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1 Part I. Enumeration

First we give some standard notation that will be used throughout this course. Let n be a positive
integer. We will use [n] to denote the set {1, 2, ..., n}. Given a set X, |X| denotes the number
of elements contained in X. Sometimes we also use “#” to express the word “number”. The
factorial of n is the product

n! = n · (n− 1) · · · 2 · 1,

which can be extended to all non-negative integers by letting 0! = 1.

1.1 Binomial coefficients

Let X be a set of size n. Define 2X = {A : A ⊆ X} to be the family of all subsets of X. So
|2X | = 2|X| = 2n. Let

(
X
k

)
= {A : A ⊆ X, |A| = k}.

Fact 1.1. For integers n > 0 and 0 ≤ k ≤ n, we have |
(
X
k

)
| =

(
n
k

)
= n!

k!(n−k)! .

Proof. If k = 0, then it is clear that |
(
X
0

)
| = |{∅}| = 1 =

(
n
0

)
. Now we consider k > 0. Let

(n)k := n(n− 1) · · · (n− k + 1) =
n!

(n− k)!
.

First we will show that number of order k-tuples (x1, x2, ..., xk) with distinct xi ∈ X is (n)k. There
are n choices for the first element x1. When x1, ..xi is chosen, there are exactly n−i choices for the
element xi+1. So the number of order k-tuples (x1, x2, ..., xk) with distinct xi ∈ X is (n)k. Since

any subset A ∈
(
X
k

)
correspond to k! ordered k-tuples, it follows that |

(
X
k

)
| = (n)k

k! = n!
k!(n−k)! .

This finishes the proof.

Next we discuss more properties of binomial coefficients. For positive integers n strictly less
than k, we let

(
n
k

)
= 0.

Fact 1.2. (1).
(
n
k

)
=
(

n
n−k
)

for 0 ≤ k ≤ n.

(2). 2n =
∑

0≤k≤n
(
n
k

)
.

(3).
(
n
k

)
=
(
n−1
k−1
)

+
(
n−1
k

)
.

Proof. (1) is trivial. Since 2[n] = ∪0≤k≤n
([n]
k

)
, we see 2n =

∑
0≤k≤n

(
n
k

)
, proving (2). Finally,

we consider (3). Note that the first term on the right hand side
(
n−1
k−1
)

is the number of k-sets

containing a fixed element, while the second term
(
n−1
k

)
is the number of k-sets avoiding this

element. So their summation gives the total number of k-sets in [n], which is
(
n
k

)
. This finishes

the proof.
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Pascal’s triangle is a triangular array constructed by summing adjacent elements in preced-
ing rows. By Fact 1.2 (3), in the following graph we have that the kth element in the n row is

(
n

k−1
)
.

1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1
10 1 10 45 120 210 252 210 120 45 10 1

Fact 1.3. The number of integer solutions (x1, ..., xn) to the equation x1 + · · ·xn = k with each
xi ∈ {0, 1} is

(
n
k

)
.

Fact 1.4. The number of integer solution (x1, ...xn) with each xi ≥ 0, to the equation x1+· · ·xn =
k is

(
n+k−1
n−1

)
.

Proof. Suppose we have k sweets (of the same sort), which we want to distribute to n children.
In how many ways can we do this? Let xi denote the number of sweets we give to the i-th child,
this question is equivalent to that state above.

We lay out the sweets in a single row of length r and let the first child pick them up from left
to right (can be 0). After a while we stop him/her and let the second child pick up sweets, etc.
The distribution is determined by the specifying the place of where to start a new child. Equal
to select n − 1 elements form n + r − 1 elements to be the child, others be the sweets (the first
child always starts at the beginning). So the answer is

(
n+k−1
n−1

)
Exercise 1.1 Prove that

m∑
k=0

(
m

k

)(
n+ k

m

)
=

m∑
k=0

(
n

k

)(
m

k

)
2k.

1.2 Counting mappings

Define XY to be the set of all functions f : Y → X.

Fact 1.5. |XY | = |X||Y |.

Proof. Let |Y | = r. We can view XY as the set of all strings x1x2...xr with elements xi ∈ X,
indexed by the r element of Y . So |XY | = |X||Y |.

Fact 1.6. The number of injective functions f : [r]→ [n] is (n)r.

Proof. We can view the injective function f as a order k-tuples (x1, x2, ..., xr) with distinct xi ∈ X,
so the number of injective functions f : [r]→ [n] is (n)r.

Definition 1.7 (The Stirling number of the second kind). Let S(r,n) be the number of
partition of [r] into n unordered non-empty parts.
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Exercise 1.2

S(r, 2) =
2r − 2

2
=

1

2

r−1∑
i=1

(
r

i

)
.

Fact 1.8. The number of surjective functions f : [r]→ [n] is n!S(r, n).

Proof. Since f is a surjecture function ⇐⇒ ∀i ∈ [n], f−1(i) 6= ∅ ⇐⇒ ∪i∈[n]f−1(i) = [r], and
S(r, n) is the number of partition of [r] into n unordered non-empty parts, we have the number
of surjective functions f : [r]→ [n] is n!S(r, n).

We say that any injective f : X → X is a permutation of X (also a bijection). We may
view a permutation in two ways: (1) it is a bijective from X to X. (2) a reordering of X.

Cycle notation describes the effect of repeatedly applying the permutation on the elements of
the set. It expresses the permutation as a product of cycles; since distinct cycles are disjoint, this
is referred to as “decomposition into disjoint cycles”.

Definition 1.9. The Stirling number of the first kind s(r, n) is (−1)(r−n) times the number of
permutations of [r] with exactly n cycles.

The following fact is a direct consequence of Fact 1.6.

Fact 1.10. The number of permutation of [n] is n!.

Exercise 1.3

(1) Let S(r, n) =

{
r
n

}
. Then

{
n
k

}
=

{
n− 1
k − 1

}
+ k

{
n− 1
k

}
. (give a Combinatorial proof.)

(2) Let s(n, k) = (−1)n−k
[
n
k

]
. Then

[
n
k

]
=

[
n− 1
k − 1

]
+ (n− 1)

[
n− 1
k

]
1.3 The Binomial Theorem

Define [xk]f to be the coefficient of the term xk in the polynomial f(x).

Fact 1.11. For j = 1, 2, ..., n, let fj(x) =
∑

k∈Ij x
k where Ij is a set of non-negative integers, and

let f(x) =
∏n

j=1 fj(x). Then, [xk]f equals the number of solutions (i1, i2, ..., in) to i1+i2+...+in =
k, where ij ∈ Ij.

Fact 1.12. Let f1, ..., fn be polynomials and f = f1f2...fn. Then,

[xk]f =
∑

i1+···+in=k,ij≥0

 n∏
j=1

[xij ]fj

 .

Theorem 1.13 (The Binomial Theorem). For any real x and any positive integer n, we have

(1 + x)n =

n∑
i=0

(
n

i

)
xi.

Proof 1. Let f = (1+x)n. By Fact 1.11 we have [xk]f equals the number of solutions (i1, i2, ..., in)
to i1 + i2 + ...+ in = k where ij ∈ {0, 1}, so [xk]f =

(
n
k

)
.
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Proof 2. By induction on n. When n = 1, it is trivial. If the result holds for n − 1, then
(1 + x)n = (1 + x)(1 + x)n−1 = (1 + x)

∑n−1
i=0

(
n−1
i

)
xi =

∑n−1
i=1 (

(
n−1
i

)
+
(
n−1
i−1
)
)xi + 1 + xn. Since(

n−1
i

)
+
(
n−1
i−1
)

=
(
n
i

)
and

(
n
0

)
=
(
n
n

)
= 1, we have (1 + x)n =

∑n
i=0

(
n
i

)
xi.

Fact 1.14.
(
2n
n

)
=
∑n

i=0

(
n
i

)2
=
∑n

i=0

(
n
i

)(
n

n−i
)
.

Proof 1. Since (1 + x)2n = (1 + x)n(1 + x)n, by Fact 1.12, we have
(
2n
n

)
= [xn](1 + x)2n =∑n

i=0([x
i](1 + x)n)([xn−i](1 + x)n) =

∑n
i=0

(
n
i

)(
n

n−i
)

=
∑n

i=0

(
n
i

)2
.

Proof 2. (It is easy to find a combinatorial proof.)

Exercise 1.4 (Vandermonde’s Convolution Formula)(
n+m

k

)
=

k∑
j=0

(
n

j

)(
m

k − j

)
.

Fact 1.15. (1). ∑
all even k

(
n

k

)
=

∑
all odd k

(
n

k

)
= 2n−1.

(2).
n∑

k=0

k

(
n

k

)
= n2n−1

Proof. (1). We see that (1 + x)n =
∑n

i=0

(
n
i

)
. Taking x = 1 and x = −1, we have∑

all even k

(
n

k

)
=

∑
all odd k

(
n

k

)
= 2n−1.

(2). Let f(x) = (1 + x)n =
∑n

k=0 x
k. Then f ′(x) = n(1 + x)n−1 =

∑n
k=0 k

(
n
k

)
xk−1. Let x = 1,

then we have
∑n

k=0 k
(
n
k

)
= n2n−1.

Definition 1.16. Let kj ≥ 0 be integers satisfying that k1 + k2 + · · ·+ km = n. We define(
n

k1, k2, ..., km

)
:=

n!

k1!k2!...km!
.

The following theorem is a generalization of the binomial theorem.

Theorem 1.17 (Multinomial Theorem). For any reals x1, ..., xm and any positive integer
n ≥ 1, we have

(x1 + x2 + · · ·+ xm)n =
∑

k1+k2+···+km=n, kj≥0

(
n

k1, k2, ..., km

)
xk11 x

k2
2 · · ·x

km
m .

Proof. Omit.

Exercise 1.4. Suppose
∑m

i=1 ki = n with ki ≥ 1 for all i ∈ m. Then(
n

k1, k2, ..., km

)
=

(
n− 1

k1 − 1, k2, ..., km

)
+ · · ·+

(
n− 1

k1, k2, ..., km − 1

)
.
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1.4 Estimating binomial coefficients

Theorem 1.18. For any integer n ≥ 1, we have

e
(n
e

)n
≤ n! ≤ en

(n
e

)n
(1.1)

where e = lim
n→∞

(1 + 1
n)n is the Euler number.

Proof. We have

ln(n!) =

n∑
i=1

ln i ≤
∫ n+1

1
lnx dx = (x lnx− x)

∣∣∣∣x=n+1

x=1

= (n+ 1) ln(n+ 1)− n.

Then it follows that

n! ≤ (n+ 1)n+1

en
.

Reset n = n− 1, we have

(n− 1)! ≤ nn

en−1
⇐⇒ n! ≤ ne

(n
e

)n
.

Similarly we have

ln(n!) ≥
∫ n

1
lnx dx = (x lnx− x)

∣∣∣∣n
1

= n lnn− (n− 1),

which implies that

n! ≥ nn

en−1
= e

(n
e

)n
,

as desired.

Modifying the above proof, we can obtain the following improvement.

Exercise 1.5
n! ≤ e

√
n
(n
e

)n
.

Definition 1.19. Define f ∼ g for functions f and g, if lim
n→∞

f(n)
g(n) = 1.

The following formula is well-known.

Theorem 1.20 (Stirling’s formula.). n! ∼
√

2πn(ne )n.

It is easy to show the following two facts.

Fact 1.21. Let n be a fix integer. We can view
(
n
k

)
as a function with k ∈ {0, 1, 2, ..., n}. It is

increasing when k ≤
⌊
n
2

⌋
, and decreasing when k >

⌊
n
2

⌋
. Therefore,

(
n
k

)
achievers its maximum

at k =
⌊
n
2

⌋
or
⌈
n
2

⌉
.

Fact 1.22. 2n

n ≤
( n
bn2 c
)
≤ 2n
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Exercise 1.6. For any even integer n > 0, we have

2n√
2n
≤
(
n

n/2

)
≤ 2n√

n
.

If we are allowed to use Stirling’s formula, then we can get(
n
n
2

)
∼
√

2

π

2n√
n
.

Fact 1.23.
(
n
k

)
= (n)k

k! ≤
nk

k! .

Exercise 1.7. 1 + x ≤ ex holds for any real x.

Theorem 1.24. For any integers 1 ≤ k ≤ n, we have (nk )k ≤
(
n
k

)
≤ ( enk )k.

Proof. Since n−i
k−i ≥

n
k for each 0 ≤ i ≤ k − 1, we have(

n

k

)
=
n · (n− 1) · · · (n− k + 1)

k · (k − 1) · · · 1
=
(n
k

)
·
(
n− 1

k − 1

)
· · ·
(
n− k + 1

k

)
≥
(n
k

)k
For the upper bound, since k! ≥ e(ke )k > (ke )k, by Fact 1.23 we have(

n

k

)
≤ nk

k!
≤
(en
k

)k
,

as desired.

We can also prove the following strengthening.

Theorem 1.25. For any integers 1 ≤ k ≤ n,(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

k

)
≤
(en
k

)k
.

Proof. By the binomial theorem, we have(
n

0

)
+

(
n

1

)
x+ · · ·+

(
n

k

)
xk ≤ (1 + x)n

for any 0 < x ≤ 1. Then for any 0 < x ≤ 1, it gives that(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

k

)
≤
(
n
0

)
xk

+

(
n
1

)
xk−1

+ · · ·+
(
n
k

)
1
≤ (1 + x)n

xk
.

Taking x = k
n ∈ (0, 1], we have(

n

0

)
+

(
n

1

)
+ · · ·+

(
n

k

)
≤ (1 + x)n

xk
≤ exn

xk
=
(en
k

)k
,

as desired.
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