Combinatorics

Instructor: Jie Ma, Scribed by Jun Gao, Jialin He and Tianchi Yang

2020 Fall, USTC

1 The Probabilistic Method

Definition 1.1. Let \mathcal{F} be a family of subsets of set Ω. We say \mathcal{F} is a k-family if all its subsets have size k.

Example 1.2. A 2-family is just a graph.
Definition 1.3. We say \mathcal{F} is 2-colorable if there exists a function $f: \Omega \rightarrow\{$ blue,red $\}$ such that every subset A in \mathcal{F} is not monochromatic (i.e., each A contains at least one blue vertex and at least one red vertex.)

Definition 1.4. For any $k \in Z^{+}$, let $m(k)$ be the minimum number of subsets in a k-family \mathcal{F} which is not 2-colorable.

Therefore, we see that $m(k) \leq t$ if and only if there exists a k-family \mathcal{F} of t subsets which is not 2-colorable, and $m(k)>t$ if and only if any k-family of t subsets can be 2-colorable.

Fact 1.5. $m(2)=3$. Consider the graph K_{3}.
Theorem 1.6. For any k, we have $m(k)>2^{k-1}-1$, i.e., any k-family \mathcal{F} of $2^{k-1}-1$ subsets can be 2-colorable.

Proof. Given a k-family \mathcal{F} of $2^{k-1}-1$ subsets, we aim to find a function $f: \Omega \rightarrow\{$ blue,red $\}$ such that any subset A in \mathcal{F} has a blue vertex and a red vertex. We call such f "good".

Now we consider a random function $\varphi: \Omega \rightarrow\{$ blue,red $\}$, that is, each $x \in \Omega$ is colored by blue or red with probability $\frac{1}{2}$, independent of other choices.

Let S be the event that the random function φ is good. Let $T=S^{c}$ be the complement, i.e., there exists a subset A in \mathcal{F} which is monochromatic under φ. For each $A \in \mathcal{F}$, let T_{A} be the event that the subset A is monochromatic under φ. So

$$
T=\bigcup_{A \in \mathcal{F}} T_{A} .
$$

It is easy to see that

$$
P\left(T_{A}\right)=2\left(\frac{1}{2}\right)^{k}=2^{1-k}
$$

So by the union bound,

$$
P(T)=P\left(\bigcup_{A \in \mathcal{F}} T_{A}\right) \leq \sum_{A \in \mathcal{F}} P\left(T_{A}\right)=|\mathcal{F}| 2^{1-k}<1 .
$$

Therefore, we have

$$
P(\varphi \text { is good })=P(S)=1-P(T)>0
$$

Since

$$
P(\varphi \text { is good })=\frac{\text { number of good functions }}{\text { total number of functions }} .
$$

We know that there exists at least one good function $f: \Omega \rightarrow$ \{blue,red $\}$.
Definition 1.7. Given a probability space (Ω, P), we say events $A_{1}, A_{2}, \ldots, A_{k}$ are independent if for any $I \subset[n]$, we have $P\left(\bigcap_{i \in I} A_{i}\right)=\prod_{i \in I} P\left(A_{i}\right)$.

Definition 1.8. A tournament on n vertices is a directed graph obtained from the clique K_{n} by assigning a direction to each edge of K_{n}. For any arc $i \rightarrow j$, we say i is the head and j is the tail of the arc.

Definition 1.9. A tournament T satisfies the property S_{k} if for any subset A of size k, there exists a vertex $u \in V(T) \backslash A$ such that $u \rightarrow x$ for any $x \in A$.

Question 1.10. For any $k \in Z^{+}$, can we find a tournament satisfying the property S_{k} ?
Theorem 1.11. For any $k \in Z^{+}$, if $\binom{n}{k}\left(1-\frac{1}{2^{k}}\right)^{n-k}<1$, then there exists a tournament on n vertices satisfying the property S_{k}.

Proof. We prove this by considering a random tournament T on $[n]$, that is, for any pair $\{i, j\}$, the arc $i \rightarrow j$ occurs with probability $\frac{1}{2}$, independent of other choices. Let B be the event that T does not satisfy the property S_{k}. For $A \in\left(\begin{array}{c}{\left[\begin{array}{c}n] \\ k\end{array}\right) \text {, let } B_{A} \text { be the event that for every vertex }{ }^{\text {. }} \text {. }}\end{array}\right.$ $x \in[n] \backslash A$ there exists some $u \in A$ with $u \rightarrow x$. So

$$
B=\bigcup_{A \in\binom{[n]}{k}} B_{A} .
$$

For $x \in[n] \backslash A$, let $B_{A, x}$ be the event that there exists some $u \in A$ with $u \rightarrow x$. So

$$
B_{A}=\bigcap_{x \in[n] \backslash A} B_{A, x} .
$$

It is easy to see that for any $x \in[n] \backslash A$

$$
P\left(B_{A, x}\right)=1-\left(\frac{1}{2}\right)^{k}
$$

Note that only the arcs between x and A will effect the event $B_{A, x}$, and these arcs for distinct vertices x 's are disjoint. This explains that all events $B_{A, x}$ for all $x \in[n] \backslash A$ are independent. So

$$
P\left(B_{A}\right)=P\left(\bigcap_{x \notin A} B_{A, x}\right)=\prod_{x \notin A} P\left(B_{A, x}\right)=\left(1-\left(\frac{1}{2}\right)^{k}\right)^{n-k} .
$$

Therefore,

$$
P(B) \leq \sum_{A \in\binom{[n]}{k}} P\left(B_{A}\right) \leq\binom{ n}{k}\left(1-\left(\frac{1}{2}\right)^{k}\right)^{n-k}<1
$$

Thus, $P\left(B^{c}\right)>0$, i.e., there exists a tournament on $[n]$ satisfying property S_{k}.

Corollary 1.12. For any $k \in Z^{+}$, there exists a minimal $f(k)$ such that there exists a tournament on $f(k)$ vertices satisfying the property S_{k}.
Example 1.13. We have $f(3) \leq 91$, as $\binom{91}{3}\left(\frac{7}{8}\right)^{88}<1$.

