Combinatorics

Instructor: Jie Ma, Scribed by Jun Gao, Jialin He and Tianchi Yang

2020 Fall, USTC

The Linearity of Expectation

- For any two variables X, Y, we have E[X + Y] = E[X] + E[Y].
- $P(X \ge E[X]) > 0.$
- $P(X \le E[X]) > 0.$

Definition 1.1. A set A is sum-free, if for any $x, y \in A, x + y \notin A$, i.e., x + y = z has no solutions in A.

Example: Both $\{\lfloor \frac{n}{2} \rfloor + 1, \lfloor \frac{n}{2} \rfloor + 2, ..., n\}$ and {all odd integers in [n]} are two sum-free sets in [n] of size $\left\lceil \frac{n}{2} \right\rceil$.

Exercise 1.2. Show that the maximum size of a sum-free subset A in [n] is $\lceil \frac{n}{2} \rceil$.

Theorem 1.3. For any set A of non-zero integers, there exists a sum-free subset $B \subseteq A$ with $|B| \geq \frac{|A|}{3}$.

Proof. We choose a prime p large enough such that p > |a| for any $a \in A$. Consider $Z_p =$ $\{0, 1, ..., p-1\}$ and $Z_p^* = \{1, 2, ..., p-1\}$. We note that there is a large sum-free subset under $Z_p($ $\mod p$:

$$S = \left\{ \lceil \frac{p}{3} \rceil + 1, \lceil \frac{p}{3} \rceil + 2, ..., \lceil \frac{2p}{3} \rceil \right\}.$$

Claim: For any $x \in Z_p^*$, $A_x = \{a \in A : ax \pmod{p} \in S\}$ is sum-free.

Proof. Suppose that there are $a, b, c \in A_x$ satisfying a + b = c. But we also have $ax \pmod{p} \in S$, $bx \pmod{p} \in S, cx \pmod{p} \in S$ and $ax \pmod{p} + bx \pmod{p} = cx \pmod{p}$ in Z_p . This is a contradiction to that S is sum-free in Z_p .

Next, we want to find some $x \in Z_p^*$ such that $|A_x| \ge \frac{|A|}{3}$. We choose $x \in Z_p^*$ uniformly at random, and we compute, $E[|A_x|]$, the expectation of $|A_x|$. Note that $|A_x| = \sum_{a \in A} \mathbb{1}_{\{ax \pmod{p} \in S\}}$. So

$$E[|A_x|] = E\Big[\sum_{a \in A} 1_{\{ax \pmod{p} \in S\}}\Big] = \sum_{a \in A} E\Big[1_{\{ax \pmod{p} \in S\}}\Big] = \sum_{a \in A} P(ax \pmod{p} \in S).$$

We observe that for a fixed $a \in A$, $\{ax : x \in Z_p^*\} = Z_p^*$. So $P(ax \pmod{p}) \in S) = \frac{|S|}{|Z_p^*|} \ge \frac{1}{3}$. And thus, $E[|A_x|] = \sum_{a \in A} \frac{1}{3} = \frac{|A|}{3}$. Then, we know that there exists a choice of $x \in Z_p^*$ such that $|A_x| \ge E[|A_x|] \ge \frac{|A|}{3}.$ **Definition 1.4.** Given a graph G, a dominating set A in G is a subset of V(G) such that any $u \in V(G) \setminus A$ has a neighbor in A.

Theorem 1.5. Let G be a graph on n vertices and with minimum degree $\delta > 1$. Then G contains a dominating set of at most $\frac{1 + \ln(1 + \delta)}{1 + \delta}n$ vertices.

Proof. Take $p \in (0, 1)$, whose value will be determined later. We pick each vertex in V(G) with probability p uniformly at random. Let A be the set of those chosen vertices. Let B be the set of vertices $b \in V(G) \setminus A$, which has no neighbors in A. Then we can see that

- $A \cup B$ is a dominating set in G.
- $b \in B$ if and only if $(\{b\} \cup N_G(b)) \cap A = \emptyset$.

That is, $b \in B$ if and only if b and all neighbors of b are not picked. So

$$P(b \in B) = (1-p)^{1+d_G(b)} \le (1-p)^{1+\delta} \le e^{-p(1+\delta)},$$

where the last inequality holds since $1 + x \leq e^x$. Then, we have

$$E[|B|] = E\left[\sum_{b \in V(G)} 1_{\{b \in B\}}\right] = \sum_{b \in V(G)} P(b \in B) \le n \cdot e^{-p(1+\delta)}.$$

We also have E[|A|] = np. Thus,

$$E[|A \cup B|] \le E[|A| + |B|] = E[|A|] + E[|B|] \le n(p + e^{-p(1+\delta)}).$$

By calculus, we see that when $p = \frac{\ln(1+\delta)}{1+\delta}$, $p+e^{-p(1+\delta)}$ is minimized with value $\frac{1+\ln(1+\delta)}{1+\delta}$. So we pick $p = \frac{\ln(1+\delta)}{1+\delta}$ to get $E[|A \cup B|] \le \frac{1+\ln(1+\delta)}{1+\delta}n$. Therefore there exists a choice of $A \cup B$ such that $|A \cup B| \le E[|A \cup B|] \le \frac{1+\ln(1+\delta)}{1+\delta}n$, where $A \cup B$ is a dominating set of G.

Definition 1.6. Let $\alpha(G)$ be the maximum size of an independent set in G.

Theorem 1.7. For any graph G, $\alpha(G) \ge \sum_{v \in V(G)} \frac{1}{d(v) + 1}$ where d(v) denotes the degree of v in G.

Proof. Let V(G) = [n]. For $i \in [n]$, let N_i be the neighborhood of i in G. Let S_n be the family of all permutations $\pi : [n] \to [n]$.

Given a permutation $\pi \in S_n$, we say a vertex $i \in [n]$ is π -good, if $\pi(i) < \pi(j)$ for any $j \in N_i$. Let M_{π} be the set of all π -good vertices.

Claim: For any $\pi \in S_n$, M_{π} is an independent set in G.

Proof. Suppose that there are two vertices $i, j \in M_{\pi}$ with $ij \in E(G)$. Let $\pi(i) < \pi(j)$. Then j is not π -good, a contradiction.

We pick an $\pi \in S_n$ uniformly at random, and compute $E[|M_{\pi}|]$. Since $|M_{\pi}| = \sum_{i \in [n]} 1_{\{i \text{ is } \pi-good\}}$, we have $E[|M_{\pi}|] = \sum_{i \in [n]} P(i \text{ is } \pi - good) = \sum_{i \in [n]} \frac{1}{d(i) + 1}$. Thus there exists a permutation $\pi \in S_n$ such that $|M_{\pi}| \ge \sum_{i \in [n]} \frac{1}{d(i) + 1}$. Then by the definition of $\alpha(G)$ and our claim, we can get that $\alpha(G) \ge \sum_{v \in V(G)} \frac{1}{d(v) + 1}$ which completes the proof.