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1 The Probabilistic Method

Definition 1.1. Let F be a family of subsets of set Ω. We say F is a k-family if all its subsets
have size k.

Example 1.2. A 2-family is just a graph.

Definition 1.3. We say F is 2-colorable if there exists a function f : Ω → {blue,red} such that
every subset A in F is not monochromatic (i.e., each A contains at least one blue vertex and at
least one red vertex.)

Definition 1.4. For any k ∈ Z+, let m(k) be the minimum number of subsets in a k-family F
which is not 2-colorable.

Therefore, we see that m(k) ≤ t if and only if there exists a k-family F of t subsets which is
not 2-colorable, and m(k) > t if and only if any k-family of t subsets can be 2-colorable.

Fact 1.5. m(2) = 3. Consider the graph K3.

Theorem 1.6. For any k, we have m(k) > 2k−1 − 1, i.e., any k-family F of 2k−1 − 1 subsets
can be 2-colorable.

Proof. Given a k-family F of 2k−1− 1 subsets, we aim to find a function f : Ω→ {blue,red} such
that any subset A in F has a blue vertex and a red vertex. We call such f “good”.

Now we consider a random function ϕ : Ω→ {blue,red}, that is, each x ∈ Ω is colored by blue
or red with probability 1

2 , independent of other choices.
Let S be the event that the random function ϕ is good. Let T = Sc be the complement, i.e.,

there exists a subset A in F which is monochromatic under ϕ. For each A ∈ F , let TA be the
event that the subset A is monochromatic under ϕ. So

T =
⋃
A∈F

TA.

It is easy to see that

P (TA) = 2(
1

2
)k = 21−k.

So by the union bound,

P (T ) = P (
⋃
A∈F

TA) ≤
∑
A∈F

P (TA) = |F|21−k < 1.

Therefore, we have
P (ϕ is good) = P (S) = 1− P (T ) > 0.
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Since

P (ϕ is good) =
number of good functions

total number of functions
.

We know that there exists at least one good function f : Ω→ {blue,red}.

Definition 1.7. Given a probability space (Ω, P ), we say events A1, A2, ..., Ak are independent
if for any I ⊂ [n], we have P (

⋂
i∈I Ai) =

∏
i∈I P (Ai).

Definition 1.8. A tournament on n vertices is a directed graph obtained from the clique Kn by
assigning a direction to each edge of Kn. For any arc i→ j, we say i is the head and j is the tail
of the arc.

Definition 1.9. A tournament T satisfies the property Sk if for any subset A of size k, there
exists a vertex u ∈ V (T ) \A such that u→ x for any x ∈ A.

Question 1.10. For any k ∈ Z+, can we find a tournament satisfying the property Sk?

Theorem 1.11. For any k ∈ Z+, if
(
n
k

)
(1 − 1

2k
)n−k < 1, then there exists a tournament on n

vertices satisfying the property Sk.

Proof. We prove this by considering a random tournament T on [n], that is, for any pair {i, j},
the arc i → j occurs with probability 1

2 , independent of other choices. Let B be the event that

T does not satisfy the property Sk. For A ∈
([n]
k

)
, let BA be the event that for every vertex

x ∈ [n] \A there exists some u ∈ A with u→ x. So

B =
⋃

A∈([n]
k )

BA.

For x ∈ [n]\A, let BA,x be the event that there exists some u ∈ A with u→ x. So

BA =
⋂

x∈[n]\A

BA,x.

It is easy to see that for any x ∈ [n] \A

P (BA,x) = 1−
(

1

2

)k

.

Note that only the arcs between x and A will effect the event BA,x, and these arcs for distinct
vertices x’s are disjoint. This explains that all events BA,x for all x ∈ [n] \A are independent. So

P (BA) = P (
⋂
x/∈A

BA,x) =
∏
x/∈A

P (BA,x) =

(
1−

(
1

2

)k
)n−k

.

Therefore,

P (B) ≤
∑

A∈([n]
k )

P (BA) ≤
(
n

k

)(
1−

(
1

2

)k
)n−k

< 1.

Thus, P (Bc) > 0, i.e., there exists a tournament on [n] satisfying property Sk.
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Corollary 1.12. For any k ∈ Z+, there exists a minimal f(k) such that there exists a tournament
on f(k) vertices satisfying the property Sk.

Example 1.13. We have f(3) ≤ 91, as
(
91
3

)
(78)88 < 1.
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