Combinatorics

Instructor: Jie Ma, Scribed by Jun Gao, Jialin He and Tianchi Yang

2020 Fall, USTC

The Linearity of Expectation

- For any two variables X, Y, we have $E[X+Y]=E[X]+E[Y]$.
- $P(X \geq E[X])>0$.
- $P(X \leq E[X])>0$.

Definition 1.1. A set A is sum-free, if for any $x, y \in A, x+y \notin A$, i.e., $x+y=z$ has no solutions in A.

Example: Both $\left\{\left\lfloor\frac{n}{2}\right\rfloor+1,\left\lfloor\frac{n}{2}\right\rfloor+2, \ldots, n\right\}$ and $\{$ all odd integers in $[n]\}$ are two sum-free sets in $[n]$ of size $\left\lceil\frac{n}{2}\right\rceil$.

Exercise 1.2. Show that the maximum size of a sum-free subset A in $[n]$ is $\left\lceil\frac{n}{2}\right\rceil$.
Theorem 1.3. For any set A of non-zero integers, there exists a sum-free subset $B \subseteq A$ with $|B| \geq \frac{|A|}{3}$.

Proof. We choose a prime p large enough such that $p>|a|$ for any $a \in A$. Consider $Z_{p}=$ $\{0,1, \ldots, p-1\}$ and $Z_{p}^{*}=\{1,2, \ldots, p-1\}$. We note that there is a large sum-free subset under $Z_{p}($ $\bmod p$):

$$
S=\left\{\left\lceil\frac{p}{3}\right\rceil+1,\left\lceil\frac{p}{3}\right\rceil+2, \ldots,\left\lceil\frac{2 p}{3}\right\rceil\right\} .
$$

Claim: For any $x \in Z_{p}^{*}, A_{x}=\{a \in A: a x(\bmod p) \in S\}$ is sum-free.
Proof. Suppose that there are $a, b, c \in A_{x}$ satisfying $a+b=c$. But we also have $a x(\bmod p) \in S$, $b x(\bmod p) \in S, c x(\bmod p) \in S$ and $a x(\bmod p)+b x(\bmod p)=c x(\bmod p)$ in Z_{p}. This is a contradiction to that S is sum-free in Z_{p}.

Next, we want to find some $x \in Z_{p}^{*}$ such that $\left|A_{x}\right| \geq \frac{|A|}{3}$. We choose $x \in Z_{p}^{*}$ uniformly at random, and we compute, $E\left[\left|A_{x}\right|\right]$, the expectation of $\left|A_{x}\right|$.

Note that $\left|A_{x}\right|=\sum_{a \in A} 1_{\{a x(\bmod p) \in S\}}$. So

$$
E\left[\left|A_{x}\right|\right]=E\left[\sum_{a \in A} 1_{\{a x(\bmod p) \in S\}}\right]=\sum_{a \in A} E\left[1_{\{a x(\bmod p) \in S\}}\right]=\sum_{a \in A} P(a x(\bmod p) \in S) .
$$

We observe that for a fixed $a \in A,\left\{a x: x \in Z_{p}^{*}\right\}=Z_{p}^{*}$. So $P(a x(\bmod p) \in S)=\frac{|S|}{\left|Z_{p}^{*}\right|} \geq \frac{1}{3}$. And thus, $E\left[\left|A_{x}\right|\right]=\sum_{a \in A} \frac{1}{3}=\frac{|A|}{3}$. Then, we know that there exists a choice of $x \in Z_{p}^{*}$ such that $\left|A_{x}\right| \geq E\left[\left|A_{x}\right|\right] \geq \frac{|A|}{3}$.

Definition 1.4. Given a graph G, a dominating set A in G is a subset of $V(G)$ such that any $u \in V(G) \backslash A$ has a neighbor in A.

Theorem 1.5. Let G be a graph on n vertices and with minimum degree $\delta>1$. Then G contains a dominating set of at most $\frac{1+\ln (1+\delta)}{1+\delta} n$ vertices.

Proof. Take $p \in(0,1)$, whose value will be determined later. We pick each vertex in $V(G)$ with probability p uniformly at random. Let A be the set of those chosen vertices. Let B be the set of vertices $b \in V(G) \backslash A$, which has no neighbors in A. Then we can see that

- $A \cup B$ is a dominating set in G.
- $b \in B$ if and only if $\left(\{b\} \cup N_{G}(b)\right) \cap A=\emptyset$.

That is, $b \in B$ if and only if b and all neighbors of b are not picked. So

$$
P(b \in B)=(1-p)^{1+d_{G}(b)} \leq(1-p)^{1+\delta} \leq e^{-p(1+\delta)},
$$

where the last inequality holds since $1+x \leq e^{x}$. Then, we have

$$
E[|B|]=E\left[\sum_{b \in V(G)} 1_{\{b \in B\}}\right]=\sum_{b \in V(G)} P(b \in B) \leq n \cdot e^{-p(1+\delta)} .
$$

We also have $E[|A|]=n p$. Thus,

$$
E[|A \cup B|] \leq E[|A|+|B|]=E[|A|]+E[|B|] \leq n\left(p+e^{-p(1+\delta)}\right) .
$$

By calculus, we see that when $p=\frac{\ln (1+\delta)}{1+\delta}, p+e^{-p(1+\delta)}$ is minimized with value $\frac{1+\ln (1+\delta)}{1+\delta}$. So we pick $p=\frac{\ln (1+\delta)}{1+\delta}$ to get $E[|A \cup B|] \leq \frac{1+\ln (1+\delta)}{1+\delta} n$. Therefore there exists a choice of $A \cup B$ such that $|A \cup B| \leq E[|A \cup B|] \leq \frac{1+\ln (1+\delta)}{1+\delta} n$, where $A \cup B$ is a dominating set of G.

Definition 1.6. Let $\alpha(G)$ be the maximum size of an independent set in G.
Theorem 1.7. For any graph $G, \alpha(G) \geqslant \sum_{v \in V(G)} \frac{1}{d(v)+1}$ where $d(v)$ denotes the degree of v in G.

Proof. Let $V(G)=[n]$. For $i \in[n]$, let N_{i} be the neighborhood of i in G. Let S_{n} be the family of all permutations $\pi:[n] \rightarrow[n]$.

Given a permutation $\pi \in S_{n}$, we say a vertex $i \in[n]$ is π-good, if $\pi(i)<\pi(j)$ for any $j \in N_{i}$. Let M_{π} be the set of all π-good vertices.
Claim: For any $\pi \in S_{n}, M_{\pi}$ is an independent set in G.
Proof. Suppose that there are two vertices $i, j \in M_{\pi}$ with $i j \in E(G)$. Let $\pi(i)<\pi(j)$. Then j is not π-good, a contradiction.

We pick an $\pi \in S_{n}$ uniformly at random, and compute $E\left[\left|M_{\pi}\right|\right]$. Since $\left|M_{\pi}\right|=\sum_{i \in[n]} 1_{\{i \text { is } \pi-\text { good }\}}$, we have $E\left[\left|M_{\pi}\right|\right]=\sum_{i \in[n]} P(i$ is $\pi-$ good $)=\sum_{i \in[n]} \frac{1}{d(i)+1}$. Thus there exists a permutation $\pi \in S_{n}$ such that $\left|M_{\pi}\right| \geq \sum_{i \in[n]} \frac{1}{d(i)+1}$. Then by the definition of $\alpha(G)$ and our claim, we can get that $\alpha(G) \geq \sum_{v \in V(G)} \frac{1}{d(v)+1}$ which completes the proof.

