
Combinatorics

Instructor: Jie Ma, Scribed by Jun Gao, Jialin He and Tianchi Yang

1 Odd/Even town

Question. A town has n residents. They want to form some clubs according to the following
rules:

(i) Each club has an odd number of members.

(ii) Every 2 clubs must share an even number of members.

How many clubs can they form?

Examples. (a) Ai = {i} for i ∈ [n]⇒ n clubs.

(b) n is even, Ai = [n] \ {i} ⇒ n clubs.

(c) n is even, A1 = [n] \ {1}, A2 = [n] \ {2}, Ai = {1, 2, i} for i ∈ {3, ..., n} ⇒ n clubs.

Theorem 1.1 (Odd/Even town). Let F ⊆ 2[n] be a family satisfying:

(i) |A| is odd for all A ∈ F ,

(ii) |A ∩B| is even, for all A 6= B ∈ F .

Then |F| ≤ n.

Proof. For each A ∈ F , we define an indicator vector ~1A ∈ Fn
2 = {0, 1}n such that

~1A(i) =

{
1, if i ∈ A
0, if i /∈ A,

where F2 is the finite field of size 2. Then, these conditions become{
~1A · ~1A = 1, ∀ A ∈ F
~1A · ~1B = 0, ∀ A 6= B ∈ F .

Next, we claim that these vectors ~1A in Fn
2 are linearly independent.

Let αA ∈ F2, such that
∑

A∈F αA
~1A = ~0. Then for any B ∈ F ,

0 = ~0 · ~1B = (
∑
A∈F

αA
~1A) · ~1B =

∑
A∈F

αA(~1A · ~1B) = αB · ~1B · ~1B = αB.

This proves the claim. Therefore the number of vectors ~1A’s is at most the dimension of Fn
2 ,

which is n. So |F| ≤ n.
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2 Even/Odd town

Theorem 2.1 (Even/Odd town). Let F ⊆ 2n be such that:

(i) |A| is even, for all A ∈ F ,

(ii) |A ∩B| is odd, for all A 6= B ∈ F .

Then |F| ≤ n.

First we show a weaker result:

Lemma 2.2. Such F satisfies |F| ≤ n+ 1.

Proof. Adding a new element n+1 to each set A ∈ F to get a new family F∗. We see F∗ satisfies
the Odd/Even town conditions. So |F| = |F∗| ≤ n+ 1.

Now we give the proof of Theorem 2.1.

Proof of Theorem 2.1. It suffices to prove that |F| 6= n + 1. Suppose for a contradiction that
F = {A1, A2, · · · , An+1}. For each Ai ∈ F , define ~1Ai ∈ Fn

2 as before. So we have n+ 1 vectors
in an n-dimension space. Thus, they must be linearly dependent. Therefore, there exist αi ∈ F2

for 1 ≤ i ≤ n+ 1 which are not all 0’s such that

n+1∑
i=1

αi~1Ai = ~0.

We also have {
~1A · ~1A = 0, ∀ A ∈ F
~1A · ~1B = 1, ∀ A 6= B ∈ F .

Then for each 1 ≤ j ≤ n+ 1,

0 = ~0 · ~1Aj =

(
n+1∑
i=1

αi~1Ai

)
· ~1Aj =

n+1∑
i=1

αi − αj .

So αj =
∑n+1

i=1 αi for all 1 ≤ j ≤ n+ 1. They are all equal. Because all αj ’s can not be all 0’s, we
derive that αj = 1 for all 1 ≤ j ≤ n+ 1 and n must be even. Moreover,

n+1∑
i=1

~1Ai = ~0. (1)

Consider Fc = {Ac : A ∈ F}, we will see that Fc also satisfies the Even/Odd town conditions:

• |Ac| = n− |A| is even, for all A ∈ F .

• |Ac ∩Bc| = n− |A ∪B| = n− |A| − |B|+ |A ∩B| is odd, for all A 6= B ∈ F .
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By the same proof, we can derive that

n+1∑
i=1

~1Ac
i

= ~0. (2)

Now (1)+(2) gives that

~0 =
n+1∑
i=1

(~1Ai + ~1Ac
i
) = (n+ 1)~1 = ~1,

a contradiction.

Exercise 2.3 (Even/Even-town). Let F ⊂ 2[n] be such that:

(i) |A| =even, for all A ∈ F ,

(ii) |A ∩B| =even, for all A 6= B ∈ F .

Then |F| ≤ 2n/2. (let n be even)

3 Fisher’s Inequality

Theorem 3.1 (Fisher’s Inequality). For a fixed k, let F ⊆ 2[n] be a family such that |A∩B| = k,
for all A 6= B ∈ F . Then, |F| ≤ n.

Proof. For each A ∈ F , define vector ~1A ∈ Rn as before. Then for any A,B ∈ F , ~1A · ~1B = k.
Again, we want to show ~1A’s are linearly independent over Rn. Let

∑
A∈F αA

~1A = ~0, where
αA ∈ R. Then

0 =

(∑
A∈F

αA
~1A

)
·

(∑
A∈F

αA
~1A

)
=
∑
A∈F

α2
A
~1A · ~1A +

∑
A 6=B

αAαB
~1A · ~1B

=
∑
A∈F

α2
A|A|+ k ·

∑
A 6=B

αAαB = k

(∑
A∈F

αA

)2

+
∑
A∈F

α2
A(|A| − k) ≥ 0,

where the last inequality holds because each A is of size at least k. This implies that
∑

A∈F αA = 0
and α2

A(|A|−k) = 0 for all A ∈ F . Since |A∩B| = k for any A 6= B ∈ F , we have at most one set
A of size exactly k. Call this subset A∗ if exists. Thus for each A ∈ F \ {A∗}, αA = 0. However∑

A∈F αA = 0, we derive that all αA = 0. Thus all ~1A’s are independent and then |F| ≤ n.

Lemma 3.2. Suppose P is a set of n points in R2. Then either they are in a line, or they define
at least n lines.

Proof. Let L be the family of all lines defined by P . We want to show that |L| = 1 or |L| ≥ n
For each point xi ∈ P , define Li = {` ∈ L : the line ` passes through xi}. Note that for all i 6= j,
|Li ∩ Lj | = 1. We also observe that there exist i 6= j with Li = Lj if and only if all n points lie
in a line. Therefore, either |L| = 1, or for any xi, xj ∈ P , we have Li 6= Lj . We may assume that
the second case occurs. Let F = {Li : xi ∈ P}. Clearly, F satisfies the conditions of Fisher’s
inequality, so we can derive that n = |F| ≤ |L|.
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Lemma 3.3. Let G be a graph whose vertices are triples in
(

[k]
3

)
such that for any two A,B ∈(

[k]
3

)
, A ∼G B iff |A ∩B| = 1. Then G doesn’t contain any clique or independent set of size k+1.

Proof. Consider the maximum clique ofG, say using vertices A1, A2, ..., Am ∈
(

[k]
3

)
with |Ai∩Aj | =

1, for 1 ≤ i < j ≤ m. By Fisher’s inequality, m ≤ k.
Now consider the maximum independent set of G, say consisting of vertices B1, B2, ..., Bt ∈(

[k]
3

)
. We see |Bi| = 3 is odd and |Bi ∩Bj | = 0 or 2 is even. By Odd/Even-town, we have t ≤ k.

Corollary 3.4. R(k + 1, k + 1) >
(
k
3

)
.

Remark. This gives us an explicit construction for Ramsey number R(k + 1, k + 1).

Note that this bound is much weaker than previous bound R(k + 1, k + 1) > c · k2
k
2 .

4 1-Distance Problem

Problem 1 (1-Distance Problem). Given n points in R2, what is the maximum number of pairs
of distance 1?

Theorem 4.1. There are at most O(n
3
2 ) pairs at distance 1.

Proof. Define a graph G on n points as following: for points a, b, a ∼ b iff d(a, b) = 1.
We claim that G is K2,3-free. Since the neighbors of the point a must lie on the circle with

center a and with radius 1, and any such 2 circles can intersect at most 2 points, then they show
that G is K2,3-free.

Thus the number of pairs at distance 1 is

e(G) ≤ ex(n,K2,3) = O(n
3
2 ).

Exercise 4.2.
ex(n,K2,3) = O(n

3
2 ).

Open problem (Erdős). Can one find an example of n points in R2 with n1+c pairs at distance
1 for c > 0?

Problem 2. What is the maximum number of points in Rn such that the distance between any
two points is 1?

Theorem 4.3. There are at most n + 1 points in Rn such that the distance between any two
points is 1.

Proof. Assume we have m+ 1 such points in Rn. We assume one of them is ~0 and let others be
~v1, ~v2, ..., ~vm ∈ Rn. Then we have

• ~vi · ~vi = ||~vi −~0||2 = 1 for i ∈ [m],

• ~vi · ~vj = 1
2 , for any i 6= j ∈ [m],
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because 1 = ||~vi − ~vj ||2 = ||~vi||2 + ||~vj ||2 − 2~vi · ~vj = 1 + 1− 2~vi · ~vj .
Consider the matrix

A =


~v1

~v2
...
~vm


m×n

.

So

A ·AT =


1 1

2 · · · 1
2

1
2 1 · · · 1

2
...

...
. . .

...
1
2

1
2 · · · 1


m×m

.

Since det(A · AT ) 6= 0, we get rank(A · AT ) = m. Then n ≥ rank A ≥ rank(A · AT ) = m. So
m ≤ n as desired.

Remark: we can also apply this method for the Even/Odd town.

Definition 4.4. A 2-distance set is a set of points in Rn whose pairwise distance is either c or d
for some c, d > 0.

Problem (2-Distance Problem). What is the maximum size of a 2-distance set?

Instead of considering vectors, we also can define polynomials of certain degree.

Lemma 4.5. Let fi : Ω → F be polynomials for i ∈ [n], where F is a field. If there are vi ∈ Ω
for i ∈ [n] such that {

fi(vi) 6= 0, ∀ i ∈ [n]

fi(vj) = 0, ∀ j < i,

then f1, f2, ..., fn are linear independent over FΩ.

Proof. Exercise.

Theorem 4.6. Any 2-distance set in Rn has at most 1
2(n+ 1)(n+ 4) points.

(To be continued.)
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