## Combinatorics, 2020 Fall, USTC Homework 9

- The due is on Tuesday, Dec. 8, at beginning of the class.

1. Let $V$ be a finite set and $r \geq 3$ be an integer. An $r$-uniform hypergraph is a pair $(V, E)$, where $E \subseteq\binom{V}{r}$. And $K_{n}^{(r)}$ denotes the complete $r$-uniform hypergraph on $n$ vertices, i.e., $K_{n}^{(r)}=\left(V,\binom{V}{r}\right)$ for $|V|=n$. Let hypergraph Ramsey number $R^{(r)}(s, t)$ be the least integer $n$ such that any 2-edge-coloring of $K_{n}^{(r)}$ has a blue $K_{s}^{(r)}$ or a red $K_{t}^{(r)}$.

Prove that for any $s, t \geq r, R^{(r)}(s, t)<\infty$.
2. (a). A fixed point of a permutation $\pi$ is an integer $i$ such that $\pi(i)=i$. Let $X_{\pi}$ be the number of fixed points of permutation $\pi$. What is the expectation $E\left[X_{\pi}\right]$ for a random permutation $\pi$ chosen from the set $S_{n}$ ? (Recall that $S_{n}$ is the set of all permutations of $[n]$.)
(b). We toss a fair coin $n$ times. What is the expected number of "runs"? "Runs" are consecutive tosses with the same result. For example, the sequence "TTTHHHHTT" has 3 runs, where ' T ' means 'tail' and ' H ' means 'Head'.
3. Let $n \geq 6$. We color the edges of complete graph $K_{n}$ with colors blue and red in such a way that each edge is in at most one blue triangle. Let $X$ be a maximal subset of the vertices with the property that $X$ does not contain a blue triangle. Then
(a) show that $X$ contains at least $|X| / 2$ red edges, and
(b) show that $|X| \geq \sqrt{2 n}$.
4. Let $k \geq 4$ be an integer and $\mathcal{F} \subseteq\binom{X}{k}$ be a $k$-family defined on the ground set $X$. Prove that if

$$
|\mathcal{F}|<\frac{4^{k-1}}{3^{k}}
$$

then there is a coloring of elements of $X$ with 4 colors such that all 4 colors are represented in every subset of family $\mathcal{F}$.

