Combinatorics

Instructor: Jie Ma, Scribed by Jun Gao, Jialin He and Tianchi Yang

2020 Fall, USTC

1 The Algebraic Method

Definition 1.1. A 2-distance set is a set of points in \mathbb{R}^{n} whose pairwise distance is either c or d for some $c, d>0$.

In the previous approach, we define a vector $\overrightarrow{1}_{A}$ for each $A \in \mathcal{F}$. Instead of considering vectors, one also can define certain polynomials, as polynomials of certain degree also form a vector space.

Lemma 1.2. For $i \in[n]$, let $f_{i}: \Omega \rightarrow \mathbb{F}$ be polynomial, where \mathbb{F} is a field. If there are elements $v_{i} \in \Omega$ for $i \in[n]$ satisfying

$$
\begin{cases}f_{i}\left(v_{i}\right) \neq 0, & \forall i \\ f_{i}\left(v_{j}\right)=0, & \forall j<i,\end{cases}
$$

then $f_{1}, f_{2}, \ldots, f_{n}$ are linear independent over the "linear space" spanned by polynomials $f: \Omega \rightarrow \mathbb{F}$.
Theorem 1.3. Any 2-distance set in \mathbb{R}^{n} has at most $\frac{1}{2}(n+1)(n+4)$ points.
Proof. Let $A=\left\{\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{m}\right\}$ be such a set with distances $c>0, d>0$. For each $i \in[m]$, define $f_{i}(\vec{x})=\left(\left\|\vec{x}-\vec{a}_{i}\right\|^{2}-c^{2}\right)\left(\left\|\vec{x}-\vec{a}_{i}\right\|^{2}-d^{2}\right)$ for $\vec{x} \in \mathbb{R}^{n}$. Then

$$
\left\{\begin{array}{l}
f_{i}\left(\vec{a}_{i}\right)=c^{2} d^{2} \neq 0, \quad \forall i \\
f_{i}\left(\vec{a}_{j}\right)=\left(\left\|\vec{a}_{j}-\vec{a}_{i}\right\|^{2}-c^{2}\right)\left(\left\|\vec{a}_{j}-\vec{a}_{i}\right\|^{2}-d^{2}\right)=0, \quad \forall j \neq i .
\end{array}\right.
$$

By Lemma 1.2, $f_{1}, f_{2}, \ldots, f_{m}$ are linearly independent in the "linear space" that contains f_{1}, \ldots, f_{m}. We want to bound the dimension of "some vector space" which contains all polynomials $f_{1}, f_{2}, \ldots, f_{m}$.

Let $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \vec{a}_{i}=\left(a_{i 1}, \ldots, a_{i n}\right)$. Note that

$$
\begin{aligned}
f_{j}(\vec{x}) & =\left(\sum_{i}\left(x_{i}-a_{j i}\right)^{2}-c^{2}\right)\left(\sum_{i}\left(x_{i}-a_{j i}\right)^{2}-d^{2}\right) \\
& =\left(\sum_{i} x_{i}^{2}-2 \sum_{i} x_{i} a_{j i}+\sum_{i} a_{j i}^{2}-c^{2}\right)\left(\sum_{i} x_{i}^{2}-2 \sum_{i} x_{i} a_{j i}+\sum_{i} a_{j i}^{2}-d^{2}\right),
\end{aligned}
$$

can be expressed as the linear combination of the following polynomials:

$$
B=\left\{\left(\sum_{i} x_{i}^{2}\right)^{2}, x_{j}\left(\sum_{i} x_{i}^{2}\right), x_{i} x_{j}, x_{i}, 1\right\} .
$$

We see that B contains $1+n+\binom{n}{2}+n+n+1=\frac{n(n-1)}{2}+3 n+2=\frac{(n+1)(n+4)}{2}$ elements and each f_{i} is contained in the linear space spanned by B. So $|A|=m$ is at most the dimension of $\operatorname{span}(B)$, which is at most $\frac{(n+1)(n+4)}{2}$.

Remark 1.4. This proof can be extended to k-distance Problem.
Next, we consider a generalization of Fisher's inequality.
Definition 1.5. Consider a subset $L \subseteq\{0,1,2, \ldots, n\}$. We say a family $\mathcal{F} \subseteq 2^{[n]}$ is L-intersecting, if for any $A \neq B \in \mathcal{F},|A \cap B| \in L$.
Theorem 1.6 (Frankl-Wilson, 1981). If $\mathcal{F} \subseteq 2^{[n]}$ is an L-intersecting family, then $|\mathcal{F}| \leq$ $\sum_{k=0}^{|L|}\binom{n}{k}$.
Proof. Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ where $\left|A_{1}\right| \leq\left|A_{2}\right| \leq \cdots \leq\left|A_{m}\right|$. For each $i \in[m]$, define $f_{i}(\vec{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
f_{i}(\vec{x})=\prod_{\ell \in L, \ell<\left|A_{i}\right|}\left(\vec{x} \cdot \overrightarrow{1}_{A_{i}}-\ell\right)
$$

Consider the indicator vectors $\overrightarrow{1}_{A_{1}}, \overrightarrow{1}_{A_{2}}, \ldots, \overrightarrow{1}_{A_{m}}$. Then we have

- $f_{i}\left(\overrightarrow{1}_{A_{i}}\right)=\prod_{\ell \in L, \ell<\left|A_{i}\right|}\left(\left|A_{i}\right|-\ell\right)>0$,
- $f_{i}\left(\overrightarrow{1}_{A_{j}}\right)=\prod_{\ell \in L, \ell<\left|A_{i}\right|}\left(\left|A_{i} \cap A_{j}\right|-\ell\right)=0$.

This is because we have $\ell=\left|A_{j} \cap A_{i}\right| \in L$ and $\ell<\left|A_{i}\right|$ for some ℓ (as $\left.j<i,\left|A_{j}\right| \leq\left|A_{i}\right|\right)$. By Lemma 1.2, we see that $f_{1}, f_{2}, \ldots, f_{m}$ are linear independent.

Next we want to define some new polynomials $\tilde{f}_{i}(\vec{x})$ from f_{i} such that $\tilde{f}_{1}, \tilde{f}_{2}, \ldots, \tilde{f}_{m}$ are remain linearly independent, but these $\tilde{f}_{i}(\vec{x})$'s lie in a "better" linear space.

Observer that all vector $\overrightarrow{1}_{A_{j}}$ are $0 / 1$-vectors. Let $\tilde{f}_{i}(\vec{x})$ be a new polynomial obtained from $f_{i}(\vec{x})$ by replacing all terms x_{j}^{k} (for $k \geq 1$) by x_{j}.

For any $0 / 1$-vectors \vec{y}, we have $\tilde{f}_{i}(\vec{y})=f_{i}(\vec{y})$. This shows that $\tilde{f}_{1}, \tilde{f}_{2}, \ldots, \tilde{f}_{m}$ are also linearly independent. And we see each $\tilde{f}_{i}(\vec{x})$ is a linear combination of the monomials $\prod_{i \in I} x_{i}$ for $I \in[n]$ with $|I| \leqslant|L|$ (as $\operatorname{deg} \tilde{f}_{i} \leq \operatorname{deg} f_{i} \leq|L|$). Clearly the number of such monomials is at most $\sum_{k=0}^{|L|}\binom{n}{k}$ which is also the dimension of the space containing $\tilde{f}_{1}, \tilde{f}_{2}, \ldots, \tilde{f_{m}}$. This prove that

$$
|\mathcal{F}|=|m| \leq \sum_{k=0}^{|L|}\binom{n}{k}
$$

Theorem 1.7. Let p be a prime and $L \subseteq \mathbb{F}_{p}=\{0,1, \ldots, p-1\}$. Let $\mathcal{F} \subseteq 2^{[n]}$ be a family satisfying that

- $|A| \notin L(\bmod p)$ fro any $A \in \mathcal{F}$,
- $|A \cap B| \in L(\bmod p)$ for all $A \neq B \in \mathcal{F}$.

Then $|\mathcal{F}| \leq \sum_{k=0}^{|L|}\binom{n}{k}$.
Proof. All operations are $\bmod p$. Let $\mathcal{F}=\left\{A_{1}, \ldots, A_{m}\right\}$. Define $f_{i}(\vec{x}): \mathbb{F}_{p}^{*} \rightarrow \mathbb{F}_{p}$ be such that

$$
f_{i}(\vec{x})=\prod_{\ell \in L}\left(\vec{x} \cdot \overrightarrow{1}_{A_{i}}-\ell\right)
$$

Then

- $f_{i}\left(\overrightarrow{1}_{A_{i}}\right)=\prod_{\ell \in L}\left(\left|A_{i}\right|-\ell\right) \neq 0$,
- $f_{i}\left(\overrightarrow{1}_{A_{j}}\right)=\prod_{\ell \in L}\left(\left|A_{i} \cap A_{j}\right|-\ell\right)=0$ for all $i \neq j$.

So $f_{1}, f_{2}, \ldots, f_{m}$ are linearly independent over Z_{p}^{n}. Then repeating the proof of Theorem 1.6, we get the desired bound.

Now we prove an application of these results.
Theorem 1.8 (Frankl-Wilson). For any prime p, there is a graph G on $n=\binom{p^{3}}{p^{2}-1}$ vertices such that both of the maximum clique and the maximum independent set are at most $\sum_{i=0}^{p-1} \cdot\binom{p^{3}}{i}$

Proof. Let $G=(V, E)$ be the following graph, where $V=\binom{\left[p^{3}\right]}{p^{2}-1}$, and for $A, B \in V, A \sim_{G} B$ if and only if $|A \cap B| \not \equiv p-1(\bmod p)$.

Consider the maximum clique with vertices set $A_{1}, A_{2}, \ldots, A_{m} \in\binom{\left[p^{3}\right]}{p^{2}-1}$. Thus we have

- $\left|A_{i} \cap A_{j}\right| \not \equiv p-1(\bmod p)$, for $i \neq j$,
- $\left|A_{i}\right|=p^{2}-1 \equiv p-1(\bmod p)$.

By Theorem 1.7 with $L=\{0,1,2, \ldots, p-2\} \subseteq \mathbb{F}_{p}$ we can derive that $m \leqslant \sum_{i=0}^{p-1}\binom{p^{3}}{i}$.
Consider the maximum independent set $B_{1}, B_{2}, \ldots, B_{t}$. Then we have $\left|B_{i} \cap B_{j}\right|=p-1(\bmod p)$ for all $i \neq j$, implying that $\left|B_{i} \cap B_{j}\right| \in\{p-1,2 p-1, \ldots, p(p-1)-1\}=L^{*}$ with $\left|L^{*}\right|=p-1$. Thus $B_{1}, B_{2}, \ldots, B_{t}$ is L^{*}-intersecting family in $\binom{\left[p^{3}\right]}{p^{2}-1}$. By Theorem 1.6 , we have $t \leqslant \sum_{i=0}^{p-1}\binom{p^{3}}{i}$.

Corollary 1.9.

$$
R(k+1, k+1) \geq k^{\Omega(\log (k) / \log (\log (k))} .
$$

Proof. Use the construction from Theorem 1.8. Let $k=\sum_{i=0}^{p-1}\binom{p^{3}}{i}$. So $R(k+1, k+1)>n$. We have that

$$
k=\sum_{i=0}^{p-1}\binom{p^{3}}{i} \simeq\binom{p^{3}}{p} \simeq\left(p^{2}\right)^{p} \simeq p^{2 p}, n \simeq\left(\frac{p^{3}}{p^{2}}\right)^{p^{2}} \simeq p^{p^{2}},
$$

which implies that

$$
\log (k) \simeq p \log (p), \quad \log (\log (k)) \simeq \log (p)
$$

so

$$
p \simeq \frac{\log (k)}{\log (\log (k))}
$$

Then we have

$$
n=\binom{p^{3}}{p^{2}-1} \simeq\left(p^{2 p}\right)^{p / 2} \simeq k^{p}=k^{\Omega(\log (k) / \log (\log (k)))} .
$$

Definition 1.10. Given a set $S \subseteq R^{n}$, the diameter of S is defined as $\operatorname{Diam}(S)=\sup \{d(x, y)$: $x, y \in S\}$ where $d(x, y)$ denotes the Euclidean distance between x and y in R^{n}.

If $\operatorname{Diam}(S)<+\infty$, then we say S is bounded.
Borswk's Conjecture: Every bounded $S \subseteq R^{d}$ can be partitioned into $d+1$ sets of strictly smaller diameter.

Remark 1.11. This was verified for all $S \subseteq R^{d}$ with $d \leqslant 3$ and for the S is a sphere and any $d \geq 2$.
Lemma 1.12. For any prime p, there is a set \mathcal{F} of $\frac{1}{2}\binom{4 p}{2 p}$ vectors in $\{-1,1\}^{4 p}$ such that every subset of size $2\binom{4 p}{p-1}$ vectors contains an orthogonal pair of vectors.

Proof. Let $\mathrm{Q}=\left\{I \in\binom{[4 p]}{2 p}: 1 \in I\right\}$, then $|Q|=\frac{1}{2}\binom{4 p}{2 p}$. For any $I \in Q$, define $\vec{v}^{I} \in\{-1,1\}^{4 p}$ by

$$
\vec{v}_{i}=\left\{\begin{array}{l}
1, \quad i \in I \\
-1, i \notin I .
\end{array}\right.
$$

Let $\mathcal{F}=\left\{\vec{v}^{I}: I \in Q\right\}$ with $|\mathcal{F}|=|Q|=\frac{1}{2}\binom{4 p}{2 p}$.
Claim 1. $\vec{v}^{I} \perp \vec{v}^{J}$ if and only if $|I \cap J| \equiv 0(\bmod p)$.
Proof. $\vec{v}^{I} \perp \vec{v}^{J}$ if and only if $\vec{v}^{I} \cdot \vec{v}^{J}=0$. Since $\vec{v}^{I} \cdot \vec{v}^{J}=|I \cap J|-\left|I^{C} \cap J\right|-\left|I \cap J^{C}\right|+\left|I^{C} \cap J^{C}\right|$ (we have $|I \cap J|=\left|I^{C} \cap J^{C}\right|$ as $|I|=|J|=2 p$), we have that $\vec{v}^{I} \perp \vec{v}^{J}$ if and only if $|I \Delta J|=2 p=4 p-2|I \cap J|$ if and only if $|I \cap J|=p$

Since $1 \in I \cap J$ and $|I|=|J|=2 p$, we have $\vec{v}^{I} \perp \vec{v}^{J}$ if and only if $|I \cap J| \equiv 0(\bmod p)$.
Claim 2. For any subset $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ without orthogonal pairs, $\left|\mathcal{F}^{\prime}\right| \leq \sum_{k=0}^{p-1}\binom{4 p}{k}<2\binom{4 p}{p-1}$.
Proof. Let $Q^{\prime}=\left\{I \in Q: \vec{v}^{I} \in \mathcal{F}^{\prime}\right.$. By Claim 1, Q^{\prime} is a subfamily of $\binom{[4 p]}{2 p}$ satisfying

- $|A|=2 p \equiv 0(\bmod p), \forall A \in Q^{\prime}$,
- $|A \cap B| \neq 0(\bmod p), \forall A \neq B \in Q^{\prime}$.

By Theorem 1.8 (with $L=\{1,2, \ldots, p-1\}$), we get $\left|\mathcal{F}^{\prime}\right|=\left|Q^{\prime}\right| \leq \sum_{k=0}^{p-1}\binom{4 p}{k}$.
Now the conclusion of Lemma follows by Claim 2.
Definition 1.13. The tensor product of a vectors $\vec{v} \in \mathbb{R}^{n}$ is $\vec{w}=\vec{v} \otimes \vec{v} \in \mathbb{R}^{n^{2}}$ by $w_{i j}=v_{i} \cdot v_{j}$ for all $1 \leq i, j \leq n$.

Theorem 1.14 (Kahn-Kalai, 1993). For sufficiently large d, there exists a bounded set $S \subset \mathbb{R}^{d}$ (a finite set) such that any partition of S into $1.1^{\sqrt{d}}$ subsets contains a subset of the same diameter.

Proof. Take the family \mathcal{F} from the above lemma. So $\mathcal{F} \subset\{-1,1\}^{n} \subset \mathbb{R}^{n}$ (with $n=4 p$). Let $X=\{\vec{v} \otimes \vec{v}: \vec{v} \in \mathcal{F}\} \subseteq \mathbb{R}^{n^{2}}$. Let $d=n^{2}=(4 p)^{2}=16 p^{2}$. For any $\vec{w}=\vec{v} \otimes \vec{v} \in X$,

$$
\|\vec{w}\|^{2}=\sum_{1 \leq i, j \leq n} w_{i j}^{2}=\sum_{1 \leq i, j \leq n} v_{i}^{2} v_{j}^{2}=\left(\sum_{i=1}^{n} v_{i}^{2}\right)\left(\sum_{j=1}^{n} v_{j}^{2}\right)=n^{2}
$$

and thus $\|\vec{w}\|=n$.

For $\vec{w}=\vec{v} \otimes \vec{v}, \vec{w}^{\prime}=\vec{v}^{\prime} \otimes \vec{v}^{\prime} \in X$, we have

$$
\vec{w} \cdot \vec{w}^{\prime}=\sum_{1 \leq i, j \leq n} w_{i j} w_{i j}^{\prime}=\sum_{1 \leq i, j \leq n}\left(v_{i} v_{i}^{\prime}\right)\left(v_{j} v_{j}^{\prime}\right)=\left(\sum v_{i} v_{i}^{\prime}\right)^{2}=\left(\vec{v} \cdot \vec{v}^{\prime}\right)^{2} .
$$

This says that $\vec{w} \perp \vec{w}^{\prime}$ if and only if $\vec{v} \perp \vec{v}^{\prime}$. Thus,

$$
\left\|\vec{w}-\vec{w}^{\prime}\right\|^{2}=\|\vec{w}\|^{2}+\left\|\vec{w}^{\prime}\right\|^{2}-2 \vec{w} \cdot \vec{w}^{\prime}=2 n^{2}-2\left(\vec{v} \cdot \vec{v}^{\prime}\right)^{2} \leq 2 n^{2}
$$

this proves that $\operatorname{Diam}(X)=\sqrt{2} n$ and $|X|=|\mathcal{F}|=\frac{1}{2}\binom{[4 p]}{2 p}$.
By Lemma 1.12, any subset of $2\binom{4 p}{p-1}$ vectors in \mathcal{F} contains an orthogonal pair of vector $\vec{v}, \vec{v}^{\prime}$. Thus, any subset of $2\binom{4 p}{p-1}$ vectors in X must contain a pair $\vec{w}=\vec{v} \otimes \vec{v}, \vec{w}^{\prime}=\vec{v}^{\prime} \otimes \vec{v}^{\prime}$ with $\vec{v} \perp \vec{v}^{\prime}$, which give the maximum distance $\left\|\vec{w}-\vec{w}^{\prime}\right\|=\sqrt{2} n$. Thus to decrease the diameter, we must partition X into subsets of size less than $2\binom{4 p}{p-1}$, so the number of subsets needed is at least

$$
\frac{|X|}{2\binom{4 p}{p-1}}=\frac{\frac{1}{2}\binom{4 p}{2 p}}{2\binom{4 p-1}{p-1}}=\frac{1}{4} \frac{(3 p+1) \cdots(2 p+1)}{(2 p) \cdots(p)} \geq \frac{1}{4} \cdot\left(\frac{3}{2}\right)^{p+1} \geq C \cdot\left(\frac{3}{2}\right)^{\frac{\sqrt{d}}{4}} \geq 1.1^{\sqrt{d}}
$$

where $d=n^{2}=16 p^{2}$ is the dimension of X.

