Combinatorics

Instructor: Jie Ma, Scribed by Jun Gao, Jialin He and Tianchi Yang

1 Odd/Even town

Question. A town has n residents. They want to form some clubs according to the following rules:
(i) Each club has an odd number of members.
(ii) Every 2 clubs must share an even number of members.

How many clubs can they form?
Examples. (a) $A_{i}=\{i\}$ for $i \in[n] \Rightarrow n$ clubs.
(b) n is even, $A_{i}=[n] \backslash\{i\} \Rightarrow n$ clubs.
(c) n is even, $A_{1}=[n] \backslash\{1\}, A_{2}=[n] \backslash\{2\}, A_{i}=\{1,2, i\}$ for $i \in\{3, \ldots, n\} \Rightarrow n$ clubs.

Theorem 1.1 (Odd/Even town). Let $\mathcal{F} \subseteq 2^{[n]}$ be a family satisfying:
(i) $|A|$ is odd for all $A \in \mathcal{F}$,
(ii) $|A \cap B|$ is even, for all $A \neq B \in \mathcal{F}$.

Then $|\mathcal{F}| \leq n$.
Proof. For each $A \in \mathcal{F}$, we define an indicator vector $\overrightarrow{\mathbb{1}}_{A} \in \mathbb{F}_{2}^{n}=\{0,1\}^{n}$ such that

$$
\overrightarrow{\mathbb{1}}_{A}(i)= \begin{cases}1, & \text { if } i \in A \\ 0, & \text { if } i \notin A,\end{cases}
$$

where \mathbb{F}_{2} is the finite field of size 2 . Then, these conditions become

$$
\begin{cases}\overrightarrow{\mathbb{1}}_{A} \cdot \overrightarrow{\mathbb{1}}_{A}=1, & \forall A \in \mathcal{F} \\ \overrightarrow{\mathbb{1}}_{A} \cdot \overrightarrow{\mathbb{1}}_{B}=0, & \forall A \neq B \in \mathcal{F} .\end{cases}
$$

Next, we claim that these vectors $\overrightarrow{\mathbb{1}}_{A}$ in \mathbb{F}_{2}^{n} are linearly independent.
Let $\alpha_{A} \in \mathbb{F}_{2}$, such that $\sum_{A \in \mathcal{F}} \alpha_{A} \overrightarrow{\mathbb{1}}_{A}=\overrightarrow{0}$. Then for any $B \in \mathcal{F}$,

$$
0=\overrightarrow{0} \cdot \overrightarrow{\mathbb{1}}_{B}=\left(\sum_{A \in \mathcal{F}} \alpha_{A} \overrightarrow{\mathbb{1}}_{A}\right) \cdot \overrightarrow{\mathbb{1}}_{B}=\sum_{A \in \mathcal{F}} \alpha_{A}\left(\overrightarrow{\mathbb{1}}_{A} \cdot \overrightarrow{\mathbb{1}}_{B}\right)=\alpha_{B} \cdot \overrightarrow{\mathbb{1}}_{B} \cdot \overrightarrow{\mathbb{1}}_{B}=\alpha_{B} .
$$

This proves the claim. Therefore the number of vectors $\overrightarrow{\mathbb{1}}_{A}$'s is at most the dimension of \mathbb{F}_{2}^{n}, which is n. So $|\mathcal{F}| \leq n$.

2 Even/Odd town

Theorem 2.1 (Even/Odd town). Let $\mathcal{F} \subseteq 2^{n}$ be such that:
(i) $|A|$ is even, for all $A \in \mathcal{F}$,
(ii) $|A \cap B|$ is odd, for all $A \neq B \in \mathcal{F}$.

Then $|\mathcal{F}| \leq n$.
First we show a weaker result:
Lemma 2.2. Such \mathcal{F} satisfies $|\mathcal{F}| \leq n+1$.
Proof. Adding a new element $n+1$ to each set $A \in \mathcal{F}$ to get a new family \mathcal{F}^{*}. We see \mathcal{F}^{*} satisfies the Odd/Even town conditions. So $|\mathcal{F}|=\left|\mathcal{F}^{*}\right| \leq n+1$.

Now we give the proof of Theorem 2.1.
Proof of Theorem 2.1. It suffices to prove that $|\mathcal{F}| \neq n+1$. Suppose for a contradiction that $\mathcal{F}=\left\{A_{1}, A_{2}, \cdots, A_{n+1}\right\}$. For each $A_{i} \in \mathcal{F}$, define $\overrightarrow{\mathbb{1}}_{A_{i}} \in \mathbb{F}_{2}^{n}$ as before. So we have $n+1$ vectors in an n-dimension space. Thus, they must be linearly dependent. Therefore, there exist $\alpha_{i} \in \mathbb{F}_{2}$ for $1 \leq i \leq n+1$ which are not all 0 's such that

$$
\sum_{i=1}^{n+1} \alpha_{i} \overrightarrow{\mathbb{1}}_{A_{i}}=\overrightarrow{0}
$$

We also have

$$
\begin{cases}\overrightarrow{\mathbb{1}}_{A} \cdot \overrightarrow{\mathbb{1}}_{A}=0, & \forall A \in \mathcal{F} \\ \overrightarrow{\mathbb{1}}_{A} \cdot \overrightarrow{\mathbb{1}}_{B}=1, \quad \forall A \neq B \in \mathcal{F} .\end{cases}
$$

Then for each $1 \leq j \leq n+1$,

$$
0=\overrightarrow{0} \cdot \overrightarrow{\mathbb{1}}_{A_{j}}=\left(\sum_{i=1}^{n+1} \alpha_{i} \overrightarrow{\mathbb{1}}_{A_{i}}\right) \cdot \overrightarrow{\mathbb{1}}_{A_{j}}=\sum_{i=1}^{n+1} \alpha_{i}-\alpha_{j}
$$

So $\alpha_{j}=\sum_{i=1}^{n+1} \alpha_{i}$ for all $1 \leq j \leq n+1$. They are all equal. Because all α_{j} 's can not be all 0 's, we derive that $\alpha_{j}=1$ for all $1 \leq j \leq n+1$ and n must be even. Moreover,

$$
\begin{equation*}
\sum_{i=1}^{n+1} \overrightarrow{\mathbb{1}}_{A_{i}}=\overrightarrow{0} \tag{1}
\end{equation*}
$$

Consider $\mathcal{F}^{c}=\left\{A^{c}: A \in \mathcal{F}\right\}$, we will see that \mathcal{F}^{c} also satisfies the Even/Odd town conditions:

- $\left|A^{c}\right|=n-|A|$ is even, for all $A \in \mathcal{F}$.
- $\left|A^{c} \cap B^{c}\right|=n-|A \cup B|=n-|A|-|B|+|A \cap B|$ is odd, for all $A \neq B \in \mathcal{F}$.

By the same proof, we can derive that

$$
\begin{equation*}
\sum_{i=1}^{n+1} \overrightarrow{\mathbb{1}}_{A_{i}^{c}}=\overrightarrow{0} \tag{2}
\end{equation*}
$$

Now (1)+(2) gives that

$$
\overrightarrow{0}=\sum_{i=1}^{n+1}\left(\overrightarrow{\mathbb{1}}_{A_{i}}+\overrightarrow{\mathbb{1}}_{A_{i}^{c}}\right)=(n+1) \overrightarrow{1}=\overrightarrow{1},
$$

a contradiction.
Exercise 2.3 (Even/Even-town). Let $\mathcal{F} \subset 2^{[n]}$ be such that:
(i) $|A|=$ even, for all $A \in \mathcal{F}$,
(ii) $|A \cap B|=$ even, for all $A \neq B \in \mathcal{F}$.

Then $|\mathcal{F}| \leq 2^{n / 2}$. (let n be even)

3 Fisher's Inequality

Theorem 3.1 (Fisher's Inequality). For a fixed k, let $\mathcal{F} \subseteq 2^{[n]}$ be a family such that $|A \cap B|=k$, for all $A \neq B \in \mathcal{F}$. Then, $|\mathcal{F}| \leq n$.

Proof. For each $A \in \mathcal{F}$, define vector $\overrightarrow{\mathbb{1}}_{A} \in R^{n}$ as before. Then for any $A, B \in \mathcal{F}, \overrightarrow{\mathbb{1}}_{A} \cdot \overrightarrow{\mathbb{1}}_{B}=k$. Again, we want to show $\overrightarrow{\mathbb{1}}_{A}$'s are linearly independent over \mathbb{R}^{n}. Let $\sum_{A \in \mathcal{F}} \alpha_{A} \overrightarrow{\mathbb{1}}_{A}=\overrightarrow{0}$, where $\alpha_{A} \in \mathbb{R}$. Then

$$
\begin{aligned}
0 & =\left(\sum_{A \in \mathcal{F}} \alpha_{A} \overrightarrow{\mathbb{1}}_{A}\right) \cdot\left(\sum_{A \in \mathcal{F}} \alpha_{A} \overrightarrow{\mathbb{1}}_{A}\right)=\sum_{A \in \mathcal{F}} \alpha_{A}^{2} \overrightarrow{\mathbb{1}}_{A} \cdot \overrightarrow{\mathbb{1}}_{A}+\sum_{A \neq B} \alpha_{A} \alpha_{B} \overrightarrow{\mathbb{1}}_{A} \cdot \overrightarrow{\mathbb{1}}_{B} \\
& =\sum_{A \in \mathcal{F}} \alpha_{A}^{2}|A|+k \cdot \sum_{A \neq B} \alpha_{A} \alpha_{B}=k\left(\sum_{A \in \mathcal{F}} \alpha_{A}\right)^{2}+\sum_{A \in \mathcal{F}} \alpha_{A}^{2}(|A|-k) \geq 0
\end{aligned}
$$

where the last inequality holds because each A is of size at least k. This implies that $\sum_{A \in \mathcal{F}} \alpha_{A}=0$ and $\alpha_{A}^{2}(|A|-k)=0$ for all $A \in \mathcal{F}$. Since $|A \cap B|=k$ for any $A \neq B \in \mathcal{F}$, we have at most one set A of size exactly k. Call this subset A^{*} if exists. Thus for each $A \in \mathcal{F} \backslash\left\{A^{*}\right\}, \alpha_{A}=0$. However $\sum_{A \in \mathcal{F}} \alpha_{A}=0$, we derive that all $\alpha_{A}=0$. Thus all $\overrightarrow{\mathbb{1}}_{A}$'s are independent and then $|\mathcal{F}| \leq n$.
Lemma 3.2. Suppose P is a set of n points in \mathbb{R}^{2}. Then either they are in a line, or they define at least n lines.

Proof. Let L be the family of all lines defined by P. We want to show that $|L|=1$ or $|L| \geq n$ For each point $x_{i} \in P$, define $L_{i}=\left\{\ell \in L\right.$: the line ℓ passes through $\left.x_{i}\right\}$. Note that for all $i \neq j$, $\left|L_{i} \cap L_{j}\right|=1$. We also observe that there exist $i \neq j$ with $L_{i}=L_{j}$ if and only if all n points lie in a line. Therefore, either $|L|=1$, or for any $x_{i}, x_{j} \in P$, we have $L_{i} \neq L_{j}$. We may assume that the second case occurs. Let $\mathcal{F}=\left\{L_{i}: x_{i} \in P\right\}$. Clearly, \mathcal{F} satisfies the conditions of Fisher's inequality, so we can derive that $n=|\mathcal{F}| \leq|L|$.

Lemma 3.3. Let G be a graph whose vertices are triples in $\binom{[k]}{3}$ such that for any two $A, B \in$ $\binom{[k]}{3}, A \sim_{G} B$ iff $|A \cap B|=1$. Then G doesn't contain any clique or independent set of size $k+1$. Proof. Consider the maximum clique of G, say using vertices $A_{1}, A_{2}, \ldots, A_{m} \in\binom{[k]}{3}$ with $\left|A_{i} \cap A_{j}\right|=$ 1 , for $1 \leq i<j \leq m$. By Fisher's inequality, $m \leq k$.

Now consider the maximum independent set of G, say consisting of vertices $B_{1}, B_{2}, \ldots, B_{t} \in$ $\binom{[k]}{3}$. We see $\left|B_{i}\right|=3$ is odd and $\left|B_{i} \cap B_{j}\right|=0$ or 2 is even. By Odd/Even-town, we have $t \leq k$.

Corollary 3.4. $R(k+1, k+1)>\binom{k}{3}$.
Remark. This gives us an explicit construction for Ramsey number $R(k+1, k+1)$.
Note that this bound is much weaker than previous bound $R(k+1, k+1)>c \cdot k 2^{\frac{k}{2}}$.

4 1-Distance Problem

Problem 1 (1-Distance Problem). Given n points in \mathbb{R}^{2}, what is the maximum number of pairs of distance 1?

Theorem 4.1. There are at most $O\left(n^{\frac{3}{2}}\right)$ pairs at distance 1 .
Proof. Define a graph G on n points as following: for points $a, b, a \sim b$ iff $d(a, b)=1$.
We claim that G is $K_{2,3}$-free. Since the neighbors of the point a must lie on the circle with center a and with radius 1 , and any such 2 circles can intersect at most 2 points, then they show that G is $K_{2,3}-$ free.

Thus the number of pairs at distance 1 is

$$
e(G) \leq \operatorname{ex}\left(n, K_{2,3}\right)=O\left(n^{\frac{3}{2}}\right) .
$$

Exercise 4.2.

$$
\operatorname{ex}\left(n, K_{2,3}\right)=O\left(n^{\frac{3}{2}}\right) .
$$

Open problem (Erdős). Can one find an example of n points in \mathbb{R}^{2} with n^{1+c} pairs at distance 1 for $c>0$?

Problem 2. What is the maximum number of points in \mathbb{R}^{n} such that the distance between any two points is 1 ?

Theorem 4.3. There are at most $n+1$ points in \mathbb{R}^{n} such that the distance between any two points is 1 .

Proof. Assume we have $m+1$ such points in \mathbb{R}^{n}. We assume one of them is $\overrightarrow{0}$ and let others be $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{m}} \in \mathbb{R}^{n}$. Then we have

- $\overrightarrow{v_{i}} \cdot \overrightarrow{v_{i}}=\left\|\overrightarrow{v_{i}}-\overrightarrow{0}\right\|^{2}=1$ for $i \in[m]$,
- $\overrightarrow{v_{i}} \cdot \overrightarrow{v_{j}}=\frac{1}{2}$, for any $i \neq j \in[m]$,
because $1=\left\|\overrightarrow{v_{i}}-\overrightarrow{v_{j}}\right\|^{2}=\left\|\overrightarrow{v_{i}}\right\|^{2}+\left\|\overrightarrow{v_{j}}\right\|^{2}-2 \overrightarrow{v_{i}} \cdot \overrightarrow{v_{j}}=1+1-2 \overrightarrow{v_{i}} \cdot \overrightarrow{v_{j}}$.
Consider the matrix

$$
A=\left(\begin{array}{c}
\vec{v}_{1} \\
\vec{v}_{2} \\
\vdots \\
\vec{v}_{m}
\end{array}\right)_{m \times n} .
$$

So

$$
A \cdot A^{T}=\left(\begin{array}{cccc}
1 & \frac{1}{2} & \cdots & \frac{1}{2} \\
\frac{1}{2} & 1 & \cdots & \frac{1}{2} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{1}{2} & \frac{1}{2} & \cdots & 1
\end{array}\right)_{m \times m} .
$$

Since $\operatorname{det}\left(A \cdot A^{T}\right) \neq 0$, we get $\operatorname{rank}\left(A \cdot A^{T}\right)=m$. Then $n \geq \operatorname{rank} A \geq \operatorname{rank}\left(A \cdot A^{T}\right)=m$. So $m \leq n$ as desired.

Remark: we can also apply this method for the Even/Odd town.
Definition 4.4. A 2-distance set is a set of points in \mathbb{R}^{n} whose pairwise distance is either c or d for some $c, d>0$.

Problem (2-Distance Problem). What is the maximum size of a 2-distance set?
Instead of considering vectors, we also can define polynomials of certain degree.
Lemma 4.5. Let $f_{i}: \Omega \rightarrow \mathbb{F}$ be polynomials for $i \in[n]$, where \mathbb{F} is a field. If there are $v_{i} \in \Omega$ for $i \in[n]$ such that

$$
\begin{cases}f_{i}\left(v_{i}\right) \neq 0, & \forall i \in[n] \\ f_{i}\left(v_{j}\right)=0, & \forall j<i,\end{cases}
$$

then $f_{1}, f_{2}, \ldots, f_{n}$ are linear independent over \mathbb{F}^{Ω}.
Proof. Exercise.
Theorem 4.6. Any 2-distance set in \mathbb{R}^{n} has at most $\frac{1}{2}(n+1)(n+4)$ points.
(To be continued.)

