Combinatorics, 2020 Fall, USTC Homework 6

- The due is on Tuesday, Nov. 10, at beginning of the class.

1. Given a tree T and two vertices x, y of T, let $d(x, y)$ be the length of the unique path in T between x and y. Determine those trees T on n vertices for which

$$
\sum_{x, y \in V(T)} d(x, y)
$$

is maximal and minimal, respectively.
2. Show that any tree has more leaves than vertices of degree at least 3 .
3. Given a graph G on n vertices, let Q be its Laplace matrix, and let Q^{*} be the matrix whose element at position (i, j) equals $(-1)^{i+j} \operatorname{det} Q_{i j}$. Prove the following:
(1). $\operatorname{det} Q=0$.
(2). If G is connected, then Q has rank $n-1$.
(3). If G is disconnected, then the rank of Q is at most $n-2$.
(4). If G is connected and $\vec{x} \in R^{n}$ is an arbitrary vector, then $Q \vec{x}=\overrightarrow{0}$ if and only if \vec{x} is a multiple of the vector $\overrightarrow{1}=(1,1, \ldots, 1)^{T}$.
(5). Show that $Q Q^{*}$ is a zero matrix. Using (4), infer that Q^{*} is an identical matrix.
4. Calculate $S T\left(K_{n, m}\right)$, i.e., the number of spanning trees of the complete bipartite graph $K_{n, m}$.
5. Let $n=2 k$. Characterize all interesting families $\mathcal{F} \subseteq\binom{[n]}{k}$ with $|\mathcal{F}|=\binom{n-1}{k-1}$.
6. Let $n>2 k$ and \mathcal{F} be an intersecting family in $\binom{[n]}{k}$ of size $\binom{n-1}{k-1}$. Following the notation given in class, prove that if $\mathcal{F}_{\pi}=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ for some cyclic permutation π, then $\mid A_{1} \cap$ $A_{2} \cap \ldots \cap A_{k} \mid=1$ and $\left|A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right|=2 k-1$.

