Combinatorics, 2020 Fall, USTC Homework 11

• The due is on **Tuesday**, Dec. 29, at beginning of the class.

1. Given a graph G with $\chi(G) = n$ and a proper coloring $f : V(G) \to [n]$, prove that for any color $i \in [n]$, there exists a vertex of color i adjacent to a vertex of every other color.

2. Let $\mathcal{F} \subseteq 2^{[n]}$ be a family such that

- |A| is even for all $A \in \mathcal{F}$, and
- $|A \cap B|$ is even for all distinct $A, B \in \mathcal{F}$.

Prove that $|\mathcal{F}| \leq 2^{n/2}$.

- **3.** Let m red clubs $R_1, ..., R_m \subseteq [n]$ and m blue clubs $B_1, ..., B_m \subseteq [n]$ be such that
 - $|R_i \cap B_i|$ is odd for every *i*, and
 - $|R_i \cap B_j|$ is even for every $i \neq j$.

Show that $m \leq n$.

4. Prove that if the second condition in the above problem is weaken to all i < j, then the same conclusion $m \le n$ also holds.

5. (s-distance sets.) Let $s \ge 3$ be an integer. Let $a_1, a_2, ..., a_m$ be points in \mathbb{R}^n and suppose that the pairwise distances between them take at most s values. Prove that $m \le \binom{n+s+1}{s}$.

6. Construct a two-distance set of size $\binom{n+1}{2}$ in some \mathbb{R}^n .