Combinatorics

Instructor: Jie Ma, Scribed by Jun Gao, Jialin He and Tianchi Yang

2020 Fall, USTC

1 Part I. Enumeration

First we give some standard notation that will be used throughout this course. Let n be a positive integer. We will use [n] to denote the set $\{1, 2, ..., n\}$. Given a set X, |X| denotes the number of elements contained in X. Sometimes we also use "#" to express the word "number". The *factorial* of n is the product

$$n! = n \cdot (n-1) \cdots 2 \cdot 1,$$

which can be extended to all non-negative integers by letting 0! = 1.

1.1 Binomial coefficients

Let X be a set of size n. Define $2^X = \{A : A \subseteq X\}$ to be the family of all subsets of X. So $|2^X| = 2^{|X|} = 2^n$. Let $\binom{X}{k} = \{A : A \subseteq X, |A| = k\}$.

Fact 1.1. For integers n > 0 and $0 \le k \le n$, we have $|\binom{X}{k}| = \binom{n}{k} = \frac{n!}{k!(n-k)!}$.

Proof. If k = 0, then it is clear that $|\binom{X}{0}| = |\{\emptyset\}| = 1 = \binom{n}{0}$. Now we consider k > 0. Let

$$(n)_k := n(n-1)\cdots(n-k+1) = \frac{n!}{(n-k)!}$$

First we will show that number of order k-tuples $(x_1, x_2, ..., x_k)$ with distinct $x_i \in X$ is $(n)_k$. There are n choices for the first element x_1 . When $x_1, ..., x_i$ is chosen, there are exactly n-i choices for the element x_{i+1} . So the number of order k-tuples $(x_1, x_2, ..., x_k)$ with distinct $x_i \in X$ is $(n)_k$. Since any subset $A \in {X \choose k}$ correspond to k! ordered k-tuples, it follows that $|{X \choose k}| = \frac{(n)_k}{k!} = \frac{n!}{k!(n-k)!}$. This finishes the proof.

Next we discuss more properties of binomial coefficients. For positive integers n strictly less than k, we let $\binom{n}{k} = 0$.

Fact 1.2. (1). $\binom{n}{k} = \binom{n}{n-k}$ for $0 \le k \le n$. (2). $2^n = \sum_{\substack{0 \le k \le n \\ k-1}} \binom{n}{k}$. (3). $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.

Proof. (1) is trivial. Since $2^{[n]} = \bigcup_{0 \le k \le n} {\binom{[n]}{k}}$, we see $2^n = \sum_{0 \le k \le n} {\binom{n}{k}}$, proving (2). Finally, we consider (3). Note that the first term on the right hand side ${\binom{n-1}{k-1}}$ is the number of k-sets containing a fixed element, while the second term ${\binom{n-1}{k}}$ is the number of k-sets avoiding this element. So their summation gives the total number of k-sets in [n], which is ${\binom{n}{k}}$. This finishes the proof.

Pascal's triangle is a triangular array constructed by summing adjacent elements in preceding rows. By Fact 1.2 (3), in the following graph we have that the *k*th element in the *n* row is $\binom{n}{k-1}$.

1 21 3 • • • • • • • • 1 3 3 1 4 · · · · · 1 4 6 41 $5 \cdots \cdots 1 \quad 5 \quad 10 \quad 10$ 51 $6 \cdots \cdots 1 \quad 6 \quad 15 \quad 20 \quad 15$ 6 1 $7 \cdots 1 7 21 35 35 21$ 7 1 $8 \cdots 1 8 28 56 70 56 28$ 8 1 $9 \cdots 1 9 36 84 126 126 84 36 9$ 1 $10 \cdots 1 \quad 10 \quad 45 \quad 120 \quad 210 \quad 252 \quad 210 \quad 120 \quad 45 \quad 10$ 1

Fact 1.3. The number of integer solutions $(x_1, ..., x_n)$ to the equation $x_1 + \cdots + x_n = k$ with each $x_i \in \{0, 1\}$ is $\binom{n}{k}$.

Fact 1.4. The number of integer solution $(x_1, ..., x_n)$ with each $x_i \ge 0$, to the equation $x_1 + \cdots + x_n = k$ is $\binom{n+k-1}{n-1}$.

Proof. Suppose we have k sweets (of the same sort), which we want to distribute to n children. In how many ways can we do this? Let x_i denote the number of sweets we give to the *i*-th child, this question is equivalent to that state above.

We lay out the sweets in a single row of length r and let the first child pick them up from left to right (can be 0). After a while we stop him/her and let the second child pick up sweets, etc. The distribution is determined by the specifying the place of where to start a new child. Equal to select n - 1 elements form n + r - 1 elements to be the child, others be the sweets (the first child always starts at the beginning). So the answer is $\binom{n+k-1}{n-1}$

Exercise 1.1 Prove that

$$\sum_{k=0}^{m} \binom{m}{k} \binom{n+k}{m} = \sum_{k=0}^{m} \binom{n}{k} \binom{m}{k} 2^{k}.$$

1.2 Counting mappings

Define X^Y to be the set of all functions $f: Y \to X$.

Fact 1.5. $|X^Y| = |X|^{|Y|}$.

Proof. Let |Y| = r. We can view X^Y as the set of all strings $x_1x_2...x_r$ with elements $x_i \in X$, indexed by the r element of Y. So $|X^Y| = |X|^{|Y|}$.

Fact 1.6. The number of injective functions $f : [r] \rightarrow [n]$ is $(n)_r$.

Proof. We can view the injective function f as a order k-tuples $(x_1, x_2, ..., x_r)$ with distinct $x_i \in X$, so the number of injective functions $f : [r] \to [n]$ is $(n)_r$.

Definition 1.7 (The Stirling number of the second kind). Let S(r,n) be the number of partition of [r] into n unordered non-empty parts.

Exercise 1.2

$$S(r,2) = \frac{2^r - 2}{2} = \frac{1}{2} \sum_{i=1}^{r-1} \binom{r}{i}.$$

Fact 1.8. The number of surjective functions $f : [r] \to [n]$ is n!S(r,n).

Proof. Since f is a surjecture function $\iff \forall i \in [n], f^{-1}(i) \neq \emptyset \iff \bigcup_{i \in [n]} f^{-1}(i) = [r]$, and S(r, n) is the number of partition of [r] into n unordered non-empty parts, we have the number of surjective functions $f: [r] \to [n]$ is n!S(r, n).

We say that any injective $f: X \to X$ is a **permutation** of X (also a bijection). We may view a permutation in two ways: (1) it is a bijective from X to X. (2) a reordering of X.

Cycle notation describes the effect of repeatedly applying the permutation on the elements of the set. It expresses the permutation as a product of cycles; since distinct cycles are disjoint, this is referred to as "decomposition into disjoint cycles".

Definition 1.9. The Stirling number of the first kind s(r,n) is $(-1)^{(r-n)}$ times the number of permutations of [r] with exactly n cycles.

The following fact is a direct consequence of Fact 1.6.

Fact 1.10. The number of permutation of [n] is n!.

Exercise 1.3

ercise 1.3
(1) Let
$$S(r,n) = {r \\ n}$$
. Then ${n \\ k} = {n-1 \\ k-1} + k {n-1 \\ k}$. (give a Combinatorial proof.)
(2) Let $s(n,k) = (-1)^{n-k} {n \\ k}$. Then ${n \\ k} = {n-1 \\ k-1} + (n-1) {n-1 \\ k}$

The Binomial Theorem 1.3

Define $[x^k]f$ to be the coefficient of the term x^k in the polynomial f(x).

Fact 1.11. For j = 1, 2, ..., n, let $f_j(x) = \sum_{k \in I_j} x^k$ where I_j is a set of non-negative integers, and let $f(x) = \prod_{i=1}^{n} f_j(x)$. Then, $[x^k]f$ equals the number of solutions $(i_1, i_2, ..., i_n)$ to $i_1+i_2+...+i_n =$ k, where $i_j \in I_j$.

Fact 1.12. Let $f_1, ..., f_n$ be polynomials and $f = f_1 f_2 ... f_n$. Then,

$$[x^k]f = \sum_{i_1 + \dots + i_n = k, i_j \ge 0} \left(\prod_{j=1}^n [x^{i_j}]f_j \right).$$

Theorem 1.13 (The Binomial Theorem). For any real x and any positive integer n, we have

$$(1+x)^n = \sum_{i=0}^n \binom{n}{i} x^i.$$

Proof 1. Let $f = (1+x)^n$. By Fact 1.11 we have $[x^k]f$ equals the number of solutions $(i_1, i_2, ..., i_n)$ to $i_1 + i_2 + ... + i_n = k$ where $i_j \in \{0, 1\}$, so $[x^k]f = \binom{n}{k}$.

Proof 2. By induction on *n*. When n = 1, it is trivial. If the result holds for n - 1, then $(1+x)^n = (1+x)(1+x)^{n-1} = (1+x)\sum_{i=0}^{n-1} \binom{n-1}{i}x^i = \sum_{i=1}^{n-1} \binom{n-1}{i} + \binom{n-1}{i-1}x^i + 1 + x^n$. Since $\binom{n-1}{i} + \binom{n-1}{i-1} = \binom{n}{i}$ and $\binom{n}{0} = \binom{n}{n} = 1$, we have $(1+x)^n = \sum_{i=0}^n \binom{n}{i}x^i$.

Fact 1.14. $\binom{2n}{n} = \sum_{i=0}^{n} \binom{n}{i}^2 = \sum_{i=0}^{n} \binom{n}{i} \binom{n}{n-i}.$

Proof 1. Since $(1+x)^{2n} = (1+x)^n (1+x)^n$, by Fact 1.12, we have $\binom{2n}{n} = [x^n](1+x)^{2n} = \sum_{i=0}^n ([x^i](1+x)^n)([x^{n-i}](1+x)^n) = \sum_{i=0}^n \binom{n}{i}\binom{n}{n-i} = \sum_{i=0}^n \binom{n}{i}^2$.

Proof 2. (It is easy to find a combinatorial proof.)

Exercise 1.4 (Vandermonde's Convolution Formula)

$$\binom{n+m}{k} = \sum_{j=0}^{k} \binom{n}{j} \binom{m}{k-j}.$$

Fact 1.15. (1).

$$\sum_{all \ even \ k} \binom{n}{k} = \sum_{all \ odd \ k} \binom{n}{k} = 2^{n-1}.$$

(2).

$$\sum_{k=0}^{n} k \binom{n}{k} = n2^{n-1}$$

Proof. (1). We see that $(1+x)^n = \sum_{i=0}^n \binom{n}{i}$. Taking x = 1 and x = -1, we have

$$\sum_{\text{ll even } k} \binom{n}{k} = \sum_{\text{all odd } k} \binom{n}{k} = 2^{n-1}.$$

(2). Let $f(x) = (1+x)^n = \sum_{k=0}^n x^k$. Then $f'(x) = n(1+x)^{n-1} = \sum_{k=0}^n k \binom{n}{k} x^{k-1}$. Let x = 1, then we have $\sum_{k=0}^n k \binom{n}{k} = n2^{n-1}$.

Definition 1.16. Let $k_j \ge 0$ be integers satisfying that $k_1 + k_2 + \cdots + k_m = n$. We define

$$\binom{n}{k_1, k_2, \dots, k_m} := \frac{n!}{k_1! k_2! \dots k_m!}.$$

The following theorem is a generalization of the binomial theorem.

Theorem 1.17 (Multinomial Theorem). For any reals $x_1, ..., x_m$ and any positive integer $n \ge 1$, we have

$$(x_1 + x_2 + \dots + x_m)^n = \sum_{k_1 + k_2 + \dots + k_m = n, \ k_j \ge 0} \binom{n}{k_1, k_2, \dots, k_m} x_1^{k_1} x_2^{k_2} \cdots x_m^{k_m}.$$

Proof. Omit.

Exercise 1.4. Suppose $\sum_{i=1}^{m} k_i = n$ with $k_i \ge 1$ for all $i \in m$. Then

$$\binom{n}{k_1, k_2, \dots, k_m} = \binom{n-1}{k_1 - 1, k_2, \dots, k_m} + \dots + \binom{n-1}{k_1, k_2, \dots, k_m - 1}.$$

1.4 Estimating binomial coefficients

Theorem 1.18. For any integer $n \ge 1$, we have

$$e\left(\frac{n}{e}\right)^n \le n! \le en\left(\frac{n}{e}\right)^n$$
 (1.1)

where $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$ is the Euler number.

Proof. We have

$$\ln(n!) = \sum_{i=1}^{n} \ln i \le \int_{1}^{n+1} \ln x \, dx = (x \ln x - x) \Big|_{x=1}^{x=n+1} = (n+1) \ln(n+1) - n.$$

Then it follows that

$$n! \le \frac{(n+1)^{n+1}}{e^n}$$

Reset n = n - 1, we have

$$(n-1)! \le \frac{n^n}{e^{n-1}} \iff n! \le ne\left(\frac{n}{e}\right)^n.$$

Similarly we have

$$\ln(n!) \ge \int_{1}^{n} \ln x \, dx = (x \ln x - x) \Big|_{1}^{n} = n \ln n - (n - 1),$$

which implies that

$$n! \ge \frac{n^n}{e^{n-1}} = e\left(\frac{n}{e}\right)^n,$$

as desired.

Modifying the above proof, we can obtain the following improvement.

Exercise 1.5

$$n! \le e\sqrt{n} \left(\frac{n}{e}\right)^n.$$

Definition 1.19. Define $f \sim g$ for functions f and g, if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$.

The following formula is well-known.

Theorem 1.20 (Stirling's formula.). $n! \sim \sqrt{2\pi n} (\frac{n}{e})^n$.

It is easy to show the following two facts.

Fact 1.21. Let n be a fix integer. We can view $\binom{n}{k}$ as a function with $k \in \{0, 1, 2, ..., n\}$. It is increasing when $k \leq \lfloor \frac{n}{2} \rfloor$, and decreasing when $k > \lfloor \frac{n}{2} \rfloor$. Therefore, $\binom{n}{k}$ achievers its maximum at $k = \lfloor \frac{n}{2} \rfloor$ or $\lceil \frac{n}{2} \rceil$.

Fact 1.22. $\frac{2^n}{n} \leq {\binom{n}{\lfloor \frac{n}{2} \rfloor}} \leq 2^n$

Exercise 1.6. For any even integer n > 0, we have

$$\frac{2^n}{\sqrt{2n}} \le \binom{n}{n/2} \le \frac{2^n}{\sqrt{n}}$$

If we are allowed to use Stirling's formula, then we can get

$$\binom{n}{\frac{n}{2}} \sim \sqrt{\frac{2}{\pi}} \frac{2^n}{\sqrt{n}}.$$

Fact 1.23. $\binom{n}{k} = \frac{(n)_k}{k!} \le \frac{n^k}{k!}$.

Exercise 1.7. $1 + x \le e^x$ holds for any real x.

Theorem 1.24. For any integers $1 \le k \le n$, we have $\left(\frac{n}{k}\right)^k \le {\binom{n}{k}} \le {\left(\frac{en}{k}\right)^k}$. *Proof.* Since $\frac{n-i}{k-i} \ge \frac{n}{k}$ for each $0 \le i \le k-1$, we have

$$\binom{n}{k} = \frac{n \cdot (n-1) \cdots (n-k+1)}{k \cdot (k-1) \cdots 1} = \binom{n}{k} \cdot \binom{n-1}{k-1} \cdots \binom{n-k+1}{k} \ge \binom{n}{k}^k$$

For the upper bound, since $k! \ge e(\frac{k}{e})^k > (\frac{k}{e})^k$, by Fact 1.23 we have

$$\binom{n}{k} \le \frac{n^k}{k!} \le \left(\frac{en}{k}\right)^k,$$

as desired.

We can also prove the following strengthening.

Theorem 1.25. For any integers $1 \le k \le n$,

$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{k} \le \left(\frac{en}{k}\right)^k.$$

Proof. By the binomial theorem, we have

$$\binom{n}{0} + \binom{n}{1}x + \dots + \binom{n}{k}x^k \le (1+x)^n$$

for any $0 < x \le 1$. Then for any $0 < x \le 1$, it gives that

$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{k} \le \frac{\binom{n}{0}}{x^k} + \frac{\binom{n}{1}}{x^{k-1}} + \dots + \frac{\binom{n}{k}}{1} \le \frac{(1+x)^n}{x^k}.$$

Taking $x = \frac{k}{n} \in (0, 1]$, we have

$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{k} \le \frac{(1+x)^n}{x^k} \le \frac{e^{xn}}{x^k} = \left(\frac{en}{k}\right)^k,$$

as desired.