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1 Part I. Enumeration

First we give some standard notation that will be used throughout this course. Let n be a positive
integer. We will use [n] to denote the set {1,2,...,n}. Given a set X, |X| denotes the number
of elements contained in X. Sometimes we also use “#” to express the word “number”. The
factorial of n is the product

nl=n-(n—-1)---2-1,

which can be extended to all non-negative integers by letting 0! = 1.

1.1 Binomial coefficients

Let X be a set of size n. Define 2% = {4 : A C X} to be the family of all subsets of X. So
2X| =2IXI =27 Let () ={A: AC X,|A| = k}.

Fact 1.1. For integers n >0 and 0 < k < n, we have |()k()| =)= ﬁlk)'

Proof. If k = 0, then it is clear that \()0{)| = {0} =1= (). Now we consider k > 0. Let

n!

(n)k ::n(n*].)"‘(n*k;+1):m.

First we will show that number of order k-tuples (z1, z2, ..., x;) with distinct z; € X is (n)g. There

are n choices for the first element x1. When x1, ..z; is chosen, there are exactly n—¢ choices for the

element z;11. So the number of order k-tuples (z1, 2, ..., x;) with distinct z; € X is (n)g. Since
(n n!

any subset A € ()k( ) correspond to k! ordered k-tuples, it follows that |(),§ )] = % = R
This finishes the proof.

Next we discuss more properties of binomial coefficients. For positive integers n strictly less
than k, we let (Z) =0.

Fact 1.2. (1). (3) = (,,",) for 0 <k <n.
(2). 2" = Zogkgn (Z)

=1 —1
) (x) = G2 + (")
Proof. (1) is trivial. Since 2" = UOSkgn([Z])v we see 2" = ) g pop (%), proving (2). Finally,
we consider (3). Note that the first term on the right hand side (Zj
containing a fixed element, while the second term (";1) is the number of k-sets avoiding this
element. So their summation gives the total number of k-sets in [n], which is (Z) This finishes
the proof. 1

) is the number of k-sets



Pascal’s triangle is a triangular array constructed by summing adjacent elements in preced-
ing rows. By Fact 1.2 (3), in the following graph we have that the kth element in the n row is (kfl)

1 ............................... 1 1

2 ............................. 1 2 1

3 .......................... 1 3 3 1

4 ........................ 1 4 6 4 1

5 ...................... 1 5 10 10 5 1

6 .................... 1 6 15 20 15 6 1

T 1 7 921 35 35 21 7 1

R R 1 8 28 56 70 56 28 8 1

Qe 1 9 36 84 126 126 84 36 9 1

10 -+ 1 10 45 120 210 252 210 120 45 10 1
Fact 1.3. The number of integer solutions (x1,...,zy) to the equation x1 + - - -z, = k with each

z; € {0,1} is (7).

Fact 1.4. The number of integer solution (x1,...xy,) with each x; > 0, to the equation x1+- - -z, =

k is ("Zle) .

Proof. Suppose we have k sweets (of the same sort), which we want to distribute to n children.
In how many ways can we do this? Let x; denote the number of sweets we give to the i-th child,
this question is equivalent to that state above.

We lay out the sweets in a single row of length r and let the first child pick them up from left
to right (can be 0). After a while we stop him/her and let the second child pick up sweets, etc.
The distribution is determined by the specifying the place of where to start a new child. Equal
to select n — 1 elements form n + 7 — 1 elements to be the child, others be the sweets (the first

child always starts at the beginning). So the answer is (”:ﬁ Il) |

SO =2 ()6

1.2 Counting mappings

Exercise 1.1 Prove that

Define XY to be the set of all functions f:Y — X.
Fact 1.5. |XY| = |X|V].

Proof. Let |Y| = r. We can view XY as the set of all strings x1x9...x, with elements xz; € X,
indexed by the r element of Y. So | XY | = | x|V ]

Fact 1.6. The number of injective functions f : [r] — [n] is (n),.

Proof. We can view the injective function f as a order k-tuples (x1, x2, ..., ) with distinct z; € X,
so the number of injective functions f : [r] — [n] is (n),. ]

Definition 1.7 (The Stirling number of the second kind). Let S(r,n) be the number of
partition of [r] into n unordered non-empty parts.



Exercise 1.2

Fact 1.8. The number of surjective functions f : [r] — [n] is nlS(r,n).

Proof. Since f is a surjecture function <= Vi € [n], f71(i) # 0 <— Uie[n]f_l(i) = [r], and
S(r,n) is the number of partition of [r] into n unordered non-empty parts, we have the number
of surjective functions f : [r] — [n] is nlS(r,n). |

We say that any injective f : X — X is a permutation of X (also a bijection). We may
view a permutation in two ways: (1) it is a bijective from X to X. (2) a reordering of X.

Cycle notation describes the effect of repeatedly applying the permutation on the elements of
the set. It expresses the permutation as a product of cycles; since distinct cycles are disjoint, this
is referred to as “decomposition into disjoint cycles”.

Definition 1.9. The Stirling number of the first kind s(r,n) is (—1)"=") times the number of
permutations of [r] with exactly n cycles.

The following fact is a direct consequence of Fact 1.6.
Fact 1.10. The number of permutation of [n] is n!.

Exercise 1.3

r n n—1 n—1 . . .
(1) Let S(r,n) = {n} Then {k} = {k _ 1} + k{ I } (give a Combinatorial proof.)

e R B SR

1.3 The Binomial Theorem
Define [z*]f to be the coefficient of the term z* in the polynomial f(z).

Fact 1.11. Forj =1,2,...,n, let fj(x) = dej x* where I; is a set of non-negative integers, and

let f(z) =[1j-, fj(z). Then, [2*]f equals the number of solutions (iy, i, ...,in) to iy +ig-+...+ip =
k, where i; € I;.

Fact 1.12. Let f1,..., fn be polynomials and f = f1fs...fn. Then,

n

[2*]f = > [Tl=%11

i1 Fin=k,i; >0 \j=1
Theorem 1.13 (The Binomial Theorem). For any real x and any positive integer n, we have
noseN
(14+2)" = ZZ; <Z>a:Z

Proof 1. Let f = (1+)". By Fact 1.11 we have [z¥]f equals the number of solutions (i1, iz, ..., i )
to i1 + iz + ... + i, = k where i; € {0,1}, so [z*]f = (}). ]



Proof 2. By induction on n. When n = 1, it is trivial. If the result holds for n — 1, then
QI+2)"=1+2)Q+2)" =1 +2) X0 (")t =00 (") + (72))a? + 1+ 2™, Since

(") + (1) = (7) and (§) = (7) = 1, we have (14 2)" = ¥y (7). I
Fact 1.14. (%) = X1 (1)" = X1 (1) ()

Proof 1. Since (1 + x)*® = (1 + 2)"(1 + x)", by Fact 1.12, we have (2:) = [z"](1 + z)** =
S+ @)™ ([ (1 +2)") = S0 (1) () = S (1) .

Proof 2. (It is easy to find a combinatorial proof.) 1

Exercise 1.4 (Vandermonde’s Convolution Formula)

(M- (6)

£ 0 5.0

all even k

k (Z) =n2n !
e

0
Proof. (1). We see that (1+ )" =>7" (). Taking = 1 and = —1, we have

2050

Fact 1.15. (1).

(2).

all even k
(2). Let f(z) = (1+2)" = >} ga* Then f'(z) = n(l+2)" ' =Y} k(})aF! Let x =1,
then we have > p_ k() = n2"1. ]

Definition 1.16. Let k; > 0 be integers satisfying that ki + ko + -+ - + kp, = n. We define

n o n!
ki, ko okm) — kilkal. k!

The following theorem is a generalization of the binomial theorem.

Theorem 1.17 (Multinomial Theorem). For any reals 1, ...,z, and any positive integer
n > 1, we have

n kk ko,
xS NND VENN (R % )
k1+kodAkm=n, k;>0 1, R2y -eey K

Proof. Omit. 1

Exercise 1.4. Suppose > ;* | ki = n with k; > 1 for all ¢ € m. Then

n _ n—1 + n n—1
ki, koyooskm/)  \k1—1,ko,....km ki, koy.km —1)°



1.4 Estimating binomial coefficients

Theorem 1.18. For any integer n > 1, we have

n\n" n\"
e(—) <nl<en (—)
e e

where e = lim (1 4 %)" is the Euler number.
n—oo

Proof. We have

r=n-+1

n n+1
ln(n!):Zlnig/ Inzdr = (xlnzx — z) =Mn+1)In(n+1) —n.
i=1 1

r=1

Then it follows that

n+1
o< (DT

Reset n =n — 1, we have

(n—1)<

Similarly we have

n
=nlon—(n—1),

In(n!) > / Inzdr = (xlnz —x)
1 1

which implies that

as desired.

Modifying the above proof, we can obtain the following improvement.
Exercise 1.5

n! <eyvn (%)n

Definition 1.19. Define f ~ g for functions f and g, if li_)m % =1
n o

—

The following formula is well-known.
Theorem 1.20 (Stirling’s formula.). n! ~ v/27n(2)".

It is easy to show the following two facts.

(1.1)

Fact 1.21. Let n be a fix integer. We can view (Z) as a function with k € {0,1,2,...,n}. It is

n n

increasing when k < bJ, and decreasing when k > bJ Therefore, (Z) achievers its maximum

atk= |2 or [3].

Fact 1.22. - < (|z) <2



Exercise 1.6. For any even integer n > 0, we have

TRIEAE

If we are allowed to use Stirling’s formula, then we can get

n 2 2"
2 T/n
ny _ (k. ~ n*
Fact 1.23. (k) = < o7

Exercise 1.7. 1 4+ x < e* holds for any real x.
Theorem 1.24. For any integers 1 < k < n, we have (2)* < (}) < ().

Proof. Since % > 7 for each 0 <7 <k — 1, we have

() =" =) (=) - () = ()

For the upper bound, since k! > e(%)k > (%)k, by Fact 1.23 we have

(o) <3 = (%)

as desired.
We can also prove the following strengthening.

Theorem 1.25. For any integers 1 < k <mn,

)+ (D) () =(D)"

Proof. By the binomial theorem, we have

(g) + <7;>a:++ (Z)mk <(14a)"

for any 0 < z < 1. Then for any 0 < x < 1, it gives that
n\ , (» n\ _ @) (1) () _ A+a)r
< L B .
<0) + <1> ot (k) I = E I T T3

Taking = = £ € (0,1], we have

() e ()= =5 ('

as desired.



