Combinatorics

Instructor: Jie Ma, Scribed by Jun Gao, Jialin He and Tianchi Yang
2020 Fall, USTC

1 Part I. Enumeration

First we give some standard notation that will be used throughout this course. Let n be a positive integer. We will use $[n]$ to denote the set $\{1,2, \ldots, n\}$. Given a set $X,|X|$ denotes the number of elements contained in X. Sometimes we also use "\#" to express the word "number". The factorial of n is the product

$$
n!=n \cdot(n-1) \cdots 2 \cdot 1,
$$

which can be extended to all non-negative integers by letting $0!=1$.

1.1 Binomial coefficients

Let X be a set of size n. Define $2^{X}=\{A: A \subseteq X\}$ to be the family of all subsets of X. So $\left|2^{X}\right|=2^{|X|}=2^{n}$. Let $\binom{X}{k}=\{A: A \subseteq X,|A|=k\}$.

Fact 1.1. For integers $n>0$ and $0 \leq k \leq n$, we have $\left|\binom{X}{k}\right|=\binom{n}{k}=\frac{n!}{k!(n-k)!}$.
Proof. If $k=0$, then it is clear that $\left|\binom{X}{0}\right|=|\{\emptyset\}|=1=\binom{n}{0}$. Now we consider $k>0$. Let

$$
(n)_{k}:=n(n-1) \cdots(n-k+1)=\frac{n!}{(n-k)!} .
$$

First we will show that number of order k-tuples $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ with distinct $x_{i} \in X$ is $(n)_{k}$. There are n choices for the first element x_{1}. When $x_{1}, \ldots x_{i}$ is chosen, there are exactly $n-i$ choices for the element x_{i+1}. So the number of order k-tuples $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ with distinct $x_{i} \in X$ is $(n)_{k}$. Since any subset $A \in\binom{X}{k}$ correspond to k ! ordered k-tuples, it follows that $\left|\binom{X}{k}\right|=\frac{(n)_{k}}{k!}=\frac{n!}{k!(n-k)!}$. This finishes the proof.

Next we discuss more properties of binomial coefficients. For positive integers n strictly less than k, we let $\binom{n}{k}=0$.
Fact 1.2. (1). $\binom{n}{k}=\binom{n}{n-k}$ for $0 \leq k \leq n$.
(2). $2^{n}=\sum_{0 \leq k \leq n}\binom{n}{k}$.
(3). $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$.

Proof. (1) is trivial. Since $2^{[n]}=\cup_{0 \leq k \leq n}\binom{[n]}{k}$, we see $2^{n}=\sum_{0 \leq k \leq n}\binom{n}{k}$, proving (2). Finally, we consider (3). Note that the first term on the right hand side $\binom{n-1}{k-1}$ is the number of k-sets containing a fixed element, while the second term $\binom{n-1}{k}$ is the number of k-sets avoiding this element. So their summation gives the total number of k-sets in $[n]$, which is $\binom{n}{k}$. This finishes the proof.

Pascal's triangle is a triangular array constructed by summing adjacent elements in preceding rows. By Fact 1.2 (3), in the following graph we have that the k th element in the n row is $\binom{n}{k-1}$.

Fact 1.3. The number of integer solutions $\left(x_{1}, \ldots, x_{n}\right)$ to the equation $x_{1}+\cdots x_{n}=k$ with each $x_{i} \in\{0,1\}$ is $\binom{n}{k}$.

Fact 1.4. The number of integer solution $\left(x_{1}, \ldots x_{n}\right)$ with each $x_{i} \geq 0$, to the equation $x_{1}+\cdots x_{n}=$ k is $\binom{n+k-1}{n-1}$.

Proof. Suppose we have k sweets (of the same sort), which we want to distribute to n children. In how many ways can we do this? Let x_{i} denote the number of sweets we give to the i-th child, this question is equivalent to that state above.

We lay out the sweets in a single row of length r and let the first child pick them up from left to right (can be 0). After a while we stop him/her and let the second child pick up sweets, etc. The distribution is determined by the specifying the place of where to start a new child. Equal to select $n-1$ elements form $n+r-1$ elements to be the child, others be the sweets (the first child always starts at the beginning). So the answer is $\binom{n+k-1}{n-1}$

Exercise 1.1 Prove that

$$
\sum_{k=0}^{m}\binom{m}{k}\binom{n+k}{m}=\sum_{k=0}^{m}\binom{n}{k}\binom{m}{k} 2^{k} .
$$

1.2 Counting mappings

Define X^{Y} to be the set of all functions $f: Y \rightarrow X$.
Fact 1.5. $\left|X^{Y}\right|=|X|^{|Y|}$.
Proof. Let $|Y|=r$. We can view X^{Y} as the set of all strings $x_{1} x_{2} \ldots x_{r}$ with elements $x_{i} \in X$, indexed by the r element of Y. So $\left|X^{Y}\right|=|X|^{|Y|}$.

Fact 1.6. The number of injective functions $f:[r] \rightarrow[n]$ is $(n)_{r}$.
Proof. We can view the injective function f as a order k-tuples $\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ with distinct $x_{i} \in X$, so the number of injective functions $f:[r] \rightarrow[n]$ is $(n)_{r}$.

Definition 1.7 (The Stirling number of the second kind). Let $S(r, n)$ be the number of partition of $[r]$ into n unordered non-empty parts.

Exercise 1.2

$$
S(r, 2)=\frac{2^{r}-2}{2}=\frac{1}{2} \sum_{i=1}^{r-1}\binom{r}{i} .
$$

Fact 1.8. The number of surjective functions $f:[r] \rightarrow[n]$ is $n!S(r, n)$.
Proof. Since f is a surjecture function $\Longleftrightarrow \forall i \in[n], f^{-1}(i) \neq \emptyset \Longleftrightarrow \cup_{i \in[n]} f^{-1}(i)=[r]$, and $S(r, n)$ is the number of partition of $[r]$ into n unordered non-empty parts, we have the number of surjective functions $f:[r] \rightarrow[n]$ is $n!S(r, n)$.

We say that any injective $f: X \rightarrow X$ is a permutation of X (also a bijection). We may view a permutation in two ways: (1) it is a bijective from X to X. (2) a reordering of X.

Cycle notation describes the effect of repeatedly applying the permutation on the elements of the set. It expresses the permutation as a product of cycles; since distinct cycles are disjoint, this is referred to as "decomposition into disjoint cycles".

Definition 1.9. The Stirling number of the first kind $s(r, n)$ is $(-1)^{(r-n)}$ times the number of permutations of $[r]$ with exactly n cycles.

The following fact is a direct consequence of Fact 1.6.
Fact 1.10. The number of permutation of $[n]$ is $n!$.
Exercise 1.3
(1) Let $S(r, n)=\left\{\begin{array}{l}r \\ n\end{array}\right\}$. Then $\left\{\begin{array}{l}n \\ k\end{array}\right\}=\left\{\begin{array}{l}n-1 \\ k-1\end{array}\right\}+k\left\{\begin{array}{c}n-1 \\ k\end{array}\right\}$. (give a Combinatorial proof.)
(2) Let $s(n, k)=(-1)^{n-k}\left[\begin{array}{l}n \\ k\end{array}\right]$. Then $\left[\begin{array}{l}n \\ k\end{array}\right]=\left[\begin{array}{l}n-1 \\ k-1\end{array}\right]+(n-1)\left[\begin{array}{c}n-1 \\ k\end{array}\right]$

1.3 The Binomial Theorem

Define $\left[x^{k}\right] f$ to be the coefficient of the term x^{k} in the polynomial $f(x)$.
Fact 1.11. For $j=1,2, \ldots, n$, let $f_{j}(x)=\sum_{k \in I_{j}} x^{k}$ where I_{j} is a set of non-negative integers, and let $f(x)=\prod_{j=1}^{n} f_{j}(x)$. Then, $\left[x^{k}\right] f$ equals the number of solutions $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ to $i_{1}+i_{2}+\ldots+i_{n}=$ k, where $i_{j} \in I_{j}$.
Fact 1.12. Let f_{1}, \ldots, f_{n} be polynomials and $f=f_{1} f_{2} \ldots f_{n}$. Then,

$$
\left[x^{k}\right] f=\sum_{i_{1}+\cdots+i_{n}=k, i_{j} \geq 0}\left(\prod_{j=1}^{n}\left[x^{i_{j}}\right] f_{j}\right) .
$$

Theorem 1.13 (The Binomial Theorem). For any real x and any positive integer n, we have

$$
(1+x)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} .
$$

Proof 1. Let $f=(1+x)^{n}$. By Fact 1.11 we have $\left[x^{k}\right] f$ equals the number of solutions $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ to $i_{1}+i_{2}+\ldots+i_{n}=k$ where $i_{j} \in\{0,1\}$, so $\left[x^{k}\right] f=\binom{n}{k}$.

Proof 2. By induction on n. When $n=1$, it is trivial. If the result holds for $n-1$, then $(1+x)^{n}=(1+x)(1+x)^{n-1}=(1+x) \sum_{i=0}^{n-1}\binom{n-1}{i} x^{i}=\sum_{i=1}^{n-1}\left(\binom{n-1}{i}+\binom{n-1}{i-1}\right) x^{i}+1+x^{n}$. Since $\binom{n-1}{i}+\binom{n-1}{i-1}=\binom{n}{i}$ and $\binom{n}{0}=\binom{n}{n}=1$, we have $(1+x)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i}$.

Fact 1.14. $\binom{2 n}{n}=\sum_{i=0}^{n}\binom{n}{i}^{2}=\sum_{i=0}^{n}\binom{n}{i}\binom{n}{n-i}$.
Proof 1. Since $(1+x)^{2 n}=(1+x)^{n}(1+x)^{n}$, by Fact 1.12, we have $\binom{2 n}{n}=\left[x^{n}\right](1+x)^{2 n}=$ $\sum_{i=0}^{n}\left(\left[x^{i}\right](1+x)^{n}\right)\left(\left[x^{n-i}\right](1+x)^{n}\right)=\sum_{i=0}^{n}\binom{n}{i}\binom{n}{n-i}=\sum_{i=0}^{n}\binom{n}{i}^{2}$.
Proof 2. (It is easy to find a combinatorial proof.)

Exercise 1.4 (Vandermonde's Convolution Formula)

$$
\binom{n+m}{k}=\sum_{j=0}^{k}\binom{n}{j}\binom{m}{k-j}
$$

Fact 1.15. (1).

$$
\sum_{\text {all even } k}\binom{n}{k}=\sum_{\text {all odd } k}\binom{n}{k}=2^{n-1} .
$$

$$
\begin{equation*}
\sum_{k=0}^{n} k\binom{n}{k}=n 2^{n-1} \tag{2}
\end{equation*}
$$

Proof. (1). We see that $(1+x)^{n}=\sum_{i=0}^{n}\binom{n}{i}$. Taking $x=1$ and $x=-1$, we have

$$
\sum_{\text {all even } k}\binom{n}{k}=\sum_{\text {all odd } k}\binom{n}{k}=2^{n-1}
$$

(2). Let $f(x)=(1+x)^{n}=\sum_{k=0}^{n} x^{k}$. Then $f^{\prime}(x)=n(1+x)^{n-1}=\sum_{k=0}^{n} k\binom{n}{k} x^{k-1}$. Let $x=1$, then we have $\sum_{k=0}^{n} k\binom{n}{k}=n 2^{n-1}$.

Definition 1.16. Let $k_{j} \geq 0$ be integers satisfying that $k_{1}+k_{2}+\cdots+k_{m}=n$. We define

$$
\binom{n}{k_{1}, k_{2}, \ldots, k_{m}}:=\frac{n!}{k_{1}!k_{2}!\ldots k_{m}!} .
$$

The following theorem is a generalization of the binomial theorem.
Theorem 1.17 (Multinomial Theorem). For any reals x_{1}, \ldots, x_{m} and any positive integer $n \geq 1$, we have

$$
\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{n}=\sum_{k_{1}+k_{2}+\cdots+k_{m}=n, k_{j} \geq 0}\binom{n}{k_{1}, k_{2}, \ldots, k_{m}} x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{m}^{k_{m}} .
$$

Proof. Omit.
Exercise 1.4. Suppose $\sum_{i=1}^{m} k_{i}=n$ with $k_{i} \geq 1$ for all $i \in m$. Then

$$
\binom{n}{k_{1}, k_{2}, \ldots, k_{m}}=\binom{n-1}{k_{1}-1, k_{2}, \ldots, k_{m}}+\cdots+\binom{n-1}{k_{1}, k_{2}, \ldots, k_{m}-1} .
$$

1.4 Estimating binomial coefficients

Theorem 1.18. For any integer $n \geq 1$, we have

$$
\begin{equation*}
e\left(\frac{n}{e}\right)^{n} \leq n!\leq e n\left(\frac{n}{e}\right)^{n} \tag{1.1}
\end{equation*}
$$

where $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ is the Euler number.
Proof. We have

$$
\ln (n!)=\sum_{i=1}^{n} \ln i \leq \int_{1}^{n+1} \ln x d x=\left.(x \ln x-x)\right|_{x=1} ^{x=n+1}=(n+1) \ln (n+1)-n
$$

Then it follows that

$$
n!\leq \frac{(n+1)^{n+1}}{e^{n}}
$$

Reset $n=n-1$, we have

$$
(n-1)!\leq \frac{n^{n}}{e^{n-1}} \Longleftrightarrow n!\leq n e\left(\frac{n}{e}\right)^{n}
$$

Similarly we have

$$
\ln (n!) \geq \int_{1}^{n} \ln x d x=\left.(x \ln x-x)\right|_{1} ^{n}=n \ln n-(n-1)
$$

which implies that

$$
n!\geq \frac{n^{n}}{e^{n-1}}=e\left(\frac{n}{e}\right)^{n}
$$

as desired.
Modifying the above proof, we can obtain the following improvement.

Exercise 1.5

$$
n!\leq e \sqrt{n}\left(\frac{n}{e}\right)^{n}
$$

Definition 1.19. Define $f \sim g$ for functions f and g, if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1$.
The following formula is well-known.
Theorem 1.20 (Stirling's formula.). $n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$.
It is easy to show the following two facts.
Fact 1.21. Let n be a fix integer. We can view $\binom{n}{k}$ as a function with $k \in\{0,1,2, \ldots, n\}$. It is increasing when $k \leq\left\lfloor\frac{n}{2}\right\rfloor$, and decreasing when $k>\left\lfloor\frac{n}{2}\right\rfloor$. Therefore, $\binom{n}{k}$ achievers its maximum at $k=\left\lfloor\frac{n}{2}\right\rfloor$ or $\left\lceil\frac{n}{2}\right\rceil$.
Fact 1.22. $\frac{2^{n}}{n} \leq\binom{ n}{\left\lfloor\frac{n}{2}\right\rfloor} \leq 2^{n}$

Exercise 1.6. For any even integer $n>0$, we have

$$
\frac{2^{n}}{\sqrt{2 n}} \leq\binom{ n}{n / 2} \leq \frac{2^{n}}{\sqrt{n}}
$$

If we are allowed to use Stirling's formula, then we can get

$$
\binom{n}{\frac{n}{2}} \sim \sqrt{\frac{2}{\pi}} \frac{2^{n}}{\sqrt{n}} .
$$

Fact 1.23. $\binom{n}{k}=\frac{(n)_{k}}{k!} \leq \frac{n^{k}}{k!}$.
Exercise 1.7. $1+x \leq e^{x}$ holds for any real x.
Theorem 1.24. For any integers $1 \leq k \leq n$, we have $\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k}$.
Proof. Since $\frac{n-i}{k-i} \geq \frac{n}{k}$ for each $0 \leq i \leq k-1$, we have

$$
\binom{n}{k}=\frac{n \cdot(n-1) \cdots(n-k+1)}{k \cdot(k-1) \cdots 1}=\left(\frac{n}{k}\right) \cdot\left(\frac{n-1}{k-1}\right) \cdots\left(\frac{n-k+1}{k}\right) \geq\left(\frac{n}{k}\right)^{k}
$$

For the upper bound, since $k!\geq e\left(\frac{k}{e}\right)^{k}>\left(\frac{k}{e}\right)^{k}$, by Fact 1.23 we have

$$
\binom{n}{k} \leq \frac{n^{k}}{k!} \leq\left(\frac{e n}{k}\right)^{k}
$$

as desired.
We can also prove the following strengthening.
Theorem 1.25. For any integers $1 \leq k \leq n$,

$$
\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{k} \leq\left(\frac{e n}{k}\right)^{k}
$$

Proof. By the binomial theorem, we have

$$
\binom{n}{0}+\binom{n}{1} x+\cdots+\binom{n}{k} x^{k} \leq(1+x)^{n}
$$

for any $0<x \leq 1$. Then for any $0<x \leq 1$, it gives that

$$
\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{k} \leq \frac{\binom{n}{0}}{x^{k}}+\frac{\binom{n}{1}}{x^{k-1}}+\cdots+\frac{\binom{n}{k}}{1} \leq \frac{(1+x)^{n}}{x^{k}} .
$$

Taking $x=\frac{k}{n} \in(0,1]$, we have

$$
\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{k} \leq \frac{(1+x)^{n}}{x^{k}} \leq \frac{e^{x n}}{x^{k}}=\left(\frac{e n}{k}\right)^{k},
$$

as desired.

