
Combinatorics

Instructor: Jie Ma, Scribed by Jun Gao, Jialin He and Tianchi Yang

1 Lecture 10. Ramsey number

Definition 1.1. For any k ≥ 2 and integers s1, s2, ..., sk ≥ 2, the Ramsey number Rk(s1, s2, ..., sk)
is the least integer N such that any k-edge-coloring of KN has a clique Ksi of color i, for some
i ∈ [k].

In last lecture, we know

•
R(s, t) ≤

(
s+ t− 2

s− 1

)
,

•
R(s, t) ≤ R(s− 1, t) +R(s, t− 1),

and we introduce an application of Ramsey theorem as following:

Theorem 1.2 (Schur’s Theorem). For k ≥ 2, there exists some integer N = N(k) such that any
coloring ϕ : [N ]→ [k] contains x, y, z ∈ [N ] satisfying that ϕ(x) = ϕ(y) = ϕ(z) and x+ y = z.

Using this theorem, Schur proved that the restricted version of Fermat’s last problem in Zp

for sufficiently large prime p.

Theorem 1.3 (Schur). For any integer m ≥ 1, there is an integer p(m) such that for any prime
p ≥ p(m), xm + ym = zm (mod p) has a nontrivial solution in Zp.

Proof. For prime p, consider the multiplicative group Z∗p = {1, 2, ..., p− 1}. Let g be a generator
of Z∗p. Then for x ∈ Z∗p, there exists exactly one pair of integers (i, j) such that x = gim+j (mod p)
for some 0 ≤ j ≤ m−1 and 0 ≤ im+j ≤ p−2. Then we define a coloring ϕ : Z∗p → {0, 1, ...,m−1}
by letting ϕ(x) = j.

By Schur’s Theorem, choose p(m) = N(m), and for any p ≥ p(m), the coloring ϕ gives
x, y, z ∈ Z∗p satisfying ϕ(x) = ϕ(y) = ϕ(z) and x+y = z. Let x = gi1m+j , y = gi2m+j , z = gi3m+j

(mod p). Then x+ y = z implies that

gi1m+j + gi2m+j = gi3m+j (mod p), (1.1)

thus
gi1m + gi2m = gi3m (mod p).

Let α = gi1 , β = gi2 , γ = gi3 . We have

αm + βm = γm (mod p).
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Remark: Schur’s theorem holds in Z, but we need to restrict the calculation in a multiplication
cyclic group when deducing equation (1.1).

Definition 1.4. A probability space is a pair (Ω, P ), where Ω is a finite set and P : 2Ω → [0, 1]
is a function assigning a number in the interval [0, 1] to every subset of Ω such that

(i) P (∅) = 0,

(ii) P (Ω) = 1, and

(iii) P (A ∪B) = P (A) + P (B) for disjoint sets A,B ⊂ Ω.

We say

• Any subset A of Ω is called an event, and P (A) =
∑

ω∈Ω P ({ω}).

• A random variable is a function X : Ω→ R

• The expectation of a random variable X is:

E[X] :=
∑
ω∈Ω

P ({ω}) ·X(ω).

The linearity of expectations: for any two random variables X and Y on Ω, we have

E[X + Y ] = E[X] + E[Y ].

Now we discuss the following basic form of the probabilistic methods in Combinatorics:

(i) Imagine we need to find some combinatorial object satisfying certain property, call it a
“good” property. We consider a big family for candidates and randomly pick one from
this family, call it a random object. If the probability that the random object has “good”
property is positive, then there must exist “good” objects.

(ii) To compute the probability of being “good”, we often compute the probability of being
“bad” and aim to show that this probability of being “bad” is strictly less than 1.

Theorem 1.5. Let n, s satisfy
(
n
s

)
· 21−(s2) < 1. Then R(s, s) > n.

Proof. We need to find a 2-edge-coloring of Kn such that it has no monochromatic clique Ks.
Let Φ be the family of all 2-edge-colorings of Kn. Let c ∈ Φ be chosen uniformly at random.

Then c is a random 2-edge-coloring of Kn, where each edge of Kn is colored by red and blue, each
with probability 1

2 , independent of each other edge.
Let B be the event that this random 2-edge-coloring has no monochromatic Ks. We want to

prove P (B) > 0. Consider its complement event A = Ω\B and its probability P (A), where A is
the event that c has a monochromatic Ks. For any S ∈

(
[n]
s

)
, let AS be the event that S forms a

monochromatic Ks for c. So A = ∪
S∈([n]

s )AS , and P (AS) = 21−(s2).

Thus

P (A) = P
(
∪
S∈([n]

s )AS

)
≤

∑
S∈([n]

s )

P (AS) =

(
n

s

)
21−(s2) < 1,

This shows that P (B) > 0.
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Corollary 1.6. R(s, s) ≥ 1
e
√

2
s2

s
2 .

Proof. Let n = 1
e
√

2
s2

s
2

(
e
2

)1/s
. Recall that

(
n
s

)
< ns

s! and s! ≥ e
(
s
e

)s
, thus we have that(

n

s

)
21−(s2) <

ns

e
(
s
e

)s 21−(s2) = 1.

So by the above theorem, we get

R(s, s) > n =
1

e
√

2
s2

s
2

(e
2

)1/s
≥ 1

e
√

2
s2

s
2 .

Definition 1.7. The random graph G(n, p) for some real p ∈ (0, 1) is a graph with vertex set
{1, 2, ..., n}, where each of potential

(
n
2

)
edges appears with probability p, independent of other

edges.

In the proof of the previous theorem, in fact we consider G(n, 1/2).
Let A be the property we are interested in. Let

P (A) = P (G(n,
1

2
) satisfies the property A)

=
the number of graphs with vertex set [n] satisfying the property A

2(n2)
.

So P (A) is a function of n, taking value in [0, 1].

Definition 1.8. We say the random graph G(n, 1
2) almost surely satisfies property A, if

lim
n→+∞

Pr(A) = 1.

If limn→+∞ Pr(A) = 0, then G(n, 1
2) almost surely does not satisfy the property A.

Theorem 1.9. Random graph G(n, 1
2) almost surely is not bipartite.

Proof. Let A be the event that G(n, 1
2) is bipartite. For any U ⊆ [n], let AU be the event that

all edges of G are between U and [n]\U . Then A =
⋃

U⊆[n]AU . We have

P (AU ) =
the number of graphs satisfying AU

2(n2)
=

2|U |(n−|U |)

2(n2)
≤ 2

n2

4

2
n(n−1)

2

= 2−
n2

4
+n

2 .

So by the union bound,

0 ≤ P (A) = P (
⋃

U⊆[n]

AU ) ≤
∑
U⊆[n]

P (AU ) ≤ 2n · 2−
n2

4
+n

2 = 2−
n2

4
+ 3n

2 .

Thus limn→+∞ P (A) = 0.
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