as
above, there always exists a small triangle whose three vertices are assigned by three colors 1, 2, 3.

Proof. Define an auxiliary graph G as following.
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• Its vertices are the faces of small triangles and the outer face. Let z be the vertex repre-
senting the outer face.

• Two vertices of G are adjacent, if the two corresponding faces are neighboring faces and the
two endpoints of their common edge are colored by 1 and 2.

We consider the degree of any vertex v ∈ V (G)\{z}.

(1) If the face of v has NO two endpoints with color 1 and 2, then dG(v) = 0.

(2) If the face of v has 2 endpoints with color 1 and 2. Let k be the color of the third endpoint
of this face. If k ∈ {1, 2}, then dG(v) = 2. Otherwise k = 3, then dG(v) = 1 and this
triangle has 3 colors 1,2,3.

Thus we have that dG(v) is odd if and only if dG(v) = 1, and then the face of v has colors
1,2,3. Now we consider dG(z) and claim that it must be odd. Indeed, the edge of G incident to z
obviously have to go across A1A2. Consider the sequence of the colors of the endpoints on A1A2,
from A1 to A2. Then dG(z) = the number of alternations between 1 and 2 in this sequence, which
must be odd. By Corollary 2.6, since the graph G has a vertex z with odd degree, there must be
another vertex v ∈ V (G)\{z} with odd degree. Then d(v) = 1 and the face of v has colors 1,2,3.

Theorem 3.2 (Brouver’s Fixed Point Theory in 2-dimension). Every continuous function f :
4→ 4 has a fixed point x, that is, f(x) = x.

Proof. Consider a sequence of refinements of 4. Define three auxiliary functions βi : 4→ R for
i ∈ {1, 2, 3} as following:

For any a = (x, y) ∈ 4, 
β1(a) = x,
β2(a) = y,
β3(a) = 1− x− y.

For any continuous f : 4 → 4, define Mi = {a ∈ 4 : β1(a) > β1(f(a))} for i ∈ {1, 2, 3}.
Then we have the following facts.

(1) Any point a ∈ 4 belongs to at least one Mi.

(2) If a ∈M1 ∩M2 ∩M3, then a is a fixed point.

We want to define a coloring φ : 4→ {1, 2, 3} such that

(a) Any a ∈ 4 with φ(a) = i belongs to Mi.

(b) The coloring φ satisfies the conditions of Sperner’s Lemma for any subdivision of 4.

Next we show such φ exists. This is because

• For the point Ai (say i = 1), we have that A1 = (1, 0) ∈M1, so we can let φ(Ai) = i.

• Consider a vertex a = (x, y) ∈ A1A2, i.e., x+y = 1. Then a ∈M1∪M2, otherwise x+y < 1
which is a contradiction. So we can color a by 1 or 2.
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Now we define a sequence {41,42, ...} of subdivisions of 4 such that the maximum diameter of
small triangles in 4n is going to 0 as n→ +∞. Applying Sperner’s Lemma to each 4n and the

coloring φ, we get that there exists a small triangle A
(n)
1 A

(n)
2 A

(n)
3 in 4n which has 3 colors 1,2,3.

Consider the sequence {A(n)
1 }n≥1. Since everything is bound, there is a subsequence {A(nk)

1 }k≥1

such that lim
k→+∞

A
(nk)
1 = p ∈ 4 exists. Since the diameter of A

(n)
1 A

(n)
2 A

(n)
3 is going to be 0 as

n → +∞, we see that lim
k→+∞

A
(nk)
2 = lim

k→+∞
A

(nk)
3 = p. Since βi(A

(nk)
i ) > βi(f(A

(nk)
i )) for i ∈ [3]

and f is continuous. We get βi(p) = lim
k→+∞

βi(A
(nk)
i ) ≥ lim

k→+∞
βi(f(A

(nk)
i )) = βi(f(p)) for i ∈ [3].

This implies that p ∈M1 ∩M2 ∩M3, so p is a fixed point of f , i.e., f(p) = p.

3.1 Double Counting

The basic setting of the double counting technique is as follows. Suppose that we are given two
finite sets A and B, and a subset S ⊆ A×B. If (a, b) ∈ S, then we say that a and b are incident.
Let Na be the number of elements b ∈ B such that (a, b) ∈ S, and Nb be the number of elements
a ∈ A such that (a, b) ∈ S. Then we have∑

a∈A
Na = |S| =

∑
b∈B

Nb.

Theorem 3.3. Let T (j) be the number of divisions of a positive integer j. Let T (n) = 1
n

∑n
j=1 T (j).

Then we have |T (n)−H(n)| < 1, where H(n) =
∑n

i=1
1
i is the nth Harmonic number.

Proof. Define a table X = (xij) where

xij =

{
1 if i|j
0 otherwise.

Then
n∑
j=1

T (j) =
∑

1≤i≤j≤n
xij =

n∑
i=1

bn
i
c,

which implies that

T (n) =
1

n

n∑
i=1

bn
i
c.

Then we have
|T (n)−H(n)| < 1.

Exercise 3.4. Prove that ∣∣∣∣∣ 1n
n∑
i=1

bn
i
c −

n∑
i=1

1

i

∣∣∣∣∣ < 1.
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3.2 Sperner’s Theorem

Definition 3.5. Let F ⊆ 2[n] be a family of subsets of [n]. We say F is independent (or F is an
independent system), if for any two A,B ∈ F , we have A 6⊂ B and B 6⊂ A. In other words, F is
independent if and only if there is no “containment” relationship between any two subsets of F .

Fact 3.6. For a fixed k ∈ [n],
([n]
k

)
is an independent system.

Theorem 3.7 (Sperner’s Theorem). For any independent system F of [n], we have

|F| ≤
(
n

bn2 c

)
.

First proof of Sperner’s Theorem (Double-Counting). A chain of subsets of [n] is a sequence of
distinct subsets

A1 ⊆ A2 ⊆ A3 ⊆ ... ⊆ Ak.

A maximal chain is a chain with the property that no other subsets of [n] can be inserted into it
to find a longer chain. We have the following observations.

(1). Any maximal chain looks like:

φ ⊆ {x1} ⊆ {x1, x2} ⊆ ... ⊆ {x1, ..., xk} ⊆ ... ⊆ {x1, ..., xn}.

(2). There are exactly n! maximal chains.

This is because any such a maximal chain, say C : φ ⊆ {x1} ⊆ {x1, x2} ⊆ ... ⊆ {x1, x2, ..., xn},
defines a unique permutation:

π : [n]→ [n], π(i) = xi, ∀i ∈ [n].

Now we double counting the number of pairs (C, A) satisfying that:

• C is a maximal chain of [n].

• A ∈ C ∩ F .

Recall the rule of double counting given at the beginning that∑
C
NC = the number of pairs (C, A) =

∑
A

NA,

where NC is the number of subsets A ∈ C∩F and NA is the number of maximal chains C contains
A. It is key to observe that

• NC ≤ 1,

• NA = |A|!(n− |A|)!
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So we have

n! =
∑
C

1 ≥
∑
C
NC =

∑
A∈F

NA =
∑
A∈F
|A|!(n− |A|)!

=
∑
A∈F

n!(
n
|A|
) ≥∑

A∈F

n!(
n
bn
2
c
) =

n!(
n
bn
2
c
) |F|,

which implies that

|F| ≤
(
n

bn2 c

)
.

This finishes the proof.

Now we give another proof of Sperner’s Theorem.

Definition 3.8. A chain is symmetric if it consists of subsets of sizes k, k+ 1, ..., bn2 c, ..., n− k−
1, n− k for some k ≥ 0.

For example, when n = 3, {{2}, {2, 3}, {1, 2, 3}} is not symmetric. And when n = 4,
{φ, {1, 2, 3}} is not symmetric.

Theorem 3.9. The family 2[n] can be partitioned into a disjoint union of symmetric chains.

Proof of Theorem 3.9. For each A ∈ 2[n], we define a sequence “a1a2...an” consisting of left and
right parentheses by defining

ai =

{
“(”, if i ∈ A
“)”, otherwise

We then define the “partial pairing of parentheses” as following:

(1). First, we pair up all pairs “()” of adjoint parentheses.

(2). Then, we delete these already paired parentheses.

(3). Repeat the above process until nothing can be done.

Note that when this process stops, the remaining unpaired parentheses must look like this:

))))(((((

We say two subsets A,B ∈ 2[n] have the same partial pairing, if the paired parentheses are the
same (even in the same positions).

We can define an equivalence ” ∼ ” on 2[n] by letting A ∼ B if and only if A,B have the same
partial pairing.

Exercise 3.10. Each equivalence class indeed forms a symmetric chain.

Using this fact, now we see that 2[n] can be partitioned into disjoint equivalence classes, which
are disjoint symmetric chains. This finishes the proof.

Theorem 3.9 can rapidly imply Sperner’s Theorem.
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Second proof of Sperner’s Theorem. Note that by definition, any symmetric chain contains ex-
actly one subset of size bn2 c. Since there are

(
n
bn
2
c
)

many subsets of size bn2 c, by Theorem 3.9,

we see that any partition of 2[n] into symmetric chains has to consist of exactly
(
n
bn
2
c
)

symmet-

ric chains. Each symmetric chain can contain at most one subset from |F| and thus we see
|F| ≤

(
n
bn
2
c
)
.

3.3 Littlewood-Offord Problem

Theorem 3.11. Fix a vector ~a = (a1, a2, ..., an) with each |ai| ≥ 1. Let S = {~ε = (ε1, ε2, ..., εn) :
εi ∈ {1,−1} and ~ε · ~a ∈ (−1, 1)}, then |S| ≤

(
n
bn
2
c
)
.

Remark: Note that this is tight for many vectors ~a.

Proof. For any ~ε ∈ S, define A~ε = {i ∈ [n] : aiεi > 0}. Let F = {A~ε : ~ε ∈ S}. Then we have

|S| = |F|.

Now we claim that F is an independent system. Suppose for a contradiction that there exist
A~ε1 , A~ε2 ∈ F with A~ε1 ⊆ A~ε2 . That also says,{

~ε1 · ~a ∈ (−1, 1),
~ε2 · ~a ∈ (−1, 1),

which imply that
|ε1 · ~a− ε2 · ~a| < 2.

By definition, we have

~ε1 · ~a =
∑
i∈A~ε1

|ai| −
∑
i/∈A~ε1

|ai| = 2
∑
i∈A~ε1

|ai| −
n∑
i=1

|ai|.

Since A~ε1 ⊆ A~ε2 , we also have that

~ε2 · ~a− ~ε1 · ~a = 2(
∑
i∈A~ε2

|ai| −
∑
j∈A~ε1

|aj |) ≥ 2|aj | ≥ 2, for some j ∈ A~ε2 \A~ε1 ,

a contradiction. By Sperner’s Theorem, we have |S| = |F| ≤
(
n
bn
2
c
)
. This finishes the proof

4 Turán Type Problem

Definition 4.1. A graph G is bipartite if its vertex set can be partitioned into two parts (say A
and B) such that each edge joints one vertex in A and another in B.

This is equivalent to say that V (G) can be partitioned into two independent subsets. And
we say (A,B) is a bipartition of G. For example, all even cycles C2k are bipartite, while all odd
cycles C2k+1 are not.
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Definition 4.2. Let Ka,b be the complete bipartite graph with two parts of sizes a and b. This is
a bipartite graph with edge set {(i, j) : i ∈ A, j ∈ B} where |A| = a and |B| = b.

Definition 4.3. Given a graph H, we say a graph G is H-free if G dose not contain a copy of
H as its subgraph.

For example, Ka,b is K3-free.

Definition 4.4. For fixed graph H, let the Turán number of H, denoted by ex(n,H), be the
maximum number of edges in an n-vertex H-free graph G.

Theorem 4.5. ex(n,C4) 6
n

4
(1 +

√
4n− 3).

Proof. Let G be a C4-free graph with n vertices. We need to show that e(G) 6
n

4
(1 +

√
4n− 3).

Consider S = {({u1, u2}, w) : u1wu2 is a path of length 2 in G}. Since G is C4-free, for fixed
{u1, u2}, there is at most one vertex w such that ({u1, u2}, w) ∈ S. So we have

|S| =
∑
{u1,u2}

the number of ({u1, u2}, w) ∈ S 6
∑
{u1,u2}

1 =

(
n

2

)
.

On the other hand, fixed a vertex w, the number of {u1, u2} such that ({u1, u2}, w) ∈ S exactly
equals

(
d(w)

2

)
, which implies that

|S| =
∑

w∈V (G)

(
d(w)

2

)
=

1

2

∑
w∈V (G)

d2(w)− e(G).

Putting the above together, we have(
n

2

)
≥ |S| = 1

2

∑
w∈V (G)

d2(w)− e(G).

Using Cauchy-Schwarz inequality, we have

n2 − n
2

≥ n

2

∑
w∈V (G)

d2(w)

n
− e(G) ≥ n

2

∑
w∈V (G)

(
d(w)

n

)2

− e(G),

which implies that
2e2(G)

n
− e(G) ≤ n2 − n

2
.

Solving it, we can derive easily that e(G) ≤ n
4 (1 +

√
4n− 3).

Exercise 4.6. Prove that ex(n,C4) < n
4 (1 +

√
4n− 3).

Corollary 4.7. We have ex(n,C4) 6 (1
2 + o(n))n

3
2 , where o(n)→ 0 as n→∞.

Theorem 4.8 (Mantal’s Thm). ex(n,K3) = bn2

4 c.
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Proof. We first consider the lower bound ex(n,K3) > bn2

4 c as the complete bipartite graph

Kbn
2
c,dn

2
e is K3-free and has bn2

4 c edges.

Next, we show ex(n,K3) 6 bn2

4 c. We prove by induction on n that any n-vertex K3-free

graph G has at most n2

4 edges. First it holds trivially when n ∈ {1, 2}. Now we assume that any
K3-free graph H with less than n vertices has at most |V (H)|2/4 edges. Let G be K3-free with
n vertices. Take any edge of G, say xy ∈ E(G). Since G is K3-free, we say NG(x) ∩NG(y) = ∅,
implies that |d(x)|+ |d(y)| 6 n.

Let H be a graph obtained from G by deleting vertex x and y. Note that H is also K3-free

and has n− 2 vertices. By induction, e(H) 6 (n−2)2

4 . Thus we have that

e(G) = e(H) + |d(x)|+ |d(y)| − 1 6
(n− 2)2

4
+ n− 1 =

n2

4
.

This finishes the proof.

Exercise 4.9. The unique n-vertex K3-graph which attains the maximum number of edges ex(n,K3)
is the complete bipartite graph Kbn

2
c,dn

2
e.

5 Trees

Definition 5.1. A graph G is connected, if for any vertices u and v, G contains a path from u
to v. Otherwise, we say G is disconnected.

Definition 5.2. A component of a graph G is a maximal connected subgraph of G.

Definition 5.3. A graph T is called a tree if it is connected but contains no cycles. A vertex in
a tree T with degree one is called a leaf.

Fact 5.4 (Euler’s Formula on trees). For any tree T = (V,E), we have |V | = |E|+ 1.

Proof. First, any tree has at least one leaf. As otherwise, all vertices have degree at least 2, then
this gives a cycle, a contradiction.

Next we apply induction on n. Consider the base case that n = 2, the tree is an edge, then
we are done. Now we assume the statement holds for any tree on n− 1 vertices. Consider a tree
T on n vertices (n ≥ 2). We know that T contains a leaf, call v. It is easy to see that T − {v} is
still a tree as it is connected and has no cycles which has n − 1 vertices. By induction, T − {v}
has n− 2 edges. So T has n− 1 edges.

Fact 5.5. Any tree T with at least 2 vertices has at least 2 leaves.

Proof. Assume for a contradiction that an n-vertex tree T has exactly one leaf v, then d(u) ≥ 2
for any u ∈ V (T )\{v}. Thus

2(n− 1) = 2e(T ) =
∑

x∈V (T )

d(x) ≥ 2(n− 1) + 1 = 2n− 1,

a contradiction.
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Theorem 5.6 (Tree characterization). Let T = (V,E) be a graph. Then the following are
equivalent:

(i). T is a tree (i.e. connected and no cycle.)

(ii). T is a “minimal” connected graph. (i.e. deleting any edge will result in a disconnected
graph.)

(iii). T is a “maximal” graph without a cycle. (i.e. adding any new edge will result in a cycle.)

Proof. (i)⇒(ii): Suppose (ii) fails, then there exists e = xy ∈ E(T ) such that T − {e} is still
connected. Then T − {e} has a path P from x to y. So P ∪ {e} is a cycle in T , a contradiction.

(ii)⇒(i): Suppose (i) fails, then T contains a cycle C. If we delete any edge e from C, T −{e}
remains connected, a contradiction.

(i)⇒(iii): For any new edge e = xy, as T is connected, T has a path P from x to y. Thus,
P ∪ {e} gives a cycle.

(iii)⇒(i): Suppose (i) fails, so T is disconnected. Then T has two components, say D1 and
D2. Pick x ∈ D1 and y ∈ D2. If we add the new edge e = xy, then it is easy to see that T + {e}
still has no cycle, a contradiction.

Definition 5.7. Given a graph G, a subgraph H of G is a spanning subgraph if V (H) = V (G).

Fact 5.8. Any graph G is connected if and only if it contains a spanning tree.

Proof. If G has a spanning tree then it is connected.
Suppose G is connected. Deleting edges of G until it satisfies the property (ii) in the theorem-

5.6, then we get a spanning tree.

Definition 5.9. Given a connected graph G with n vertices, say v1, ..., vn. Let ST (G) be the
number of labeled spanning trees in G.

Theorem 5.10 (Cayley’s Formula). For an integer n ≥ 2,

ST (Kn) = nn−2.

We will give 3 proofs for this formula.

5.1 The First Proof of Cayley’s Formula

Let V (Kn) = {v1, v2, · · · , vn} and given a spanning tree T . Then

n∑
i=1

d(vi) = 2e(T ) = 2n− 2.

Now we introduce a lemma.

Lemma 5.11. Let d1, d2, ..., dn be positive integers with
∑n

i=1 di = 2n − 2. Then the number of
spanning trees in Kn on vertex set {v1, ..., vn} satisfying d(vi) = di is equal to

(n− 2)!

(d1 − 1)!(d2 − 1)! · · · (dn − 1)!
.
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Proof. We prove by induction on n. Base case is trivial. When n = 2, d1 = d2 = 1. There is only
one spanning tree.

Now we assume that this statement holds for any sequence of n − 1 positive integers. Then
consider d1, ..., dn with

∑
i∈[n] di = 2n−2. By average, (

∑
di)/n < 2, so there exists some di = 1,

say dn = 1. Let F be the family of all spanning trees with d(vi) = di for i ∈ [n]. And let
Fi = {T − {vn} : T ∈ F , the unique neighbor of vn in T is vi}. So |F| =

∑n−1
i=1 |Fi|. All trees in

Fi have n− 1 vertices {v1, v2, · · · , vn−1} such that{
d(vj) = dj , j 6= i,

d(vi) = di − 1, otherwise.

By induction, we have

|Fi| =
(n− 3)!

(d1 − 1)! · · · (di − 2)! · · · (dn−1 − 1)!
=

(n− 3)!(di − 1)∏n−1
j=1 (dj − 1)!

.

So

|F| =
n−1∑
i=1

|Fi| =
(n− 3)!∏n−1
j=1 (dj − 1)!

(
n−1∑
i=1

(di − 1)

)
=

(n− 2)!∏n
j=1(dj − 1)!

.

Recall the multinomial Theorem:

(x1 + x2 + · · ·xk)n =
∑

i1+···ik=n

n!

i1! · · · ik!
xi11 · · ·x

ik
k ,

which implies

kn =
∑

i1+···ik=n

n!

i1! · · · ik!
.

Thus we have

ST (Kn) =
∑

∑n
i=1 di=2n−2
di≥1

(n− 2)!∏n
j=1(dj − 1)!

= nn−2.

5.2 The Second Proof of Cayley’s Formula

Definition 5.12. A digraph D = (V,A) consists of a vertex set V and an arc set A ⊆ {(i, j) :
i, j ∈ V }

Let D be the family of digraphs D = ([n], A) such that each vertex in D has exactly one arc
going out (i.e. each vertex has out degree one).

Fact 5.13.
|D | = nn.

Proof. Consider the set F = {all mapping f : [n]→ [n]}. It is easy to see there exists a bijection
between D and F . So |D | = |F | = nn.
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Definition 5.14. Given a spanning tree of Kn, we choose 2 special vertices (one marked by a
circle and the other marked by a square; these two vertices can be the same vertex). We call such
a subject (the spanning tree with 2 special vertices) as a vertebrate.

Let V be a family of all vertebrates on [n]. Clearly, |V | = ST (Kn)n2. So to get the Cayley’s
formula, it suffices to show |V | = nn.

Lemma 5.15. There exists a bijection between V and D .

Proof. Consider a W ∈ V (see figure 1). Let P be the unique path in W between the two special
vertices (marked by a circle and a square); and view P as a directed path from the circle to the
square.

Figure 1: A vertebrate Figure 2: D1

We then define a digraph D1 on V (P ) by assign the following arcs (figure 2): that is, we place
two rows, where the 1st row is from P and the 2nd row is the increasing sequence of V (P ), then
we orient the arcs of D1 from the vertices of the 2nd row to the one above it. Thus each vertex
in D1 has exactly one arc out and one arc going in.

Exercise 5.16. D1 consists of vertex-disjoint directed cycle. (possibly loops and 2-cycles)

Next, we extend D1 to a digraph D on [n], by the following:

(1) We remove all edges of P from W .

(2) Then W−E(P ) consists of subtrees, each having one vertex from V (P ). We direct the edges
of these subtrees such that they point to the unique vertex of the component contained in
V (P ).

(3) There arcs product in (2) together with the arcs of D1, define a new graph DW on [n]. This
should be easy to see that DW ∈ D .

So we just define a mapping ϕ : V → D , by assigning ϕ(W ) = DW , W ∈ D . Next, We show
ϕ is a bijection.

Step 1. We can define ϕ−1 : D → V such that ϕ−1 · ϕ = Id.

Remark: In any DW , V (D1) consists of all vertices in DW contained in a directed cycle.

Take any D ∈ D , there exists some vertex of D contained in a directed cycle. Let X be the
set of all such vertices of D. Since D[X] consists of vertex-disjoint directed cycles, there is
a nature way to define a path as following (see figure 3):
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Figure 3: Define a path

First, list the vertices of X in the increasing order. Second, list the out-neighbor vertices of
X in another row, respectively. Then the second row defines a path P be the special path
in the vertebrate. Then it is easy to define the rest part of the vertebrate say W . So we

have D ∈ D
ϕ−1

−−→W ∈ V . We can check that ϕ−1 · ϕ = Id.

Step 2. ϕ is a surjective.

We have proved in Step 1 that for any D ∈ D , there exists W ∈ V satisfying ϕ(W ) = D.

Therefore indeed ϕ is a bijection.

Combining Fact 5.13 with Lemma 5.15, we get ST (Kn) = nn−2.

5.3 The Third Proof of Cayley’s Formula

Definition 5.17. A multigraph is a graph, where we allow multiple edges between vertices but do
not allow loops.

For a multigraph G in [n], we define the Laplace matrix Q = (qij)n×n of G as follows:

qij =

{
dG(i), if i = j.

−m, if i 6= j and there are m edges between i and j.

Note that Q is symmetric, and the sum of each row/column is 0.
For example

33



Q =


6 −3 −1 −2 0
−3 5 0 −1 −1
−1 0 6 −1 −4
−2 −1 −1 5 −1
0 −1 −4 −1 6

 .

For an n× n matrix Q, let Qij be the (n− 1)× (n− 1) matrix obtained from Q by deleting
the ith row and jth column.

Theorem 5.18. For any multigraph G, ST (G) = det(Q11), where Qij is the (n − 1) × (n − 1)
matrix obtained from the Laplace matrix Q of G by deleting the ith row and jth column.

Proof. We prove this by using induction on the number of edges in G. Base case, suppose that
e(G) = 1. Then it holds trivially.

Now we consider a multigraph G and assume this holds for any multigraph with less than
e(G) edges. Take any edge e in G. Define two multigraph as following.

1. G− e = the multigraph obtained from G be deleting the edge e.

2. G/e = the multigraph obtained from G by contracting the two endpoints x, y of e into a
new vertex z and adding new edges in {zu : xu ∈ E(G)} ∪ {zu : yu ∈ E(G)}.

Let Q′ and Q′′ be the Laplace matrices of G − e and G/e respectively. If in a multigraph G
the vertex number 1 is not incident to any edge, then we have T (G) = 0. The first row of the
Laplace matrix consists only of zeros, the sum of the rows of Q11 is also zero. Thus, det(Q11) = 0.
If the vertex number 1 is incident to at least one edge. More precisely, assume that the edge e
has endpoints 1 and 2. So

Q′ =


5 −2 −1 −2 0
−2 4 0 −1 −1
−1 0 6 −1 −4
−2 −1 −1 5 −1
0 −1 −4 −1 6

 , Q′′ =


5 −1 −3 −1
−1 6 −1 −4
−3 −1 5 −1
−1 −4 −1 6

 .

Let Q11,22 be the matrix obtained from Q by deleting the first two rows and the first two
columns. Then we have

det(Q11) = det((Q′)11) + det(Q11,22). (5.2)

We also see that

Q11,22 = (Q′′)11. (5.3)

By (5.2) and (5.3) we have

det(Q11) = det((Q′)11) + det((Q′′)11). (5.4)

Claim. For any edge e in G, we have

ST (G) = ST (G− e) + ST (G/e). (5.5)
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Proof. We divide the spanning trees of G into two classes:
-the 1st class contains those spanning trees of G NOT containing e, which are exactly ST (G−

e).
-the 2nd class contains those spanning trees of G containing e. We can easily see that the

trees in the 2nd class are one-to-one corresponding to the spanning trees of G/e.
This proves (5.5).

By induction, we have ST (G − e) = det(Q′11), ST (G/e) = det((Q′′)11). By (5.4), we have
ST (G) = det(Q11).

For Kn, we have

Q =


n− 1 −1 · · · −1
−1 n− 1 · · · −1
...

...
. . .

...
−1 −1 · · · n− 1


n×n

,

which implies that ST (G) = det(Q11) = nn−2.

6 Intersecting Family

Definition 6.1. A family F ⊂ 2[n] is intersecting if for any A,B ∈ F , we have A
⋂
B 6= ∅.

Fact 6.2. For any intersecting family F ⊂ 2[n], we have |F| ≤ 2n−1.

Proof. Consider all pairs {A,Ac} for all A ⊂ [n]. Note that there are exactly 2n−1 such pairs,
and F can have at most one subset from every pairs. This proves |F| ≤ 2n−1.

Note that this is tight:

• F = {A ⊂ [n] : 1 ∈ A}.

• For n is odd, F = {A ∈ [n] : |A| > n
2 }.

A harder problem: What is the largest intersecting family F ⊂
([n]
k

)
, for fixed k?

Theorem 6.3 (Erdős-Ko-Rado Theorem). For n ≥ 2k, the largest intersecting family F ⊂
([n]
k

)
has size

(
n−1
k−1

)
.

Moreover, if n > 2k, then the largest intersecting family F ⊂
([n]
k

)
must be F = {A ∈

([n]
k

)
:

t ∈ A} for some fixed t ∈ [n].

Proof. Take a cyclic permutation π = (a1, a2, ..., an) of [n]. Note that there are (n − 1)! cyclic
permutations of [n] in total.

Let Fπ = {A ∈ F : A appears as k consecutive numbers in the circuit of π.}

Claim 1. For all cyclic permutation π, assume n ≥ 2k, then |Fπ| ≤ k.

35



Proof. Pick A ∈ Fπ, say A = {a1, a2, ..., ak}. We call the edges ana1, akak+1 as the boundary
edges of A, and the edges a1a2, a2a3, ..., ak−1ak as the inner-edges of A. We observe that for any
distinct A,B ∈ Fπ, the boundary-edges of A and B are distinct. For any B ∈ Fπ \ {A}, as
A
⋂
B 6= φ. we see that one of the boundary-edges of B must be an inner-edge of A. But A has

k− 1 inner-edges, so we see that there are at most k− 1 many subsets in Fπ \ {A}. So |Fπ| ≤ k.

Next we do a double-counting. Let N be the number of pairs (π,A), where π is a cyclic
permutation of [n], and A ∈ Fπ. By Claim 1, N =

∑
π |Fπ| ≤ k(n− 1)!. Fix A, how many cyclic

π such that A ∈ Fπ? The answer is k!(n− k)!. So the number of cyclic permutations π such that
π contains the elements of A as k consecutive numbers is k!(n− k)!. So we have

k(n− 1)! ≥ N =
∑
A∈F

k!(n− k)! = |F|k!(n− k)!,

which implies that

|F| ≤ k · (n− 1)!

k!(n− k)!
=

(
n− 1

k − 1

)
.

If n > 2k, for the extremal case F =
(
n−1
k−1

)
, we want to show F must be a star. From the

preview proof, we see that for any cycle permutation π, |Fπ| = k. And we have following claim.

Claim 2. Fix any π = (a0, a1, ..., an−1). If Fπ = {A1, A2, ..., Ak}, then A1 ∩ A2 ∩ ... ∩ Ak = {t}
for some 0 ≤ t ≤ n − 1, where Aj = {aj+r, aj+r+1, ..., aj+r+k−1} for 1 6 j 6 k and for some
0 ≤ r ≤ n− 1 (where the indices are taken under the additive group Zn.) .

Proof. With loss of generality, suppose that A = {a1, ...ak} ∈ Fπ. From the preview proof, we
know aiai+1 is boundary-edge of some Bi ∈ Fπ where i ∈ [k− 1], and for any distinct A,B ∈ Fπ,
the boundary-edges of A and B are distinct. For any B ∈ F , we color the two boundary-edges
by 1 and 0, respectively, according to the clockwise direction. Since a0a1 has color 1 and akak+1

has color 0. There must exist ` ∈ [k] such that a`−1a` has color 1 and a`a`+1 has color 0. Let
A1 = {a`−k+1, a`−k+2, ..., a`−1, a`} and Ak = {a`, a`+1, ..., a`+k−1}. Since F is intersecting and
n > 2k, there dose not exist j such that aj−1aj has color 0 and ajaj+1 has color 1. Then
a`−1+i, a`+i has color 0 for every i ∈ [k]. This finishes the proof.

Fix π, let Fπ = {A1, A2, ..., Ak} and let A1 ∩A2 ∩ ...∩Ak = {t}. If any element of F contains
t, then F is a star, we are done. So we may assume that there exists A0 ∈ F such that t /∈ A0.

Claim 3. For any B ∈
(A1∪Ak\{t}

k−1

)
, we have B ∪ {t} ∈ F .

Proof of Claim 3. Consider another cycle permutation π
′

with A1, Ak unchanged, but the order
of the integers inside A1 \ {t} and Ak \ {t} are changed.

Since A1, Ak ∈ Fπ′ , by Claim 2 all other k-sets in A1 ∪ Ak formed by k consecutive integers

on π
′

are also in Fπ′ ⊆ F . Repeating using the argument, we prove Claim 3.

Claim 4. The subset A0 ∈ F (with t /∈ A0) satisfies A0 ⊆ A1 ∪Ak \ {t}.
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Proof of Claim 4. Otherwise, A0 has at most k − 1 elements in A1 ∪ Ak. Then we have |A1 ∪
Ak − A0| > k (as |A1 ∪ Ak| = 2k − 1). So, we can pick a k-subset B ⊆ A1 ∪ Ak − A0 such that
t ∈ B. By Claim 3, we have B ∈ F . But A0 ∩ B = ∅, contradicting that F is intersecting. This
proves Claim 4.

Claim 5. We have
(
A1∪Ak

k

)
⊆ F .

Proof of Claim 5. Consider any i ∈ A0, let Bi = (A1 ∪ Ak \ A0) ∪ {i}. Since t ∈ Bi, by Claim 3,
we have Bi ∈ F . Repeating the proof of Claim 3, we can obtain that any k-subset of A1 ∪ Ak
containing i belongs to F . In other words, any k-subset B of A1∪Ak must intersect A0, and thus
belongs to F . Then we have

(
A1∪Ak

k

)
⊆ F .

If there exists a k-subset C ∈ F such that B * A1∪Ak, then |A1∪Ak−B| > k. So there exists
D ⊆ A1 ∪ Ak − C with |D| = k. By Claim 5, we have D ∈ F , but C ∩D = ∅, a contradiction.
This proves

(
A1∪Ak

k

)
= F .

Since n > 2k, we see |F| =
(

2k−1
k

)
=
(

2k−1
k−1

)
<
(
n−1
k−1

)
= |F|, a contradiction. This completes

the proof.

6.1 The Second Proof of Erdős-Ko-Rado Theorem

Definition 6.4. A Kneser graph K(n, k) with n > 2k is a graph with vertex set
([n]
k

)
such that

for any two sets A,B ∈
([n]
k

)
, A is adjacent to B in K(n, k) if and only if A ∩B = ∅.

One can easily check that K(5, 2) is the Petersen graph.

Definition 6.5. Given a graph G, we let α(G) be the number of vertices in a largest independent
set in G.

We note that any independent set in K(n, k) is an intersecting family in
([n]
k

)
. Therefore, we

have the following.

Theorem 6.6 (Erdős-Ko-Rado (Restatement)). For n ≥ 2k, α(K(n, k)) 6
(
n−1
k−1

)
.

Definition 6.7. The adjacency matrix AG = (aij)n×n of an n-vertex graph G is defined by

aij =

{
1, if ij ∈ E(G),

0, otherwise.

Definition 6.8. The eigenvalues λ1 > λ2 > ... > λn of AG is called the eigenvalues of G. The
eigenvectors ~v1, ~v2, ..., ~vn of AG satisfying

AG~vi = λi~vi,

||~vi|| = 1,

~vi⊥~vj for any i 6= j,

are called the orthonormal eigenvectors of G.
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Note that AG is an n × n 0/1 symmetric matrix. Thus all the eigenvalues of G are real
numbers.

Definition 6.9. A graph G is d-regular if all vertices have the same degree d.

Exercise 6.10. If G is d-regular, then the largest eigenvalue of G is d.

Theorem 6.11 (Hoffman’s Theorem). If an n-vertex graph G is d-regular with eigenvalues λ1 >

λ2 > ... > λn, then α(G) 6 n · −λn
λ1 − λn

Proof. Let V (G) = [n]. Let ~v1, ..., ~vn be the corresponding orthonormal eigenvectors of eigenvalues
λ1 > λ2 > ... > λn of G. Thus we have

AG~vi = λi~vi,

||~vi|| = 1,

~vi⊥~vj , i.e., < ~vi, ~vj >= 0, for any i 6= j.

Let I be an independent set of G with |I| = α(G). Let ~1I ∈ {0, 1}n be the vector such that its
jth coordinate is 1 if j ∈ I, and 0 otherwise. Then we can write

~1I =

n∑
i=1

αi~vi for some αi ∈ R.

Then we have

|I| =< ~1I ,~1I >=<
∑
i

αi~vi,
∑
j

αj ~vj >=
n∑
i=1

α2
i , (6.6)

where αi =< ~1I , ~vi >.
Since G is d-regular, we have that λ1 = d and ~v1 = (1/

√
n, ..., 1/

√
n)T . So we get

α1 =< ~1I , ~v1 >=
|I|√
n
. (6.7)

Since I is an independent set in G,

~1TI AG~1I =
∑
i,j

(~1I)iaij(~1I)j = 0,

where A(G) = (aij). On the other hand, we also have

0 = ~1TI AG~1I =
(∑

i

αi~vi
)T
AG
(∑

j

αj~vj
)

=
(∑

i

αi~vi
)T (∑

j

αjλj~vj
)

=

n∑
i=1

α2
iλi ≥ α2

1λ1 + (α2
2 + · · ·+ α2

n)λn
by (6.6) (6.7)

=
|I|2

n
λ1 +

(
|I| − |I|

2

n

)
λn.

Thus we have

|I|2

n
λ1 +

(
|I| − |I|

2

n

)
λn ≤ 0, and |I|

(
|I|
n
λ1 + λn −

|I|
n
λn

)
≤ 0,

which implies that

α(G) = |I| ≤ n · −λn
λ1 − λn

.
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Theorem 6.12 (see GTM 207, Theorem 9.4.3). The eigenvalues of Kneser graph K(n, k) are:

uj = (−1)j
(
n− k − j
k − j

)
of multiplicity

(
n

j

)
−
(

n

j − 1

)
for every 0 ≤ j ≤ k.

Proof of Theorem 6.6. Consider the eigenvalues of K(n, k), say λ1 ≥ λ2 · · · ≥ λ(nk)
, where λ1 =(

n−k
k

)
, λ(nk)

= −
(
n−k−1
k−1

)
. By Hoffman’s bound,

α(K(n, k)) ≤
(
n

k

) −λ(nk)

λ1 − λ(nk)
=

(
n

k

) (
n−k−1
k−1

)(
n−k
k

)
+
(
n−k−1
k−1

) =

(
n− 1

k − 1

)
,

as desired.

7 Partially Ordered Sets (Poset)

7.1 Poset

Let X be a finite set.

Definition 7.1. R is a relation on X, if R ⊆ X ×X where X ×X denote the Cartesion product
of X, i.e., X ×X = {(x1, x2) : ∀x1, x2 ∈ X}. If (x, y) ∈ R, then we often write xRy.

Definition 7.2. A partially ordered set (poset for short) is an ordered pair (X,R), where X is a
finite set and R is a relation on X such that the following hold:

(1) R is reflective: xRx for any x ∈ X,

(2) R is antisymmetric: if xRy and yRx, then x = y,

(3) R is transitive: if xRy and yRz, then xRz.

Example 7.3. Consider the poset (2[n],⊆), where “⊆” denotes the inclusion relationship.

We often use “4” to replace the use of “R”. So poset (X,R) = (X,4) and xRy = x 4 y. If
x 4 y but x 6= y, then x ≺ y, and we say x is a predecessor/child of y.

Definition 7.4. Let (X,4) be a poset. We say an element x is an immediate predecessor of y, if

(1) x ≺ y,

(2) there is no element t ∈ X such that x ≺ t ≺ y.

In this case, we write x� y.

Fact 7.5. For x, y ∈ (X,4), x ≺ y if and only if there exist z1, z2, ..., zk ∈ X such that x� z1 �

z2 � ...� zk � y. (Note that here k can be 0, i.e., x� y.)
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Proof. (⇐) This direction is trivial, by transitive property.
(⇒) Let x ≺ y. Let Mxy = {t ∈ X : x ≺ t ≺ y}. We prove by induction on |Mxy|.
Base case is clear, if |Mxy| = 0, then x� y. Now we may assume Mxy 6= ∅ and the statement

holds for any u ≺ v with |Muv| < n. Suppose x ≺ y with |Mxy| = n > 1. Pick any t ∈ Mxy

and consider Mxt and Mty. Clearly Mxt (Mxy and Mty (Mxy (because of transitive property).
By induction on Mxt and Mty, there exist x1, x2, ..., xm ∈ X and y1, y2, ..., yl ∈ X such that
x�x1 �x2 � ...�xm� t and t� y1 � y2 � ...� yl� y. Thus, x�x1 �x2 �xm� t� y1 � ...� yl� y
and we are done.

Now we can express a poset in a diagram.

Definition 7.6. The Hassa diagram of a poset (X,4) is a drawing in the plane such that

(1) each element of X is drawn as a nod in the plane,

(2) each pair x� y is connected by a line segment,

(3) if x� y, then the nod x must appear lower in the plane then the nod y.

The fact that x ≺ y if and only if x � x1 � x2 � ... � xk � y now can be restated as follows:
x ≺ y if and only if we can find a path in the Hassa diagram from nod x to nod y, strictly from
bottom to top.

Definition 7.7. Let (X1,41) and (X2,42) be two posets. A mapping f : X1 → X2 is called an
embedding of (X1,41) in (X2,42) if

(1) f is injective,

(2) f(x) 42 f(y) if and only if x 41 y.

Theorem 7.8. For every poset (X,4) there exists an embedding of (X,4) in BX = (2X ,⊆).

Proof. Consider the mapping f : X → 2X by letting f(x) = {y ∈ X : y 4 x} for any x ∈ X. It
suffices to verify that f is an embedding of (X,4) in (2X ,⊆).

Firstly, f is injective. If f(x) = f(y) for x, y ∈ X, then x ∈ f(x) = f(y) and x 4 y. Similarly
we have y 4 x. So x = y.

Secondly, f(x) ⊆ f(y) if and only if x 4 y. To see this, if x 4 y, then clearly f(x) ⊆ f(y).
Now suppose f(x) ⊆ f(y). Since x ∈ f(x) ⊆ f(y), we have x 4 y. This shows that f indeed is an
embedding.

Definition 7.9. Let P = (X,4) be a poset.

(1) For distinct x, y ∈ X, if x ≺ y or y ≺ x, then we say that x, y are comparable; otherwise,
x, y are incomparable.

(2) The set A ⊆ X is an antichain of P , if any two elements in A are incomparable. Let α(P )
be the maximum size of an antichain of P .

(3) The set B ⊆ X is a chain of P , if any two elements of B are comparable. Let ω(P ) be the
maximum size of a chain of P .
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Consider the Hassa diagram, ω(P ) means the maximum number of vertices in a path (from
bottom to top) in this diagram. So ω(P ) is also called the height of P and α(P ) is called the
width of P .

Definition 7.10. An element x ∈ X is minimal in P = (X,4), if x has no predecessor in P .

Fact 7.11. The set of all minimal elements of P = (X,4) forms an antichain of P .

Theorem 7.12. For any poset P = (X,4), α(P ) · ω(P ) ≥ |X|.

Proof. We inductively define a sequence of posets Pi = (Xi,�) and a sequence of sets Mi ⊂ Pi,
such that each Mi is the set of minimal elements of Pi, and Xi = X −

∑i−1
j=0Mj , where M0 = ∅.

First, set P1 = P = (X,4), X1 = X and M1 = ∅. Assume posets Pi = (Xi,4) and Mi−1 are
defined for all 1 6 i 6 k. LetMi = { all minimal elements of Pi} and letXi+1 = X−M1

⋃
...
⋃
Mi.

Then let Pi+1 be the subposet of P restricted on Xi+1. We keep doing this until X`+1 = ∅. By
Fact 7.11, each Mi is an antichain of Pi. Since Pi is the restricted subposet of P on Xi, Mi is also
an antichain of P. So

|Mi| ≤ α(P ).

It suffices to find a chain x1 ≺ x2 ≺ ... ≺ x` in P, such that xi ∈ Pi = (Xi,4) for i ∈ [`].
Indeed, if this holds, then

X = M1

⋃
M2

⋃
...
⋃
M` and |X| =

∑̀
i=1

|Mi| ≤ α(P ) · ` ≤ α(P ) · ω(P ).

In fact, by the definition of Mi, we can claim something stronger holds: For any x ∈Mi (2 ≤ i <
`), there exists y ∈Mi, such that y ≺ x. This completes the proof.

7.2 The Order From Disorder

Definition 7.13. Consider a sequence X = (x1, x2, ..., xn) of n real numbers. A subsequence
(xi1 , xi2 , ..., xim) of X, where i1 < i2 < ... < im, is monotone, if either xi1 ≤ xi2 ≤ ... ≤ xim or
xi1 ≥ xi2 ≥ ... ≥ xim.

For example, (10, 9, 7, 4, 5, 1, 2, 3) −→ (10, 9, 7, 5, 1).

Theorem 7.14 (Erdős-Szekeres Theorem). For any sequence (x1, x2, ..., xn2+1) of length n2 + 1,
there exists a monotone subsequence of length n+ 1.

Proof. Let X = [n2 + 1]. We define a poset P = (X,�) as following: i � j if and only if i ≤ j
and xi ≤ xj .

It is easy to check that P = (X,�) indeed defines a poset (reflective antisymmetric and
transitive). By the previous result that α(P ) ·w(P ) ≥ |X| = n2 + 1, we have either w(P ) ≥ n+ 1
or α(P ) ≥ n+ 1.
Case 1. w(P ) ≥ n+ 1.

There exists a chain of size n+ 1, say {i1, i2, .., in+1}. By definition, xi1 ≤ xi2 ≤ ... ≤ xin+1 is
an increasing subsequence of length n+ 1.
Case 2. α(P ) ≥ n+ 1.

There exists an antichain of size n+1, say {i1, i2, .., in+1}. We may assume that i1 < i2 <
... < in+1 being antichain, it implies that xi1 > xi2 > ... > xin+1 is a decreasing subsequence of
(x1, x2, ..., xn2+1).
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Remark 7.15. What we proved is a bit stronger: there is either an increasing subsequence of
length n+ 1 or a strictly decreasing subsequence of length n+ 1.

Exercise 7.16. Find examples to show that Erdős-Szekeres Theorem is optimal: there exists a
sequence of n2 reals such that NO monotone subsequence of length n+ 1.

7.3 The Pigeonhole Principle

Theorem 7.17 (The Pigeonhole Principle). Let X be a set with at least 1+
∑k

i=1(ni−1) elements
and let X1, X2, ..., Xk be disjoint sets forming a partition of X. Then, there exists some i, such
that |Xi| ≥ ni.

(1) Two equal degrees.

Theorem 7.18. Any graph has two vertices of the same degree.

Proof. Let G be a graph with n vertices. Suppose that G does not have two vertices of same
degree. So the only exceptional case will be that there is exactly one vertex of degree i for all
i ∈ {0, 1, ..., n−1}. But this is impossible to have a vertex with degree 0 and a vertex with degree
n− 1 at the same time.

Exercise 7.19. For any n, find an n-vertex graph G, which has exactly two vertices with the
same degree.

(2) Subsets without divisors.

Question 7.20. How large a subset S ⊂ [2n] can be such that for any i, j ∈ S, we have i - j and
j - i ?

Obviously, we can take S = {n+ 1, n+ 2, ..., 2n} with |S| = n.

Theorem 7.21. For any S ⊂ [2n] with |S| ≥ n+ 1, there exist i, j ∈ S such that i|j.

Proof. For any odd integer 2k − 1 ∈ [2n], define S2k−1 = {2i · (2k − 1) ∈ S : i ≥ 0}. Clearly,
S =

⋃n
k=1 S2k−1. Since |S| ≥ n + 1, there exists some |S2k−1| ≥ 2 say x, y ∈ S2k−1. It is easy to

see that we have x|y or y|x.

(3) Rational approximation.

Theorem 7.22. Given n ∈ Z+, for any x ∈ R+, there is a rational number p
q such that 1 ≤ q ≤ n

and |x− p
q | <

1
nq .

Proof. For any x ∈ R+, define {x} = x−bxc be the fractional part of x. Consider {ix} ∈ [0, 1), for
any i = 1, 2, ..., n+ 1. Partition [0, 1) into n subintervals [0, 1

n), [ 1
n ,

2
n), ..., [n−1

n , 1). By Pigeonhole

Principle, there exists a subinterval [ kn ,
k+1
n ) contains two reals say {ix} and {jx} for 1 ≤ i < j ≤

n+1. Then we have {(j− i)x} ∈ [0, 1
n)∪ [1− 1

n , 1). Let q = j− i ≤ n. So {qx} ∈ (0, 1
n)∪ [1− 1

n , 1),
i.e. qx = p + ε for some p ∈ Z+ and |ε| < 1

n . Then we have x = p
q + ε

q , which implies that

|x− p
q | = |

ε
q | <

1
nq .
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7.4 Second Proof of Erdős-Szekeres Theorem

Theorem 7.23 (Erdős-Szekeres Theorem). For any sequence of mn+1 real numbers {a0, a1, ..., amn},
there is an increasing subsequence of length m+ 1 or a decreasing subsequence of length n+ 1.

The second proof. Consider any sequence {a0, a1, ..., amn}. For any i ∈ {0, 1, ...,mn}, let fi be
the maximum size of an increasing subsequence starting at ai. We may assume fi ∈ {1, 2, ...,m}
for any i ∈ {0, 1, ...,mn}. By Pigeonhole Principle, there exists a s ∈ {1, 2, ...,m} such that
there are at least n + 1 elements i ∈ {0, 1, ....,m} satisfying fi = s. Let these elements be
i1 < i2 < ... < in+1.

We claim that ai1 ≥ ai2 ≥ ... ≥ ain+1 . Indeed, If aij < aij+1 for some j ∈ [n], then we would
extend the maximum increasing subsequence of length s starting at aij+1 by adding aij to obtain
an increasing subsequence starting at aij of length s+1, a contradiction to fij = s.

8 Ramsey’s Theorem

Fact 8.1 (A party of six). Suppose a party has six participants. Participants may know each
other or not. Then there must be three participants who know each other or do not know each
other, i.e. any 6-vertex graph G has a K3 or I3.

Proof. We consider a graph G on six vertices say [6]. Each vertex i represents one participant:
i and j are adjacent if and only if they know each other. Then we need to show that there are
three vertices in G which form a triangle K3 or an independent set I3.

Consider vertex 1. There are five other persons. So 1 is adjacent to three vertices or not
adjacent to three vertices. By symmetry, we may assume that 1 is adjacent to three vertices, say
2, 3, 4. If one of pairs {2, 3}, {2, 4}, {3, 4} is adjacent, then we have a K3. Otherwise, {2, 3, 4}
forms an independent set of size three. This finishes the proof.

Definition 8.2. An r-edge-coloring of Kn is a mapping f : E(Kn) −→ {1, 2, ..., r} which assigns
one of the colors 1, 2, ..., r to each edge of Kn.

Definition 8.3. Given an r-edge-coloring of Kn. A clique in Kn is called monochromatic, if all
its edges are colored by the same color.

Then the example of a party of six says that any 2-edge-coloring of K6 has a monochromatic
K3.

Theorem 8.4 (Ramsey’s Theorem (2-colors-version)). Let k, ` ≥ 2 be any two integers. Then
there exists an integer N = N(k, `), such that any 2-edge-coloring of KN (with colors red and
blue) has a blue Kk or a red K`.

Proof. We will prove by induction on k + ` that any blue/red-edge-coloring of a clique on N =(
k+`−2
k−1

)
vertices has a blue Kk or a red K`.

Base case is trivial (as we have N =
(
k+`−2
k−1

)
= ` where k = 2 and N =

(
k+`−2
k−1

)
= k where

` = 2 ).
We may assume that the statement holds for k′+`′ ≤ k+`−1. LetN1 =

(
k+`−3
k−2

)
, N2 =

(
k+`−3
k−1

)
,

and N =
(
k+`−2
k−1

)
. So N1 +N2 = N .
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Consider any red/blue-edge-coloring of KN . Consider any vertex x. Let A = {y ∈ V (Kn) −
{x} : edge xy is blue} and B = {y ∈ V (Kn) − {x} : edge xy is red}. So |A| + |B| = N − 1 =
N1 +N2 − 1. By Pigeonhole Principle we have either |A| ≥ N1 or |B| ≥ N2.

Case 1. |A| ≥ N1 =
((k−1)+`−2

(k−1)−1

)
.

The vertices of A contains a K((k−1)+`−2
(k−1)−1 ) where edges are blue or red. By induction on this

K((k−1)+`−2
(k−1)−1 ) for the pair {k − 1, `}, so A has a blue Kk−1 or a red K`. In the former, by adding

the vertex x to that blue Kk−1, we can obtain a blue Kk in the KN .
Case 2.|B| ≥ N2 =

(
k+`−3
k−1

)
.

This case is similar (by induction on {k, `− 1}).

Definition 8.5. For k, ` ≥ 2, the Ramsey Number R(k, `) denotes the smallest integer N such
that any 2-edge-coloring of KN has a blue Kk or a red K`.

Remark 8.6. Ramsay Theorem says that R(k, `) ≤
(
k+`−2
k−1

)
.

Let us try to understand this definition a bit more:

• R(k, `) ≤ L if and only if any 2-edge-coloring of KL has a blue Kk or a red K`.

• R(k, `) > M if and only if there exists a 2-edge-coloring of KM which has no blue Kk nor
red K`.

Fact 8.7. (1) R(k, `) = R(`, k).
(2) R(2, `) = ` and R(k, 2) = k.
(3) R(3, 3) = 6.

Proof. It is easy to know that (1) and (2) is right. We have R(3, 3) ≤ 6 from the fact on a party
of six. On the other hand, we have R(3, 3) > 5 from the following graph (if u, v are adjacent, we
color edge uv blue, otherwise we color edge uv red).

Exercise 8.8. R(k, `) ≤ R(k − 1, `) +R(k, `− 1).

Theorem 8.9. If for some (k, `), the numbers R(k − 1, `) and R(k, `− 1) are even, then

R(k, `) ≤ R(k − 1, `) +R(k, `− 1)− 1.

Proof. Let n = R(k − 1, `) + R(k, ` − 1) − 1. So n is odd. Consider any 2-edge-coloring of Kn.
For any vertex x, define the following as before Ax = {y : xy is blue} and Bx = {y : xy is red}.

The previous proof tells us that if |Ax| ≥ R(k− 1, `) or |Bx| ≥ R(k, `− 1), then we can find a
blue Kk or a red K`. Thus, we may assume that |Ax| ≤ R(k− 1, `)− 1 and |Bx| ≤ R(k, `− 1)− 1
for any vertex v, which implies that

n ≤ Ax +Bx + 1 ≤ R(k − 1, `) +R(k, `− 1)− 1
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This shows that for each x, |Ax| = R(k−1, `)−1 and |Bx| = R(k, `−1)−1. Now we consider
the graph G consisting of all blue edges. Note that G has an odd number of vertices and any
vertex has odd degree. But this contradicts the Handshaking Lemma.

Corollary 8.10. R(3, 4) = 9.

Proof. By the previous theorem, we have R(3, 4) ≤ R(2, 4) +R(3, 3)− 1 = 4 + 6− 1 = 9. On the
other hand, we have R(3, 4) > 8 from the following graph (if u, v are adjacent, we color edge uv
blue, otherwise we color edge uv red).

Definition 8.11. For any k ≥ 2 and any integers s1, s2, ..., sk ≥ 2, the Ramsey number Rk(s1, s2, ..., sk)
is the least integer N such that any k-edge-coloring of KN has a clique Ksi in color i, for some
i ∈ [k].

Homework 8.12. Rk(s1, s2, ..., sk) < +∞.

Theorem 8.13 (Schur’s Theorem). For k ≥ 2, there exists some integer N = N(k) such that for
any coloring ϕ : [N ] → [k], there exist three integers x, y, z ∈ [N ] satisfying that ϕ(x) = ϕ(y) =
ϕ(z) and x+ y = z.

Proof. Let N = Rk(3, 3, ..., 3). Define a k-edge-coloring of KN from the coloring ϕ as following:
for any i, j ∈ [N ], define the color of ij to be ϕ(|i− j|). By the definition of Rk(3, 3, ..., 3), we can
find a monochromatic triangle, say ij`. Suppose i < j < `, we have ϕ(`− j) = ϕ(`− i) = ϕ(j− i).
Let x = `− j, y = `− i, z = j − i ∈ [N ], we have ϕ(x) = ϕ(y) = ϕ(z) and x+ y = z. This finishes
the proof.

Remark 8.14. It is also true to require x, y, z to be distinct, by considering N = Rk(4, 4, ..., 4).

Using this theorem, Schur proved that the restricted version of Fermat’s last problem in Zp
for sufficiently large prime p.

Theorem 8.15 (Schur). For any integer m ≥ 1, there is an integer p(m) such that for any prime
p ≥ p(m), xm + ym = zm (mod p) has a nontrivial solution in Zp.

Proof. For prime p, consider the multiplicative group Z∗p = {1, 2, ..., p− 1}. Let g be a generator
of Z∗p. Then for x ∈ Z∗p, there exists exactly one pair of integers (i, j) such that x = gim+j (mod p)
for some 0 ≤ j ≤ m−1 and 0 ≤ im+j ≤ p−2. Then we define a coloring ϕ : Z∗p → {0, 1, ...,m−1}
by letting ϕ(x) = j.
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By Schur’s Theorem, choose p(m) = N(m), and for any p ≥ p(m), the coloring ϕ gives
x, y, z ∈ Z∗p satisfying ϕ(x) = ϕ(y) = ϕ(z) and x+y = z. Let x = gi1m+j , y = gi2m+j , z = gi3m+j

(mod p). Then x+ y = z implies that

gi1m+j + gi2m+j = gi3m+j (mod p), (8.8)

thus
gi1m + gi2m = gi3m (mod p).

Let α = gi1 , β = gi2 , γ = gi3 . We have

αm + βm = γm (mod p).

Remark: Schur’s theorem holds in Z, but we need to restrict the calculation in a multiplication
cyclic group when deducing equation (8.8).

Definition 8.16. A probability space is a pair (Ω, P ), where Ω is a finite set and P : 2Ω → [0, 1]
is a function assigning a number in the interval [0, 1] to every subset of Ω such that

(i) P (∅) = 0,

(ii) P (Ω) = 1, and

(iii) P (A ∪B) = P (A) + P (B) for disjoint sets A,B ⊂ Ω.

We say

• Any subset A of Ω is called an event, and P (A) =
∑

ω∈Ω P ({ω}).

• A random variable is a function X : Ω→ R

• The expectation of a random variable X is:

E[X] :=
∑
ω∈Ω

P ({ω}) ·X(ω).

The linearity of expectations: for any two random variables X and Y on Ω, we have

E[X + Y ] = E[X] + E[Y ].

Now we discuss the following basic form of the probabilistic methods in Combinatorics:

(i) Imagine we need to find some combinatorial object satisfying certain property, call it a
“good” property. We consider a big family for candidates and randomly pick one from
this family, call it a random object. If the probability that the random object has “good”
property is positive, then there must exist “good” objects.

(ii) To compute the probability of being “good”, we often compute the probability of being
“bad” and aim to show that this probability of being “bad” is strictly less than 1.
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Theorem 8.17. Let n, s satisfy
(
n
s

)
· 21−(s2) < 1. Then R(s, s) > n.

Proof. We need to find a 2-edge-coloring of Kn such that it has no monochromatic clique Ks.
Let Φ be the family of all 2-edge-colorings of Kn. Let c ∈ Φ be chosen uniformly at random.

Then c is a random 2-edge-coloring of Kn, where each edge of Kn is colored by red and blue, each
with probability 1

2 , independent of each other edge.
Let B be the event that this random 2-edge-coloring has no monochromatic Ks. We want to

prove P (B) > 0. Consider its complement event A = Ω\B and its probability P (A), where A is
the event that c has a monochromatic Ks. For any S ∈

(
[n]
s

)
, let AS be the event that S forms a

monochromatic Ks for c. So A = ∪
S∈([n]s )AS , and P (AS) = 21−(s2).

Thus

P (A) = P
(
∪
S∈([n]s )AS

)
≤

∑
S∈([n]s )

P (AS) =

(
n

s

)
21−(s2) < 1,

This shows that P (B) > 0.

Corollary 8.18. R(s, s) ≥ 1
e
√

2
s2

s
2 .

Proof. Let n = 1
e
√

2
s2

s
2

(
e
2

)1/s
. Recall that

(
n
s

)
< ns

s! and s! ≥ e
(
s
e

)s
, thus we have that(

n

s

)
21−(s2) <

ns

e
(
s
e

)s 21−(s2) = 1.

So by the above theorem, we get

R(s, s) > n =
1

e
√

2
s2

s
2

(e
2

)1/s
≥ 1

e
√

2
s2

s
2 .

Definition 8.19. The random graph G(n, p) for some real p ∈ (0, 1) is a graph with vertex set
{1, 2, ..., n}, where each of potential

(
n
2

)
edges appears with probability p, independent of other

edges.

In the proof of the previous theorem, in fact we consider G(n, 1/2).
Let A be the property we are interested in. Let

P (A) = P (G(n,
1

2
) satisfies the property A)

=
the number of graphs with vertex set [n] satisfying the property A

2(n2)
.

So P (A) is a function of n, taking value in [0, 1].

Definition 8.20. We say the random graph G(n, 1
2) almost surely satisfies property A, if

lim
n→+∞

Pr(A) = 1.

If limn→+∞ Pr(A) = 0, then G(n, 1
2) almost surely does not satisfy the property A.
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Theorem 8.21. Random graph G(n, 1
2) almost surely is not bipartite.

Proof. Let A be the event that G(n, 1
2) is bipartite. For any U ⊆ [n], let AU be the event that

all edges of G are between U and [n]\U . Then A =
⋃
U⊆[n]AU . We have

P (AU ) =
the number of graphs satisfying AU

2(n2)
=

2|U |(n−|U |)

2(n2)
≤ 2

n2

4

2
n(n−1)

2

= 2−
n2

4
+n

2 .

So by the union bound,

0 ≤ P (A) = P (
⋃
U⊆[n]

AU ) ≤
∑
U⊆[n]

P (AU ) ≤ 2n · 2−
n2

4
+n

2 = 2−
n2

4
+ 3n

2 .

Thus limn→+∞ P (A) = 0.

9 The Probabilistic Method

Definition 9.1. Let F be a family of subsets of set Ω. We say F is a k-family if all its subsets
have size k.

Example 9.2. A 2-family is just a graph.

Definition 9.3. We say F is 2-colorable if there exists a function f : Ω → {blue,red} such that
every subset A in F is not monochromatic (i.e., each A contains at least one blue vertex and at
least one red vertex.)

Definition 9.4. For any k ∈ Z+, let m(k) be the minimum number of subsets in a k-family F
which is not 2-colorable.

Therefore, we see that m(k) ≤ t if and only if there exists a k-family F of t subsets which is
not 2-colorable, and m(k) > t if and only if any k-family of t subsets can be 2-colorable.

Fact 9.5. m(2) = 3. Consider the graph K3.

Theorem 9.6. For any k, we have m(k) > 2k−1 − 1, i.e., any k-family F of 2k−1 − 1 subsets
can be 2-colorable.

Proof. Given a k-family F of 2k−1− 1 subsets, we aim to find a function f : Ω→ {blue,red} such
that any subset A in F has a blue vertex and a red vertex. We call such f “good”.

Now we consider a random function ϕ : Ω→ {blue,red}, that is, each x ∈ Ω is colored by blue
or red with probability 1

2 , independent of other choices.
Let S be the event that the random function ϕ is good. Let T = Sc be the complement, i.e.,

there exists a subset A in F which is monochromatic under ϕ. For each A ∈ F , let TA be the
event that the subset A is monochromatic under ϕ. So

T =
⋃
A∈F

TA.

It is easy to see that

P (TA) = 2(
1

2
)k = 21−k.
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So by the union bound,

P (T ) = P (
⋃
A∈F

TA) ≤
∑
A∈F

P (TA) = |F|21−k < 1.

Therefore, we have
P (ϕ is good) = P (S) = 1− P (T ) > 0.

Since

P (ϕ is good) =
number of good functions

total number of functions
.

We know that there exists at least one good function f : Ω→ {blue,red}.

Definition 9.7. Given a probability space (Ω, P ), we say events A1, A2, ..., Ak are independent
if for any I ⊂ [n], we have P (

⋂
i∈I Ai) =

∏
i∈I P (Ai).

Definition 9.8. A tournament on n vertices is a directed graph obtained from the clique Kn by
assigning a direction to each edge of Kn. For any arc i→ j, we say i is the head and j is the tail
of the arc.

Definition 9.9. A tournament T satisfies the property Sk if for any subset A of size k, there
exists a vertex u ∈ V (T ) \A such that u→ x for any x ∈ A.

Question 9.10. For any k ∈ Z+, can we find a tournament satisfying the property Sk?

Theorem 9.11. For any k ∈ Z+, if
(
n
k

)
(1 − 1

2k
)n−k < 1, then there exists a tournament on n

vertices satisfying the property Sk.

Proof. We prove this by considering a random tournament T on [n], that is, for any pair {i, j},
the arc i → j occurs with probability 1

2 , independent of other choices. Let B be the event that

T does not satisfy the property Sk. For A ∈
([n]
k

)
, let BA be the event that for every vertex

x ∈ [n] \A there exists some u ∈ A with u→ x. So

B =
⋃

A∈([n]k )

BA.

For x ∈ [n]\A, let BA,x be the event that there exists some u ∈ A with u→ x. So

BA =
⋂

x∈[n]\A

BA,x.

It is easy to see that for any x ∈ [n] \A

P (BA,x) = 1−
(

1

2

)k
.

Note that only the arcs between x and A will effect the event BA,x, and these arcs for distinct
vertices x’s are disjoint. This explains that all events BA,x for all x ∈ [n] \A are independent. So

P (BA) = P (
⋂
x/∈A

BA,x) =
∏
x/∈A

P (BA,x) =

(
1−

(
1

2

)k)n−k
.
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Therefore,

P (B) ≤
∑

A∈([n]k )

P (BA) ≤
(
n

k

)(
1−

(
1

2

)k)n−k
< 1.

Thus, P (Bc) > 0, i.e., there exists a tournament on [n] satisfying property Sk.

Corollary 9.12. For any k ∈ Z+, there exists a minimal f(k) such that there exists a tournament
on f(k) vertices satisfying the property Sk.

Example 9.13. We have f(3) ≤ 91, as
(

91
3

)
(7

8)88 < 1.

9.1 The Linearity of Expectation

• For any two variables X,Y , we have E[X + Y ] = E[X] + E[Y ].

• P (X ≥ E[X]) > 0.

• P (X ≤ E[X]) > 0.

Definition 9.14. A set A is sum-free, if for any x, y ∈ A, x + y /∈ A, i.e., x + y = z has no
solutions in A.

Example: Both {bn2 c + 1, bn2 c + 2, ..., n} and {all odd integers in [n]} are two sum-free sets in
[n] of size dn2 e.

Exercise 9.15. Show that the maximum size of a sum-free subset A in [n] is dn2 e.

Theorem 9.16. For any set A of non-zero integers, there exists a sum-free subset B ⊆ A with
|B| ≥ |A|3 .

Proof. We choose a prime p large enough such that p > |a| for any a ∈ A. Consider Zp =
{0, 1, ..., p− 1} and Z∗p = {1, 2, ..., p− 1}. We note that there is a large sum-free subset under Zp(
mod p):

S =
{
dp

3
e+ 1, dp

3
e+ 2, ..., d2p

3
e
}
.

Claim: For any x ∈ Z∗p , Ax = {a ∈ A : ax (mod p) ∈ S} is sum-free.

Proof. Suppose that there are a, b, c ∈ Ax satisfying a+ b = c. But we also have ax (mod p) ∈ S,
bx (mod p) ∈ S, cx (mod p) ∈ S and ax (mod p) + bx (mod p) = cx (mod p) in Zp. This is a
contradiction to that S is sum-free in Zp.

Next, we want to find some x ∈ Z∗p such that |Ax| ≥ |A|
3 . We choose x ∈ Z∗p uniformly at

random, and we compute, E
[
|Ax|

]
, the expectation of |Ax|.

Note that |Ax| =
∑
a∈A

1{ax (mod p)∈S}. So

E
[
|Ax|

]
= E

[∑
a∈A

1{ax (mod p)∈S}

]
=
∑
a∈A

E
[
1{ax (mod p)∈S}

]
=
∑
a∈A

P
(
ax (mod p) ∈ S

)
.
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We observe that for a fixed a ∈ A, {ax : x ∈ Z∗p} = Z∗p . So P
(
ax (mod p) ∈ S

)
= |S|
|Z∗p |
≥ 1

3 .

And thus, E
[
|Ax|

]
≥
∑
a∈A

1
3 = |A|

3 . Then, we know that there exists a choice of x ∈ Z∗p such that

|Ax| ≥ E
[
|Ax|

]
≥ |A|3 .

Definition 9.17. Given a graph G, a dominating set A in G is a subset of V (G) such that any
u ∈ V (G)\A has a neighbor in A.

Theorem 9.18. Let G be a graph on n vertices and with minimum degree δ > 1. Then G contains

a dominating set of at most
1 + ln(1 + δ)

1 + δ
n vertices.

Proof. Take p ∈ (0, 1), whose value will be determined later. We pick each vertex in V (G) with
probability p uniformly at random. Let A be the set of those chosen vertices. Let B be the set
of vertices b ∈ V (G) \A, which has no neighbors in A. Then we can see that

• A ∪B is a dominating set in G.

• b ∈ B if and only if
(
{b} ∪NG(b)

)
∩A = ∅.

That is, b ∈ B if and only if b and all neighbors of b are not picked. So

P (b ∈ B) = (1− p)1+dG(b) ≤ (1− p)1+δ ≤ e−p(1+δ),

where the last inequality holds since 1 + x ≤ ex. Then, we have

E
[
|B|
]

= E
[ ∑
b∈V (G)

1{b∈B}

]
=

∑
b∈V (G)

P (b ∈ B) ≤ n · e−p(1+δ).

We also have E
[
|A|
]

= np. Thus,

E
[
|A ∪B|

]
≤ E

[
|A|+ |B|

]
= E

[
|A|
]

+ E
[
|B|
]
≤ n

(
p+ e−p(1+δ)

)
.

By calculus, we see that when p =
ln(1 + δ)

1 + δ
, p+e−p(1+δ) is minimized with value

1 + ln(1 + δ)

1 + δ
.

So we pick p =
ln(1 + δ)

1 + δ
to get E

[
|A ∪ B|

]
≤ 1 + ln(1 + δ)

1 + δ
n. Therefore there exists a choice of

A∪B such that |A∪B| ≤ E
[
|A∪B|

]
≤ 1 + ln(1 + δ)

1 + δ
n, where A∪B is a dominating set of G.

Definition 9.19. Let α(G) be the maximum size of an independent set in G.

Theorem 9.20. For any graph G, α(G) >
∑

v∈V (G)

1

d(v) + 1
where d(v) denotes the degree of v in

G.

Proof. Let V (G) = [n]. For i ∈ [n], let Ni be the neighborhood of i in G. Let Sn be the family
of all permutations π : [n]→ [n].

Given a permutation π ∈ Sn, we say a vertex i ∈ [n] is π−good, if π(i) < π(j) for any j ∈ Ni.
Let Mπ be the set of all π-good vertices.
Claim: For any π ∈ Sn, Mπ is an independent set in G.
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Proof. Suppose that there are two vertices i, j ∈Mπ with ij ∈ E(G). Let π(i) < π(j). Then j is
not π-good, a contradiction.

We pick an π ∈ Sn uniformly at random, and compute E
[
|Mπ|

]
. Since |Mπ| =

∑
i∈[n]

1{i is π-good},

we have E
[
|Mπ|

]
=
∑
i∈[n]

P (i is π-good) =
∑
i∈[n]

1

d(i) + 1
. Thus there exists a permutation π ∈ Sn

such that |Mπ| ≥
∑
i∈[n]

1

d(i) + 1
. Then by the definition of α(G) and our claim, we can get that

α(G) ≥
∑

v∈V (G)

1

d(v) + 1
which completes the proof.

Corollary 9.21. For any graph G with n vertices and m edges, we have α(G) ≥ n2

2m+n .

Proof. Exercise.

Corollary 9.22. For any graph G with n vertices and average degree d (i.e., d = 2m
n ), then

α(G) ≥ n
1+d .

Definition 9.23. Turán graph Tr(n) on r parts is an n-vertex graph G such that V (G) = V1 ∪
V2 ∪ ... ∪ Vr and |V1| ≤ |V2| ≤ ... ≤ |Vr| ≤ |V1| + 1, where ab ∈ E(G) if and only if a ∈ Vi and
b ∈ Vj for some i 6= j.

Tr(n) is a balanced complete r-partite graph.

Theorem 9.24 (Turán’s Theorem approximate form). If G is Kr+1-free, then e(G) 6
r − 1

2r
n2.

Theorem 9.25 (Turán’s Theorem exact form). If an n-vertex graph G is Kr+1-free, then e(G) 6

ex(Tr(n)) ≈ r − 1

2r
n2.

We give two proofs for the approximate version of Turán’s Theorem.

First proof. Using Corollary 9.22 (Exercise).

Second proof. We are given an n-vertex Kr+1-free graph G, where V (G) = [n]. Consider a
function p : [n]→ [0, 1] such that ∑

i∈[n]

pi = 1. (9.9)

We want to find the maximum of f(p) =
∑

ij∈E(G) pipj over all such functions p : [n] → [0, 1].
Suppose p is the function obtaining the maximum f(p), and subject to this, the number of vertices
i with p(i) 6= 0 is minimized.
Claim. {i : p(i) > 0} is a clique in G.

Proof. Suppose NOT, say p(i), p(j) > 0 and ij /∈ E(G). Let Si =
∑

k∈NG(i) pk and Sj =∑
k∈NG(j) pk. Let Si > Sj . Then we can assign a new function p∗ : [n]→ [0, 1] such that

p∗(i) = p(i) + p(j), p∗(j) = 0 and p∗(k) = p(k) for k ∈ [n] \ {i, j}.
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Now we have

f(p∗) = f(p)− (piSi + pjSj) + (pi + pj)Si = f(p) + (Si − Sj)pj > f(p).

By the choice of p, we see f(p∗) = f(p), but p∗ has fewer vertices i with positive weight than p,
a contradiction. This proves the claim.

Let S = {1, 2, ..., s} ⊆ V (G) be the set of vertices with positive weight. Then by the claim,
we see G[S] = Ks, where s ≤ r as G is Kr+1-free. Then

max
p
f(p) =

1

2

(
∑

1≤i≤s
p(i))2 −

∑
1≤i≤s

p2(i)

 =
1

2
[1−

∑
1≤i≤s

p2(i)] ≤ 1

2

[
1− s

(∑
1≤i≤s p(i)

s

)2
]

=
1

2
(1− 1

s
) ≤ 1

2
(1− 1

r
).

On the other hand,

max
p
f(p) ≥ e(G)

n2
.

Combining, we have

e(G) ≤ r − 1

2r
· n2.

9.2 The Deleting Method

Previously, we often define an appropriate probability space and then show the random structure
with desired property occurs with positive probability.

Today, we extend this idea and consider situation where random structure does not always
have the desired property, and may have some very few “blemishes”. The point that we want to
make here is that after deleting all blemishes, we will obtain the wanted structure.

First we prove a half-way bound of Corollary 9.22.

Theorem 9.26. Let G be a graph on n vertices and with average degree d. Then α(G) ≥ n
2d .

Proof. Let S ⊂ V (G) be a random subset, where for any v ∈ V , P (v ∈ S) = p. The value of p
will be given later.

Let X = |S| and Y = e(S), Then E[X] = np , E[Y ] = mp2 where m = nd
2 . So

E[X − Y ] = np− p2 · nd
2

= n(p− d

2
p2).

By taking p = 1
d , we have E[X − Y ] = n

2d . So there is a subset S ⊆ V (G) such that
|S| − e(S) ≥ E[X − Y ] = n

2d . Now we delete one vertex for each edge of S. This leaves a
subset S∗ ⊆ S. Since all edges of S are destroyed, S∗ must be an independent set of size at least
|S| − e(S) ≥ n

2d .

Recall: If
(
n
k

)
21−(k2) < 1, then Ramsey number R(k, k) > n. So R(k, k) > 1

e
√

2
k2

k
2 .

Theorem 9.27. For all n, R(k, k) > n−
(
n
k

)
21−(k2).
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Proof. Consider a random 2-edge-coloring of Kn, where each edge is colored by red or blue with
probability 1

2 , independent of other choices. For A ∈
([n]
k

)
, let XA be the indicator random

variable of the event that A induces a monochromatic Kk.
Let X =

∑
A∈([n]k )XA be the number of monochromatic k-subsets. Then we have

E[X] =
∑

A∈([n]k )

E[XA] =

(
n

k

)
21−(k2).

So there exists a 2-edge-coloring of Kn, where the number of monochromatic k-subsets is at most

E[X] =
(
n
k

)
21−(k2). Next we remove one vertex from each monochromatic k-subset. This will

delete at most X ≤
(
n
k

)
21−(k2) vertices and destroy all monochromatic k-subsets. So it remains at

least n−
(
n
k

)
21−(k2) vertices, which contains NO monochromatic Kk.

Corollary 9.28.

R(k, k) >
1

e
(1 + o(1))k2

k
2 .

Proof. Exercise, by maximizing n−
(
n
k

)
21−(k2) for a fixed k.

9.3 Markov’s Inequality

Theorem 9.29 (Markov’s Inequality). Let X ≥ 0 be a random variable and t > 0, then P (X ≥
t) ≤ E[X]

t .

Corollary 9.30. Let Xn ≥ 0 be integer value random variable for n ∈ N+ in (Ωn, Pn). If
E[Xn]→ 0 as n→ +∞, then P (Xn = 0)→ 1 (as n→ +∞), i.e., Xn = 0 almost surely occurs.

Theorem 9.31. For a random graph G(n, p) where p ∈ (0, 1), then

P

(
α(x) ≤ d2 lnn

p
e
)
→ 1 as n→ +∞.

Proof. Let k = d2 lnn
p e. For any S ∈

( [n]
k+1

)
, let AS be the event that S is an independent set, and

let XS be the indicator random variable of the event AS . Let Xn =
∑

S∈( [n]
n+1)

XS be the number

of independent set of size k + 1. Then P (α(G) ≤ k) = P (Xn = 0). Now we compute E[Xn] as
following:

E[Xn] =
∑

S∈( [n]
k+1)

E[XS ] =

(
n

k + 1

)
(1− p)(

k+1
2 )

≤ nk+1

(k + 1)!
e−p(

k+1
2 )

=
1

(k + 1)!
(ne−p·

k
2 )k+1

≤ 1

(k + 1)!
→ 0.

By the corollary, we see that P (α(G) ≤ k) = P (Xn = 0)→ 1 as n→ +∞.
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Definition 9.32. For a graph G, the chromatic number χ(G) is the minimum integer k such
that V (G) can be partitioned into k independent sets.

Fact 9.33. (1). χ(Kn) = n,
(2). χ(G) ≤ 2 if and only if G is bipartite,
(3). χ(C2n+1) = 3.

Proposition 9.34. For any graph G on n vertices, χ(G) · α(G) ≥ n.

Definition 9.35. The girth g(G) of a graph G is the length of a shortest cycle in G.

Theorem 9.36 (Erdős). For any k ∈ N+, there exists a graph G with χ(G) ≥ k and g(G) ≥ k.

Proof. Consider a random graph G = G(n, p) where p will be determined later. Let t = d2 lnn
p e,

by the previous theorem, α(G) ≤ t almost surely occurs.
Let Xn be the number of cycles of length less than k in G. Then

E[Xn] =
k−1∑
i=3

n(n− 1) · · · (n− i+ 1)

2i
· pi,

where n(n−1)···(n−i+1)
2i is the number of C ′is in Kn. So

E[Xn] ≤
k−1∑
i=3

(np)i =
(np)k − 1

np− 1
.

By Markov’s inequality,

P (Xn >
n

2
) ≤ E[Xn]

n/2
≤ 2[(np)k − 1]

n(np− 1)
.

Let p = n−
k−1
k . So np = n

1
k . Then

P (Xn >
n

2
) ≤ 2(n− 1)

n(n
1
k − 1)

→ 0 as n→ +∞.

So there exists a graph G on n vertices such that Xn ≤ n/2 and α(G) ≤ t = d2 lnn
p e ≤ 3 lnn ·n

k−1
k .

By deleting one vertex from each cycle of length at most k−1, we can find an induced subgraph
G∗ of G, which has at least n

2 vertices and NO cycles of length at most k − 1. Moreover,

α(G∗) ≤ α(G) ≤ 3 lnn · n
k−1
k .

By Proposition 9.34, we have

χ(G∗) ≥ |V (G∗)|
α(G∗)

≥ n/2

3(lnn)n
k−1
k

≥ n1/k

6 lnn
≥ k and g(G∗) ≥ k.
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10 The Algebraic Method

10.1 Odd/Even Town

Question 10.1. A town has n residents. They want to form some clubs according to the following
rules:

(i) Each club has an odd number of members.

(ii) Every 2 clubs must share an even number of members.

How many clubs can they form?

Example 10.2. (a) Ai = {i} for i ∈ [n]⇒ n clubs.

(b) n is even, Ai = [n] \ {i} ⇒ n clubs.

(c) n is even, A1 = [n] \ {1}, A2 = [n] \ {2}, Ai = {1, 2, i} for i ∈ {3, ..., n} ⇒ n clubs.

Theorem 10.3 (Odd/Even town). Let F ⊆ 2[n] be a family satisfying:

(i) |A| is odd for all A ∈ F ,

(ii) |A ∩B| is even, for all A 6= B ∈ F .

Then |F| ≤ n.

Proof. For each A ∈ F , we define an indicator vector ~1A ∈ Fn2 = {0, 1}n such that

~1A(i) =

{
1, if i ∈ A,
0, if i /∈ A,

where F2 is the finite field of size 2. Then, these conditions become{
~1A · ~1A = 1, for any A ∈ F ,
~1A · ~1B = 0, for any A 6= B ∈ F .

Next, we claim that these vectors ~1A in Fn2 are linearly independent.
Let αA ∈ F2, such that

∑
A∈F αA

~1A = ~0. Then for any B ∈ F ,

0 = ~0 · ~1B = (
∑
A∈F

αA~1A) · ~1B =
∑
A∈F

αA(~1A · ~1B) = αB · ~1B · ~1B = αB.

This proves the claim. Therefore the number of vectors ~1A’s is at most the dimension of Fn2 ,
which is n. So |F| ≤ n.
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10.2 Even/Odd Town

Theorem 10.4 (Even/Odd town). Let F ⊆ 2n be such that:

(i) |A| is even, for all A ∈ F ,

(ii) |A ∩B| is odd, for all A 6= B ∈ F .

Then |F| ≤ n.

First we show a weaker result:

Lemma 10.5. Such F satisfies |F| ≤ n+ 1.

Proof. Adding a new element n+1 to each set A ∈ F to get a new family F∗. We see F∗ satisfies
the Odd/Even town conditions. So |F| = |F∗| ≤ n+ 1.

Now we give the proof of Theorem 10.4.

Proof of Theorem 10.4. It suffices to prove that |F| 6= n + 1. Suppose for a contradiction that
F = {A1, A2, · · · , An+1}. For each Ai ∈ F , define ~1Ai ∈ Fn2 as before. So we have n+ 1 vectors
in an n-dimension space. Thus, they must be linearly dependent. Therefore, there exist αi ∈ F2

for 1 ≤ i ≤ n+ 1 which are not all 0’s such that

n+1∑
i=1

αi~1Ai = ~0.

We also have {
~1A · ~1A = 0, for any A ∈ F
~1A · ~1B = 1, for any A 6= B ∈ F .

Then for each 1 ≤ j ≤ n+ 1,

0 = ~0 · ~1Aj =

(
n+1∑
i=1

αi~1Ai

)
· ~1Aj =

n+1∑
i=1

αi − αj .

So αj =
∑n+1

i=1 αi for all 1 ≤ j ≤ n+ 1. They are all equal. Because all αj ’s can not be all 0’s, we
derive that αj = 1 for all 1 ≤ j ≤ n+ 1 and n must be even. Moreover,

n+1∑
i=1

~1Ai = ~0. (10.10)

Consider Fc = {Ac : A ∈ F}, we will see that Fc also satisfies the Even/Odd town conditions:

• |Ac| = n− |A| is even, for all A ∈ F .

• |Ac ∩Bc| = n− |A ∪B| = n− |A| − |B|+ |A ∩B| is odd, for all A 6= B ∈ F .
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By the same proof, we can derive that

n+1∑
i=1

~1Aci = ~0. (10.11)

Now (10.10)+(10.11) gives that

~0 =

n+1∑
i=1

(~1Ai + ~1Aci ) = (n+ 1)~1 = ~1,

a contradiction.

Example 10.6 (Even/Even-town). Let F ⊂ 2[n] be such that:

(i) |A| =even, for all A ∈ F ,

(ii) |A ∩B| =even, for all A 6= B ∈ F .

Then |F| ≤ 2n/2. (let n be even)

10.3 Fisher’s Inequality

Theorem 10.7 (Fisher’s Inequality). For a fixed k, let F ⊆ 2[n] be a family such that |A∩B| = k,
for all A 6= B ∈ F . Then, |F| ≤ n.

Proof. For each A ∈ F , define vector ~1A ∈ Rn as before. Then for any A,B ∈ F , ~1A · ~1B = k.
Again, we want to show ~1A’s are linearly independent over Rn. Let

∑
A∈F αA

~1A = ~0, where
αA ∈ R. Then

0 =

(∑
A∈F

αA~1A

)
·

(∑
A∈F

αA~1A

)
=
∑
A∈F

α2
A
~1A · ~1A +

∑
A 6=B

αAαB~1A · ~1B

=
∑
A∈F

α2
A|A|+ k ·

∑
A 6=B

αAαB = k

(∑
A∈F

αA

)2

+
∑
A∈F

α2
A(|A| − k) ≥ 0,

where the last inequality holds because each A is of size at least k. This implies that
∑

A∈F αA = 0
and α2

A(|A|−k) = 0 for all A ∈ F . Since |A∩B| = k for any A 6= B ∈ F , we have at most one set
A of size exactly k. Call this subset A∗ if exists. Thus for each A ∈ F \ {A∗}, αA = 0. However∑

A∈F αA = 0, we derive that all αA = 0. Thus all ~1A’s are independent and then |F| ≤ n.

Lemma 10.8. Suppose P is a set of n points in R2. Then either they are in a line, or they define
at least n lines.

Proof. Let L be the family of all lines defined by P . We want to show that |L| = 1 or |L| ≥ n
For each point xi ∈ P , define Li = {` ∈ L : the line ` passes through xi}. Note that for all i 6= j,
|Li ∩ Lj | = 1. We also observe that there exist i 6= j with Li = Lj if and only if all n points lie
in a line. Therefore, either |L| = 1, or for any xi, xj ∈ P , we have Li 6= Lj . We may assume that
the second case occurs. Let F = {Li : xi ∈ P}. Clearly, F satisfies the conditions of Fisher’s
inequality, so we can derive that n = |F| ≤ |L|.
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Lemma 10.9. Let G be a graph whose vertices are triples in
(

[k]
3

)
such that for any two A,B ∈(

[k]
3

)
, A ∼G B if and only if |A∩B| = 1. Then G doesn’t contain any clique or independent set of

size k+1.

Proof. Consider the maximum clique ofG, say using vertices A1, A2, ..., Am ∈
(

[k]
3

)
with |Ai∩Aj | =

1, for 1 ≤ i < j ≤ m. By Fisher’s inequality, m ≤ k.
Now consider the maximum independent set of G, say consisting of vertices B1, B2, ..., Bt ∈(

[k]
3

)
. We see |Bi| = 3 is odd and |Bi ∩Bj | = 0 or 2 is even. By Odd/Even-town, we have t ≤ k.

Corollary 10.10. R(k + 1, k + 1) >
(
k
3

)
.

Remark 10.11. This gives us an explicit construction for Ramsey number R(k + 1, k + 1).

Note that this bound is much weaker than previous bound R(k + 1, k + 1) > c · k2
k
2 .

10.4 1-Distance Problem

Problem 10.12 (1-Distance Problem). Given n points in R2, what is the maximum number of
pairs of distance 1?

Theorem 10.13. There are at most O(n
3
2 ) pairs at distance 1.

Proof. Define a graph G on n points as following: for points a, b, a ∼ b if and only if d(a, b) = 1.
We claim that G is K2,3-free. Since the neighbors of the point a must lie on the circle with

center a and with radius 1, and any such 2 circles can intersect at most 2 points, then they show
that G is K2,3-free.

Thus the number of pairs at distance 1 is

e(G) ≤ ex(n,K2,3) = O(n
3
2 ).

Example 10.14.

ex(n,K2,3) = O(n
3
2 ).

Open problem (Erdős). Can one find an example of n points in R2 with n1+c pairs at distance
1 for c > 0?

Problem 10.15. What is the maximum number of points in Rn such that the distance between
any two points is 1?

Theorem 10.16. There are at most n + 1 points in Rn such that the distance between any two
points is 1.

Proof. Assume we have m+ 1 such points in Rn. We assume one of them is ~0 and let others be
~v1, ~v2, ..., ~vm ∈ Rn. Then we have

• ~vi · ~vi = ||~vi −~0||2 = 1 for i ∈ [m],

• ~vi · ~vj = 1
2 , for any i 6= j ∈ [m],
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because 1 = ||~vi − ~vj ||2 = ||~vi||2 + ||~vj ||2 − 2~vi · ~vj = 1 + 1− 2~vi · ~vj .
Consider the matrix

A =


~v1

~v2
...
~vm


m×n

.

So

A ·AT =


1 1

2 · · · 1
2

1
2 1 · · · 1

2
...

...
. . .

...
1
2

1
2 · · · 1


m×m

.

Since det(A · AT ) 6= 0, we get rank(A · AT ) = m. Then n ≥ rank A ≥ rank(A · AT ) = m. So
m ≤ n as desired.

Remark: we can also apply this method for the Even/Odd town problem.

Definition 10.17. A 2-distance set is a set of points in Rn whose pairwise distance is either c
or d for some c, d > 0.

Problem 10.18 (2-Distance Problem). What is the maximum size of a 2-distance set?

In the previous approach, we define a vector ~1A for each A ∈ F . Instead of considering vectors,
one also can define certain polynomials, as polynomials of certain degree also form a vector space.

Lemma 10.19. For i ∈ [n], let fi : Ω→ F be polynomial, where F is a field. If there are elements
vi ∈ Ω for i ∈ [n] satisfying {

fi(vi) 6= 0, for any i ∈ [n]

fi(vj) = 0, for any j < i,

then f1, f2, ..., fn are linear independent over the “linear space” spanned by polynomials f : Ω→ F.

Proof. Exercise.

Theorem 10.20. Any 2-distance set in Rn has at most 1
2(n+ 1)(n+ 4) points.

Proof. Let A = {~a1,~a2, ...,~am} be such a set with distances c > 0, d > 0. For each i ∈ [m], define
fi(~x) = (||~x− ~ai||2 − c2)(||~x− ~ai||2 − d2) for ~x ∈ Rn . Then{

fi(~ai) = c2d2 6= 0, for any i

fi(~aj) = (||~aj − ~ai||2 − c2)(||~aj − ~ai||2 − d2) = 0, for any j 6= i.

By Lemma 10.19, f1, f2, ..., fm are linearly independent in the “linear space” that contains
f1, ..., fm . We want to bound the dimension of “some vector space” which contains all polynomials
f1, f2, ..., fm.

Let ~x = (x1, x2, ..., xn),~ai = (ai1, ..., ain). Note that

fj(~x) = (
∑
i

(xi − aji)2 − c2)(
∑
i

(xi − aji)2 − d2)

= (
∑
i

x2
i − 2

∑
i

xiaji +
∑
i

a2
ji − c2)(

∑
i

x2
i − 2

∑
i

xiaji +
∑
i

a2
ji − d2),
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can be expressed as the linear combination of the following polynomials:

B = {(
∑
i

x2
i )

2, xj(
∑
i

x2
i ), xixj , xi, 1}.

We see that B contains 1 + n +
(
n
2

)
+ n + n + 1 = n(n−1)

2 + 3n + 2 = (n+1)(n+4)
2 elements and

each fi is contained in the linear space spanned by B. So |A| = m is at most the dimension of

span(B), which is at most (n+1)(n+4)
2 .

Remark 10.21. This proof can be extended to k-distance Problem.

Next, we consider a generalization of Fisher’s inequality.

Definition 10.22. Consider a subset L ⊆ {0, 1, 2, ..., n}. We say a family F ⊆ 2[n] is L-
intersecting, if for any A 6= B ∈ F , |A ∩B| ∈ L .

Theorem 10.23 (Frankl-Wilson, 1981). If F ⊆ 2[n] is an L-intersecting family, then |F| ≤∑|L|
k=0

(
n
k

)
.

Proof. Let F = {A1, A2, ..., Am} where |A1| ≤ |A2| ≤ · · · ≤ |Am|. For each i ∈ [m], define
fi(~x) : Rn → Rn by

fi(~x) =
∏

`∈L,`<|Ai|

(~x ·~1Ai − `).

Consider the indicator vectors ~1A1 ,~1A2 , ...,~1Am . Then we have

• fi(~1Ai) =
∏
`∈L,`<|Ai|(|Ai| − `) > 0, for any i ∈ [n],

• fi(~1Aj ) =
∏
`∈L,`<|Ai|(|Ai ∩Aj | − `) = 0, for all j < i.

This is because we have ` = |Aj ∩ Ai| ∈ L and ` < |Ai| for some ` (as j < i, |Aj | ≤ |Ai|). By
Lemma 10.19, we see that f1, f2, ..., fm are linear independent.

Next we want to define some new polynomials f̃i(~x) from fi such that f̃1, f̃2, ..., f̃m are remain
linearly independent, but these f̃i(~x)’s lie in a “better” linear space.

Observer that all vector ~1Aj are 0/1-vectors. Let f̃i(~x) be a new polynomial obtained from

fi(~x) by replacing all terms xkj (for k ≥ 1) by xj .

For any 0/1-vectors ~y, we have f̃i(~y) = fi(~y). This shows that f̃1, f̃2, ..., f̃m are also linearly
independent. And we see each f̃i(~x) is a linear combination of the monomials

∏
i∈I xi for I ∈ [n]

with |I| 6 |L| (as degf̃i ≤ degfi ≤ |L| ). Clearly the number of such monomials is at most∑|L|
k=0

(
n
k

)
which is also the dimension of the space containing f̃1, f̃2, ..., f̃m. This prove that

|F| = |m| ≤
|L|∑
k=0

(
n

k

)
.

Theorem 10.24. Let p be a prime and L ⊆ Fp = {0, 1, ..., p − 1}. Let F ⊆ 2[n] be a family
satisfying that
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• |A| /∈ L (mod p) for any A ∈ F ,

• |A ∩B| ∈ L (mod p) for all A 6= B ∈ F .

Then |F| ≤
∑|L|

k=0

(
n
k

)
.

Proof. All operations are mod p. Let F = {A1, ..., Am}. Define fi(~x) : F∗p → Fp be such that

fi(~x) =
∏
`∈L

(~x ·~1Ai − `).

Then

• fi(~1Ai) =
∏
`∈L(|Ai| − `) 6= 0, for any i ∈ [n],

• fi(~1Aj ) =
∏
`∈L(|Ai ∩Aj | − `) = 0 for all i 6= j.

So f1, f2, ..., fm are linearly independent over Znp . Then repeating the proof of Theorem 10.23,
we get the desired bound.

Now we prove an application of these results.

Theorem 10.25 (Frankl-Wilson). For any prime p, there is a graph G on n =
( p3

p2−1

)
vertices

such that both of the maximum clique and the maximum independent set are at most
p−1∑
i=0

(
p3

i

)
.

Proof. Let G = (V,E) be the following graph, where V =
( [p3]
p2−1

)
, and for A,B ∈ V , A ∼G B if

and only if |A ∩B| 6≡ p− 1 (mod p).

Consider the maximum clique with vertex A1, A2, ..., Am ∈
( [p3]
p2−1

)
. Thus we have

• |Ai ∩Aj | 6≡ p− 1 (mod p), for all i 6= j,

• |Ai| = p2 − 1 ≡ p− 1 (mod p), for any i ∈ [n].

By Theorem 10.24 with L = {0, 1, 2, ..., p− 2} ⊆ Fp we can derive that m 6
p−1∑
i=0

(
p3

i

)
.

Consider the maximum independent set B1, B2, ..., Bt. Then we have |Bi∩Bj | = p−1 (mod p)
for all i 6= j, implying that |Bi∩Bj | ∈ {p−1, 2p−1, ..., p(p−1)−1} = L∗ with |L∗| = p−1. Thus

B1, B2, ..., Bt is L∗-intersecting family in
( [p3]
p2−1

)
. By Theorem 10.23, we have t 6

∑p−1
i=0

(
p3

i

)
.

Corollary 10.26.
R(k + 1, k + 1) ≥ kΩ(log(k)/ log(log(k)).

Proof. Use the construction from Theorem 10.25. Let k =
∑p−1

i=0

(
p3

i

)
. So R(k + 1, k + 1) > n.

We have that

k =

p−1∑
i=0

(
p3

i

)
'
(
p3

p

)
' (p2)p ' p2p, n ' (

p3

p2
)p

2 ' pp2 ,

which implies that
log(k) ' p log(p), log(log(k)) ' log(p),
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so

p ' log(k)

log(log(k))
.

Then we have

n =

(
p3

p2 − 1

)
' (p2p)p/2 ' kp = kΩ(log(k)/ log(log(k))).

Definition 10.27. Given a set S ⊆ Rn, the diameter of S is defined as Diam(S) = sup{d(x, y) :
x, y ∈ S} where d(x, y) denotes the Euclidean distance between x and y in Rn.

If Diam(S) < +∞, then we say S is bounded.
Borswk’s Conjecture: Every bounded S ⊆ Rd can be partitioned into d + 1 sets of strictly
smaller diameter.

Remark 10.28. This was verified for all S ⊆ Rd with d 6 3 and for the S is a sphere and any
d ≥ 2.

Lemma 10.29. For any prime p, there is a set F of 1
2

(
4p
2p

)
vectors in {−1, 1}4p such that every

subset of size 2
(

4p
p−1

)
vectors contains an orthogonal pair of vectors.

Proof. Let Q={I ∈
(

[4p]
2p

)
: 1 ∈ I}, then |Q| = 1

2

(
4p
2p

)
. For any I ∈ Q, define ~vI ∈ {−1, 1}4p by

~vIi =

{
1, i ∈ I
− 1, i /∈ I.

Let F = {~vI : I ∈ Q} with |F| = |Q| = 1
2

(
4p
2p

)
.

Claim 1. ~vI ⊥ ~vJ if and only if |I ∩ J | ≡ 0 (mod p).

Proof. ~vI ⊥ ~vJ if and only if ~vI ·~vJ = 0. Since ~vI ·~vJ = |I∩J |−|IC∩J |−|I∩JC |+|IC∩JC | (we have
|I∩J | = |IC∩JC | as |I| = |J | = 2p), we have that ~vI ⊥ ~vJ if and only if |I∆J | = 2p = 4p−2|I∩J |
if and only if |I ∩ J | = p

Since 1 ∈ I ∩ J and |I| = |J | = 2p, we have ~vI ⊥ ~vJ if and only if |I ∩ J | ≡ 0 (mod p).

Claim 2. For any subset F ′ ⊆ F without orthogonal pairs, |F ′| ≤
∑p−1

k=0

(
4p
k

)
< 2
(

4p
p−1

)
.

Proof. Let Q′ = {I ∈ Q : ~vI ∈ F ′}. By Claim 1, Q′ is a subfamily of
(

[4p]
2p

)
satisfying

• |A| = 2p ≡ 0 (mod p), for any A ∈ Q′,

• |A ∩B| 6= 0 (mod p), for any A 6= B ∈ Q′.

By Theorem 10.25 (with L = {1, 2, ..., p− 1}), we get |F ′| = |Q′| ≤
∑p−1

k=0

(
4p
k

)
.

Now the conclusion of Lemma follows by Claim 2.

Definition 10.30. The tensor product of a vectors ~v ∈ Rn is ~w = ~v ⊗ ~v ∈ Rn2
by wij = vi · vj

for all 1 ≤ i, j ≤ n.
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Theorem 10.31 (Kahn-Kalai, 1993). For sufficiently large d, there exists a bounded set S ⊂ Rd(a

finite set) such that any partition of S into 1.1
√
d subsets contains a subset of the same diameter.

Proof. Take the family F from the above lemma. So F ⊂ {−1, 1}n ⊂ Rn (with n = 4p). Let
X = {~v ⊗ ~v : ~v ∈ F} ⊆ Rn2

. Let d = n2 = (4p)2 = 16p2. For any ~w = ~v ⊗ ~v ∈ X,

||~w||2 =
∑

1≤i,j≤n
w2
ij =

∑
1≤i,j≤n

v2
i v

2
j = (

n∑
i=1

v2
i )(

n∑
j=1

v2
j ) = n2,

and thus ||~w|| = n.
For ~w = ~v ⊗ ~v, ~w′ = ~v′ ⊗ ~v′ ∈ X, we have

~w · ~w′ =
∑

1≤i,j≤n
wijw

′
ij =

∑
1≤i,j≤n

(viv
′
i)(vjv

′
j) = (

∑
viv
′
i)

2 = (~v · ~v′)2.

This says that ~w ⊥ ~w′ if and only if ~v ⊥ ~v′. Thus,

||~w − ~w′||2 = ||~w||2 + ||~w′||2 − 2~w · ~w′ = 2n2 − 2(~v · ~v′)2 ≤ 2n2,

this proves that Diam(X) =
√

2n and |X| = |F| = 1
2

(
[4p]
2p

)
.

By Lemma 10.29, any subset of 2
(

4p
p−1

)
vectors in F contains an orthogonal pair of vector

~v,~v′. Thus, any subset of 2
(

4p
p−1

)
vectors in X must contain a pair ~w = ~v ⊗ ~v, ~w′ = ~v′ ⊗ ~v′ with

~v ⊥ ~v′, which give the maximum distance ||~w − ~w′|| =
√

2n. Thus to decrease the diameter, we
must partition X into subsets of size less than 2

(
4p
p−1

)
, so the number of subsets needed is at least

|X|
2
(

4p
p−1

) =

1
2

(
4p
2p

)
2
(

4p
p−1

) =
1

4

(3p+ 1) · · · (2p+ 1)

(2p) · · · (p)
≥ 1

4
· (3

2
)p+1 ≥ C · (3

2
)
√
d
4 ≥ 1.1

√
d,

where d = n2 = 16p2 is the dimension of X.

10.5 Bollobás’ Theorem

We first recall the following theorem which we learned in Chapter 3.2.

Sperner’s Theorem: Let F ⊆ 2[n] be a family such that for any A 6= B ∈ F , A 6⊆ B, and
B 6⊆ A, then |F| ≤

(
n
bn
2
c
)
.

LYM-inequality: For such F ,
∑
A∈F

1

( n
|A|)
≤ 1.

Theorem 10.32 (Bollobás’ Theorem). Let A1, A2, ..., Am and B1, B2, ..., Bm be the subsets of
some ground set Ω. If we have

(1) Ai ∩Bj 6= ∅, for any i 6= j ∈ [m],

(2) Ai ∩Bi = ∅, for any i ∈ [m].

Then
m∑
i=1

1

(ai+biai
)
≤ 1, where ai = |Ai| and bj = |Bj |.
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Remark 10.33. The condition (1): Ai ∩ Bj 6= ∅, for any i 6= j cannot be weakened to i < j;
otherwise we have the following counterexamples:

• m = 2, A1 = B2 = {1} and A2 = B1 = ∅.

We can see that
m∑
i=1

1

(ai+biai
)

= 2 > 1.

• m = 3, A1 = B2 = {1}, A2 = A3 = B1 = {3}, and B3 = {1, 2}.

We can see that
m∑
i=1

1

(ai+biai
)

= 4
3 > 1.

Proposition 10.34. Bollobás’ Theorem can imply LYM-inequality and LYM-inequality will imply
Sperner’s Theorem.

Proof. We first show that Bollobás’ Theorem can imply the LYM-inequality. Let F ⊆ 2[n] satisfy
that A 6⊆ B, and B 6⊆ A for any A 6= B ∈ F . Let F = {A1, A2, ..., Am} and F ′ = {B1, B2, ..., Bm},
where Bi = [n]\Ai. We now varify that A1, ..., Am and B1, ..., Bm satisfy the conditions (1) and
(2).

• Ai ∩Bj = Ai\Aj 6= ∅, for any i 6= j ∈ [m],

• Ai ∩Bi = ∅, for any i ∈ [m].

So by Bollobás’ Theorem:

1 ≥
m∑
i=1

1(
ai+bi
ai

) =
∑
A∈F

1(
n
|Ai|
) .

Note that LYM-inequality can easily imply the Sperner’s Theorem and we are done.

Proof of Bollobás’ Theorem. Let X =
m⋃
i=1

(Ai ∪ Bi) and let n = |X|. We will prove by induction

on n. Base case: n = 1 (A1 = {1}, B1 = ∅) is clear.
Now we assume this statement holds for |X| ≤ n − 1. Let Ix = {i ∈ [m] : x /∈ Ai} for any

x ∈ X. Define Fx = {Ai : i ∈ Ix} ∪ {Bi\{x} : i ∈ Ix}. Since each set in Fx doesn’t contain x, we
see that |∪S∈FxS| ≤ |X \ {x}| ≤ n− 1. Moreover, the family Fx satisfy the induction hypothesis.
Hence by induction, we get ∑

i∈Ix

1(|Ai|+|Bi\{x}|
|Ai|

) ≤ 1, for any x ∈ X.

We sum up the above inequalities for all x ∈ X and get∑
x∈X

∑
i∈Ix

1(|Ai|+|Bi\{x}|
|Ai|

) ≤ n. (10.12)

For each i ∈ [m], it contributes either 0, or 1

(ai+biai
)

or 1

(ai+bi−1
ai

)
to each x. The term 1

(ai+biai
)

occurs

when i ∈ Ix and x /∈ Bi, i.e., x /∈ Ai ∪ Bi which occur exactly (n − ai − bi) times. The term
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1

(ai+bi−1
ai

)
occurs when i ∈ Ix and x ∈ Bi, i.e., x ∈ Bi which occur exactly bi times. Therefore, we

see that (10.12) is equivalent to

m∑
i=1

(
(n− ai − bi)

1(
ai+bi
ai

) + bi
1(

ai+bi−1
ai

)) ≤ n.
Since we have 1

(ai+bi−1
ai

)
= 1

(ai+biai
)
· ai+bibi

, which implies that

n

m∑
i=1

1(
ai+bi
ai

) ≤ n,
as claimed.

Definition 10.35. Let F be a field. A set A ⊆ Fn is in general position, if any n vectors in A
are linearly independent over F.

Example 10.36. For a ∈ F, let ~m(a) = (1, a, a2, ..., an−1) ∈ Fn be a moment curve. Then
{~m(a) : a ∈ F} is in general position (because of the Vandermonde matrix).

Next, we use the so-called “general position” argument to prove the skew version of Bollobás’
Theorem, where the condition (1) is relaxed to i < j.

Theorem 10.37. (The skew version of Bollobás’ Theorem) Let A1, ..., Am be the sets of size r
and B1, ..., Bm be the sets of size s such that

• Ai ∩Bj 6= ∅, for any i < j,

• Ai ∩Bi = ∅, for any i ∈ [m].

Then m ≤
(
r+s
s

)
.

Proof. Let X=
⋃
i∈[m](Ai ∪Bi). Take a set V of vectors ~v = (v0, v1, ..., vr) in Rr+1 such that V is

in general position and |V | = |X|. Then we identify the elements of X with vectors of V . From
now on, we may view each Ai or Bj as a subset in V ⊆ Rr+1, where |Ai| = r and |Bj | = s. For
each j ∈ [m], we define fj(~x) =

∏
~v∈Bj ~x · ~v for any ~x ∈ Rr+1. So

fj(~x) =
∏

~v=(v0,...,vr)
~v∈Bj

(v0x0 + · · ·+ vrxr),

where ~x = (x0, ..., xr) ∈ Rr+1.Note that fj(~x) is generated by the following monomials xi00 x
i1
1 · · ·xirr ,

where i0 + i1 + · · · + ir = s and ij ≥ 0 for 0 ≤ j ≤ r. There are exactly
(
s+r
r

)
such monomials,

so f1, f2, .., fm are contained in a polynomial linear space of dimension
(
s+r
r

)
. It suffices to prove

that f1, f2, .., fm are linearly independent. Note that

fj(~x) = 0 if and only if there exists some ~v ∈ Bj such that ~v · ~x = 0. (10.13)

Consider the linear subspace Span(Ai), which is spanned by the r vectors in Ai. Since Ai ⊆ V ⊆
Rr+1 and V is in general position, we see that all r vectors in Ai are linearly independent and
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thus dim
(
Span(Ai)

)
= r. So (Span(Ai))

⊥ has dimension 1. We choose ~ai ∈ (Span(Ai))
⊥ for

each i ∈ [m]. Then for each ~v ∈ V ,

~v · ~ai = 0 if and only if ~v ∈ Span(Ai) if and only if ~v ∈ Ai. (10.14)

Because, otherwise the r + 1 vectors in {~v} ∪ Ai are linearly dependent, contradicting that V is
in general position.

Combining (10.13) and (10.14), fj(~ai) =
∏
~v∈Bj ~v · ~ai = 0 if and only if there exists ~v ∈ Bj

such that ~v · ~ai = 0 which is equivalent to say that there exists ~v ∈ Bj ∩ Ai, i.e., Ai ∩ Bj 6= ∅.
Thus we get the following {

fj(~ai) = 0, for any i < j,

fi(~ai) 6= 0, for any i.

By Lemma 10.19, we now see that f1, ..., fm are linearly independent.

10.6 Covering by Complete Bipartite Subgraphs

Problem. Determine the minimum m = m(n) such that the edge set E(Kn) of a clique Kn can
be partitioned into a disjoint union of edge sets of m complete subgraphs of Kn.

Fact 10.38. m(n) ≤ n− 1.

Proof. Because we can express E(Kn) as a disjoint union of n− 1 stars.

We remark that there are more than one way to partition E(Kn) into n−1 complete bipartite
subgraphs.

Theorem 10.39 (Graham-Pollak). m(n) = n− 1.

Proof. Suppose that E(Kn) = E(B1) ∪ E(B2) ∪ · · · ∪ E(Bm), where B1, B2, ..., Bm are complete
bipartite subgraphs on [n]. We want to show that m ≥ n− 1. Let Xi and Yi be the two parts of

Bi. For Bk, we define an n× n matrix Ak = (a
(k)
ij )n×n by

a
(k)
ij =

{
1, if i ∈ Xk and j ∈ Yk,
0, otherwise.

It is clear to see that rank(Ak) = 1 for any k. Let A =
∑m

k=1Ak, implying rank(A) ≤∑m
k=1 rank(Ak) = m. Then A + AT = Jn − In, where Jn = (1)n×n, because each ij ∈ E(Kn)

belongs to exactly one of the graphs Bk, where we have a
(k)
ij = 0 and a

(k)
ji = 1 or a

(k)
ij = 1 and

a
(k)
ji = 0. It suffices to show that rankA ≥ n− 1.

Suppose for a contradiction that rankA ≤ n − 2. Let A′ be the (n + 1) × n matrix obtained
from A by adding an extra row (11 · · · 1), so rank(A′) ≤ n − 1. Then there exists a non-zero
vector ~x ∈ Rn such that A′~x = ~0 ∈ Rn+1, which is equivalent to A~x = ~0 ∈ Rn and ~1 · ~x = 0,
where ~x = (x1, ..., xn). Consider ~xT (A+AT )~x = ~xT (Jn− In)~x implying that 0 = ~xTJn~x− ~xT~x =
0−

∑n
i=1 x

2
i < 0, a contradiction. This proves that n− 1 ≤ rankA ≤ m.
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11 Finite Projective Plane (FPP)

Definition 11.1. Let X be a finite set and L ⊆ 2X be a family. The pair (X,L) is called a finite
projective plane (FPP for short) if it satisfies the following three properties.

(P0) There exists a 4-set F ⊆ X such that |F ∩ L| ≤ 2 for any L ∈ L.

(P1) Any two L1, L2 ∈ L has |L1 ∩ L2| = 1.

(P2) For any two x1, x2 ∈ X, there exists exactly one subset L ∈ L with {x1, x2} ⊆ L.

We call the elements of X as points, and the sets in L as lines. Let us explain the three properties:

• (P0) is used to exclude some non-interesting cases.

• (P1) says that any two lines intersect at exactly one point.

• (P2) says that any two points determine exactly one line.

Example 11.2 (The Fano plane (the smallest FPP)). Where the set X = [7] has 7 points and
the set L has 7 lines with L = {{1, 2, 3}, {3, 4, 5}, {1, 5, 6}, {1, 4, 7}, {2, 5, 7}, {3, 6, 7}, {2, 4, 6}} .

Proposition 11.3. Let (X,L) be a FPP. Then any two lines L,L′ ∈ L satisfy |L| = |L′|.

Proof. We claim that there exists a point x ∈ X with x /∈ L∪L′. To see this, let F ⊆ X be from
(P0). Then |F ∩L| ≤ 2, |F ∩L′| ≤ 2. So we may assume that F = {a, b, c, d} and F ∩L = {a, b},
F ∩L′ = {c, d}. Let ac denote the line in L containing a and c; similarly, define bd. Let z ∈ ac∩bd
be the unique point. If z /∈ L ∪ L′, then we are done. So we may assume z ∈ L, i.e., z ∈ L ∩ ac.
But a ∈ L ∩ ac, which implies that z = a. But again, we see a, b ∈ L ∩ bd, a contradiction.

For any point ` ∈ L, the line x` intersects with L′ at the unique point, say `′ ∈ L′. We define
a mapping φ : L → L′ by letting φ(`) = `′ for any ` ∈ L. Next we show that φ is a bijection
between L and L′. (Exercise)

Definition 11.4. Let (X,L) be a finite projective plane. The order of (X,L) is the number
|L| − 1, for each L ∈ L.

Proposition 11.5. Let (X,L) be a FPP of order n. Then

(1) For each x ∈ X, there are exactly n+ 1 lines passing through x.

(2) |X| = n2 + n+ 1.

(3) |L| = n2 + n+ 1.

Proof. (1). Consider x ∈ X. Let F be the 4-set satisfying (P0). Let a, b, c ∈ F\{x}. Then, at
least one of the lines ab, ac which doesn’t contain x (otherwise, a, b, c, x are in the same line). Let
L be such a line with x /∈ L. Let L = {x0, x1, ..., xn}. Then xix define n + 1 lines. On the other
hand, any line passing through x must intersect at some point say xi. Thus, there are exactly
n+ 1 lines containing x.

(2). By (1), there are n + 1 lines L0, L1, ..., Ln containing x. It is clear that (Li\{x}) ∩
(Lj\{x}) = ∅ for any i 6= j. Thus, |L0 ∪ L1 ∪ · · · ∪ Ln| = n(n + 1) + 1 = n2 + n + 1. It is
easy to see that X = L0 ∪ L1 ∪ · · · ∪ Ln.

(3). Let the incidence graph of a FPP (X,L) be the bipartite graph with two parts X and L,
where x ∈ X is adjacent to L ∈ L if and only if x ∈ L. This defines an (n + 1)-regular bipartite
graph. So |L| = |X| = n2 + n+ 1.
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Definition 11.6. The incidence graph of a FPP (X,L) is a bipartite graph G with parts X and
L, where x ∈ X and L ∈ L are adjacent in G if and only if x ∈ L.

Definition 11.7. The dual (L,∧) of a FFP (X,L) is obtained by taking the incidence graph G
of (X,L) and interpreting the points in (X,L) as the lines in the new FPP and the lines in (X,L)
as the points in the new FPP.

Remark 11.8. For any x ∈ X, let Lx = {L ∈ L : x ∈ L} be a new line in (L,∧). So
∧ = {Lx : x ∈ X}.

Proposition 11.9. The dual (L,∧) of any FPP (X,L) of order n is also a FPP of order n.

Proof. We point out that (P1) for (X,L) gives rise to (P2)∗ for (L,∧) and (P2) for (X,L) gives
rise to (P1)∗ for (L,∧).

(P1) : For any L1, L2 ∈ L satisfying L1 ∩ L2 = {x} for some x ∈ X.
(P2) : For any two points x1, x2 ∈ X there exists exactly one subset L ∈ L with {x1, x2} ⊆  L.
(P1)∗: For any two points x1, x2 ∈ X there exists exactly one subset L ∈ L with {x1, x2} ⊆  L
(P2)∗: For any L1, L2 ∈ L satisfying L1 ∩ L2 = {x} for some x ∈ X.
We consider (P0)∗ for (L,∧).
(P0)∗: There exist four new points in (L,∧) such that any three of them cannot be contained

in a new line of (L,∧), i.e., there exist L1, L2, L3, L4 ∈ L such that no Lx contains any three
of them if and only if there exist L1, L2, L3, L4 ∈ L such that no three of them contain a point
x ∈ X.

Consider the 4-set F = {a, b, c, d} ∈ (X,L) satisfying (P0)∗. Note that |F ∩ L| ≤ 2 for any
L ∈ L, So we have four distinct lines L1 = ab, L2 = cd, L3 = ac, L4 = bd.

It is easy to check that these four lines satisfy (P0)∗.

Theorem 11.10. A FPP of order n exists whenever a field with n elements exists.

And we know that a field with n elements exists if and only if n = pk for a prime p.
Open Conjecture. A FPP of order n exists if and only if n is a power of a prime.

We know this holds for n ≤ 11. In particular, FPP of n = 10 does not exist. It is open for
n = 12.

Next we introduce an application of FPP in Turán numbers. Recall the following result.

Theorem 11.11. Any m-vertex C4-free graph G has e(G) ≤ m
4 (1 +

√
4m− 3).

Theorem 11.12. For infinitely many integers m, there exists a C4-free graph on m vertices with
at least 0.35m3/2.

Proof. Take any FPP (X,L) of order n, and consider its incidence graph G. Note that G has
m = 2(n2 + n+ 1) vertices and

e(G) = (n2 + n+ 1)(n+ 1) ≥ (n2 + n+ 1)
3
2 = (

m

2
)
3
2 ≥ 0.35m3/2.

It is clear that G is C4-free by the property of FPP.
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