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The Linearity of Expectation

• For any two variables X,Y , we have E[X + Y ] = E[X] + E[Y ].

• P (X ≥ E[X]) > 0.

• P (X ≤ E[X]) > 0.

Definition 1.1. A set A is sum-free, if for any x, y ∈ A, x + y /∈ A, i.e., x + y = z has no
solutions in A.

Example: Both {⌊n2 ⌋ + 1, ⌊n2 ⌋ + 2, ..., n} and {all odd integers in [n]} are two sum-free sets in
[n] of size ⌈n2 ⌉.

Exercise 1.2. Show that the maximum size of a sum-free subset A in [n] is ⌈n2 ⌉.

Theorem 1.3. For any set A of non-zero integers, there exists a sum-free subset B ⊆ A with
|B| ≥ |A|

3 .

Proof. We choose a prime p large enough such that p > |a| for any a ∈ A. Consider Zp =
{0, 1, ..., p− 1} and Z∗

p = {1, 2, ..., p− 1}. We note that there is a large sum-free subset under Zp(
mod p):

S =
{
⌈p
3
⌉+ 1, ⌈p

3
⌉+ 2, ..., ⌈2p

3
⌉
}
.

Claim: For any x ∈ Z∗
p , Ax = {a ∈ A : ax (mod p) ∈ S} is sum-free.

Proof. Suppose that there are a, b, c ∈ Ax satisfying a+ b = c. But we also have ax (mod p) ∈ S,
bx (mod p) ∈ S, cx (mod p) ∈ S and ax (mod p) + bx (mod p) = cx (mod p) in Zp. This is a
contradiction to that S is sum-free in Zp.

Next, we want to find some x ∈ Z∗
p such that |Ax| ≥ |A|

3 . We choose x ∈ Z∗
p uniformly at

random, and we compute, E
[
|Ax|

]
, the expectation of |Ax|.

Note that |Ax| =
∑
a∈A

1{ax (mod p)∈S}. So

E
[
|Ax|

]
= E

[∑
a∈A

1{ax (mod p)∈S}

]
=

∑
a∈A

E
[
1{ax (mod p)∈S}

]
=

∑
a∈A

P
(
ax (mod p) ∈ S

)
.

We observe that for a fixed a ∈ A, {ax : x ∈ Z∗
p} = Z∗

p . So P
(
ax (mod p) ∈ S

)
= |S|

|Z∗
p |

≥ 1
3 .

And thus, E
[
|Ax|

]
=

∑
a∈A

1
3 = |A|

3 . Then, we know that there exists a choice of x ∈ Z∗
p such that

|Ax| ≥ E
[
|Ax|

]
≥ |A|

3 .
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Definition 1.4. Given a graph G, a dominating set A in G is a subset of V (G) such that any
u ∈ V (G)\A has a neighbor in A.

Theorem 1.5. Let G be a graph on n vertices and with minimum degree δ > 1. Then G contains

a dominating set of at most
1 + ln(1 + δ)

1 + δ
n vertices.

Proof. Take p ∈ (0, 1), whose value will be determined later. We pick each vertex in V (G) with
probability p uniformly at random. Let A be the set of those chosen vertices. Let B be the set
of vertices b ∈ V (G) \A, which has no neighbors in A. Then we can see that

• A ∪B is a dominating set in G.

• b ∈ B if and only if
(
{b} ∪NG(b)

)
∩A = ∅.

That is, b ∈ B if and only if b and all neighbors of b are not picked. So

P (b ∈ B) = (1− p)1+dG(b) ≤ (1− p)1+δ ≤ e−p(1+δ),

where the last inequality holds since 1 + x ≤ ex. Then, we have

E
[
|B|

]
= E

[ ∑
b∈V (G)

1{b∈B}

]
=

∑
b∈V (G)

P (b ∈ B) ≤ n · e−p(1+δ).

We also have E
[
|A|

]
= np. Thus,

E
[
|A ∪B|

]
≤ E

[
|A|+ |B|

]
= E

[
|A|

]
+ E

[
|B|

]
≤ n

(
p+ e−p(1+δ)

)
.

By calculus, we see that when p =
ln(1 + δ)

1 + δ
, p+e−p(1+δ) is minimized with value

1 + ln(1 + δ)

1 + δ
.

So we pick p =
ln(1 + δ)

1 + δ
to get E

[
|A ∪ B|

]
≤ 1 + ln(1 + δ)

1 + δ
n. Therefore there exists a choice of

A∪B such that |A∪B| ≤ E
[
|A∪B|

]
≤ 1 + ln(1 + δ)

1 + δ
n, where A∪B is a dominating set of G.

Definition 1.6. Let α(G) be the maximum size of an independent set in G.

Theorem 1.7. For any graph G, α(G) >
∑

v∈V (G)

1

d(v) + 1
where d(v) denotes the degree of v in

G.

Proof. Let V (G) = [n]. For i ∈ [n], let Ni be the neighborhood of i in G. Let Sn be the family
of all permutations π : [n] → [n].

Given a permutation π ∈ Sn, we say a vertex i ∈ [n] is π−good, if π(i) < π(j) for any j ∈ Ni.
Let Mπ be the set of all π−good vertices.
Claim: For any π ∈ Sn, Mπ is an independent set in G.

Proof. Suppose that there are two vertices i, j ∈ Mπ with ij ∈ E(G). Let π(i) < π(j). Then j is
not π−good, a contradiction.
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We pick an π ∈ Sn uniformly at random, and compute E
[
|Mπ|

]
. Since |Mπ| =

∑
i∈[n]

1{i is π−good},

we have E
[
|Mπ|

]
=

∑
i∈[n]

P (i is π− good) =
∑
i∈[n]

1

d(i) + 1
. Thus there exists a permutation π ∈ Sn

such that |Mπ| ≥
∑
i∈[n]

1

d(i) + 1
. Then by the definition of α(G) and our claim, we can get that

α(G) ≥
∑

v∈V (G)

1

d(v) + 1
which completes the proof.
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