Combinatorics, 2020 Fall, USTC Homework 5

- The due is on Tuesday, Nov. 3, at beginning of the class.

1. Let G be a graph such that for any two non-adjacent vertices u, v, it holds that $N_{G}(u)=$ $N_{G}(v)$. Prove that G must be a complete multipartite graph (i.e., $V(G)$ can be partitioned into $V_{1}, V_{2}, \ldots, V_{k}$ for some $k \geq 2$ such that for any $u \in V_{i}, v \in V_{j}$ where $i \neq j$, we have $\left.u v \in E(G)\right)$.
2. Let L be a set of n distinct lines in the plane and P a set of n distinct points in the plane. Prove that the number of pairs (p, ℓ), where $p \in P, \ell \in L$, and p lies on ℓ, is bounded from above by $O\left(n^{3 / 2}\right)$.
3. Show that if a graph G on n vertices does not contain $K_{s, t}$ as a subgraph, then it has at most $C \cdot n^{2-1 / s}$ edges for some absolute constant C only depending on t and s.
4. Let $t_{n}=S T\left(K_{n}\right)$. Prove the following recurrent formula

$$
(n-1) t_{n}=\sum_{k=1}^{n-1} k(n-k)\binom{n-1}{k-1} t_{k} t_{n-k}
$$

5. For all positive integers n, determine the number of spanning trees on given n vertices in which all vertices have degree 1,2 , or 3 .
6. For each $1 \leq k \leq n-1$, let N_{k} denote the number of spanning trees of K_{n} in which the vertex n has degree k. (Here we assume that $V\left(K_{n}\right)=\{1,2, \ldots, n\}$.)
(a) Prove that $(n-1-k) N_{k}=k(n-1) N_{k+1}$.
(b) Prove by induction on k that $N_{k}=\binom{n-2}{k-1}(n-1)^{n-1-k}$.
(c) Use the above equality to derive the Cayley's formula.
