Combinatorics, 2020 Fall, USTC

Homework 2

- The due is on Saturday, October 10, at beginning of the class.

1. Prove the following statements.
(a). If p is odd, then $\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right| \leq \sum_{k=1}^{p}(-1)^{k+1} S_{k}$;
(b). If p is even, then $\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right| \geq \sum_{k=1}^{p}(-1)^{k+1} S_{k}$.

Here, S_{k} is the sum of the sizes of all k-fold intersections as defined in class.
2. How many functions $f:[n] \rightarrow[n]$ are there such that for all $i<j$, we have $f(i) \leq f(j)$?
3. Find a closed formula of

$$
\sum_{k=0}^{\lfloor n / 7\rfloor}\binom{n}{7 k}
$$

(Try to simplify this expression to a summation with at most four terms.)
Hint: let $\epsilon=e^{2 \pi i / 7}$, where i is the imaginary unit, and then consider the value of $\sum_{j=0}^{6} \epsilon^{k j}$.
4. An equivalence of $[n]$ is a partition of $[n]$ into k non-ordered non-empty subsets for some k. Denote the $n^{\text {th }}$ Bell number B_{n} to be the total number of equivalences of $[n]$. Prove that

$$
B_{n}=\frac{1}{e} \sum_{i=0}^{\infty} \frac{i^{n}}{i!}
$$

5. (a). Given a natural number N, determine the probability that two numbers $m, n \in[N]$ chosen independently at random are relatively prime.
(b). Prove that the limit of the probability in (a) for $N \rightarrow \infty$ equals the infinite product $\prod_{p}\left(1-1 / p^{2}\right)$, where p runs over all primes.
6. Show that the number $(6+\sqrt{37})^{999}$ has at least 999 zero following the decimal point.
7. Let $f_{n}(x)=x(x-1) \ldots(x-n+1)$. Prove that

$$
f_{n}(x+y)=\sum_{k=0}^{n}\binom{n}{k} f_{k}(x) f_{n-k}(y)
$$

8. Let A_{n} be the number of ways of going up n stairs, if we may take one or two steps at a time. Find the generating function $f(x)$ of $\left\{A_{n}\right\}_{n \geq 0}$.
9. In how many ways can one divide a convex n-gon into triangles by $n-3$ non-intersecting diagonals in such a way that each triangle has an edge in common with the convex n-gon?
