
Combinatorics

Instructor: Jie Ma, Scribed by Jun Gao, Jialin He and Tianchi Yang

2020 Fall, USTC

1 The Algebraic Method

Definition 1.1. A 2-distance set is a set of points in Rn whose pairwise distance is either c or
d for some c, d > 0.

In the previous approach, we define a vector 1⃗A for each A ∈ F . Instead of considering vectors,
one also can define certain polynomials, as polynomials of certain degree also form a vector space.

Lemma 1.2. For i ∈ [n], let fi : Ω → F be polynomial, where F is a field. If there are elements
vi ∈ Ω for i ∈ [n] satisfying {

fi(vi) ̸= 0, ∀i
fi(vj) = 0, ∀j < i,

then f1, f2, ..., fn are linear independent over the “linear space” spanned by polynomials f : Ω → F.

Theorem 1.3. Any 2-distance set in Rn has at most 1
2(n+ 1)(n+ 4) points.

Proof. Let A = {a⃗1, a⃗2, ..., a⃗m} be such a set with distances c > 0, d > 0. For each i ∈ [m], define
fi(x⃗) = (||x⃗− a⃗i||2 − c2)(||x⃗− a⃗i||2 − d2) for x⃗ ∈ Rn . Then{

fi(⃗ai) = c2d2 ̸= 0, ∀i
fi(⃗aj) = (||⃗aj − a⃗i||2 − c2)(||⃗aj − a⃗i||2 − d2) = 0, ∀j ̸= i.

By Lemma 1.2, f1, f2, ..., fm are linearly independent in the “linear space” that contains
f1, ..., fm . We want to bound the dimension of “some vector space” which contains all polynomials
f1, f2, ..., fm.

Let x⃗ = (x1, x2, ..., xn), a⃗i = (ai1, ..., ain). Note that

fj(x⃗) = (
∑
i

(xi − aji)
2 − c2)(

∑
i

(xi − aji)
2 − d2)

= (
∑
i

x2i − 2
∑
i

xiaji +
∑
i

a2ji − c2)(
∑
i

x2i − 2
∑
i

xiaji +
∑
i

a2ji − d2),

can be expressed as the linear combination of the following polynomials:

B = {(
∑
i

x2i )
2, xj(

∑
i

x2i ), xixj , xi, 1}.

We see that B contains 1 + n +
(
n
2

)
+ n + n + 1 = n(n−1)

2 + 3n + 2 = (n+1)(n+4)
2 elements and

each fi is contained in the linear space spanned by B. So |A| = m is at most the dimension of

span(B), which is at most (n+1)(n+4)
2 .
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Remark 1.4. This proof can be extended to k-distance Problem.

Next, we consider a generalization of Fisher’s inequality.

Definition 1.5. Consider a subset L ⊆ {0, 1, 2, ..., n}. We say a family F ⊆ 2[n] is L-intersecting,
if for any A ̸= B ∈ F , |A ∩B| ∈ L .

Theorem 1.6 (Frankl-Wilson, 1981). If F ⊆ 2[n] is an L-intersecting family, then |F| ≤∑|L|
k=0

(
n
k

)
.

Proof. Let F = {A1, A2, ..., Am} where |A1| ≤ |A2| ≤ · · · ≤ |Am|. For each i ∈ [m], define
fi(x⃗) : Rn → Rn by

fi(x⃗) =
∏

ℓ∈L,ℓ<|Ai|

(x⃗ · 1⃗Ai − ℓ).

Consider the indicator vectors 1⃗A1 , 1⃗A2 , ..., 1⃗Am . Then we have

• fi(⃗1Ai) =
∏

ℓ∈L,ℓ<|Ai|(|Ai| − ℓ) > 0,

• fi(⃗1Aj ) =
∏

ℓ∈L,ℓ<|Ai|(|Ai ∩Aj | − ℓ) = 0.

This is because we have ℓ = |Aj ∩ Ai| ∈ L and ℓ < |Ai| for some ℓ (as j < i, |Aj | ≤ |Ai|). By
Lemma 1.2, we see that f1, f2, ..., fm are linear independent.

Next we want to define some new polynomials f̃i(x⃗) from fi such that f̃1, f̃2, ..., f̃m are remain
linearly independent, but these f̃i(x⃗)’s lie in a “better” linear space.

Observer that all vector 1⃗Aj are 0/1-vectors. Let f̃i(x⃗) be a new polynomial obtained from

fi(x⃗) by replacing all terms xkj (for k ≥ 1) by xj .

For any 0/1-vectors y⃗, we have f̃i(y⃗) = fi(y⃗). This shows that f̃1, f̃2, ..., f̃m are also linearly
independent. And we see each f̃i(x⃗) is a linear combination of the monomials

∏
i∈I xi for I ∈ [n]

with |I| ⩽ |L| (as degf̃i ≤ degfi ≤ |L| ). Clearly the number of such monomials is at most∑|L|
k=0

(
n
k

)
which is also the dimension of the space containing f̃1, f̃2, ..., f̃m. This prove that

|F| = |m| ≤
|L|∑
k=0

(
n

k

)
.

Theorem 1.7. Let p be a prime and L ⊆ Fp = {0, 1, ..., p−1}. Let F ⊆ 2[n] be a family satisfying
that

• |A| /∈ L (mod p) fro any A ∈ F ,

• |A ∩B| ∈ L (mod p) for all A ̸= B ∈ F .

Then |F| ≤
∑|L|

k=0

(
n
k

)
.

Proof. All operations are mod p. Let F = {A1, ..., Am}. Define fi(x⃗) : F∗
p → Fp be such that

fi(x⃗) =
∏
ℓ∈L

(x⃗ · 1⃗Ai − ℓ).

Then
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• fi(⃗1Ai) =
∏

ℓ∈L(|Ai| − ℓ) ̸= 0,

• fi(⃗1Aj ) =
∏

ℓ∈L(|Ai ∩Aj | − ℓ) = 0 for all i ̸= j.

So f1, f2, ..., fm are linearly independent over Zn
p . Then repeating the proof of Theorem 1.6, we

get the desired bound.

Now we prove an application of these results.

Theorem 1.8 (Frankl-Wilson). For any prime p, there is a graph G on n =
( p3

p2−1

)
vertices such

that both of the maximum clique and the maximum independent set are at most
p−1∑
i=0

.
(
p3

i

)
Proof. Let G = (V,E) be the following graph, where V =

( [p3]
p2−1

)
, and for A,B ∈ V , A ∼G B if

and only if |A ∩B| ̸≡ p− 1 (mod p).

Consider the maximum clique with vertices set A1, A2, ..., Am ∈
( [p3]
p2−1

)
. Thus we have

• |Ai ∩Aj | ̸≡ p− 1 (mod p), for i ̸= j,

• |Ai| = p2 − 1 ≡ p− 1 (mod p).

By Theorem 1.7 with L = {0, 1, 2, ..., p− 2} ⊆ Fp we can derive that m ⩽
p−1∑
i=0

(
p3

i

)
.

Consider the maximum independent set B1, B2, ..., Bt. Then we have |Bi∩Bj | = p−1 (mod p)
for all i ̸= j, implying that |Bi ∩ Bj | ∈ {p − 1, 2p − 1, ..., p(p − 1) − 1} = L∗ with |L∗| = p − 1.

Thus B1, B2, ..., Bt is L
∗-intersecting family in

( [p3]
p2−1

)
. By Theorem 1.6, we have t ⩽

∑p−1
i=0

(
p3

i

)
.

Corollary 1.9.
R(k + 1, k + 1) ≥ kΩ(log(k)/ log(log(k)).

Proof. Use the construction from Theorem 1.8. Let k =
∑p−1

i=0

(
p3

i

)
. So R(k + 1, k + 1) > n. We

have that

k =

p−1∑
i=0

(
p3

i

)
≃

(
p3

p

)
≃ (p2)p ≃ p2p, n ≃ (

p3

p2
)p

2 ≃ pp
2
,

which implies that
log(k) ≃ p log(p), log(log(k)) ≃ log(p),

so

p ≃ log(k)

log(log(k))
.

Then we have

n =

(
p3

p2 − 1

)
≃ (p2p)p/2 ≃ kp = kΩ(log(k)/ log(log(k))).

Definition 1.10. Given a set S ⊆ Rn, the diameter of S is defined as Diam(S) = sup{d(x, y) :
x, y ∈ S} where d(x, y) denotes the Euclidean distance between x and y in Rn.
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If Diam(S) < +∞, then we say S is bounded.
Borswk’s Conjecture: Every bounded S ⊆ Rd can be partitioned into d + 1 sets of strictly
smaller diameter.

Remark 1.11. This was verified for all S ⊆ Rd with d ⩽ 3 and for the S is a sphere and any
d ≥ 2.

Lemma 1.12. For any prime p, there is a set F of 1
2

(
4p
2p

)
vectors in {−1, 1}4p such that every

subset of size 2
(

4p
p−1

)
vectors contains an orthogonal pair of vectors.

Proof. Let Q={I ∈
(
[4p]
2p

)
: 1 ∈ I}, then |Q| = 1

2

(
4p
2p

)
. For any I ∈ Q, define v⃗I ∈ {−1, 1}4p by

v⃗i =

{
1, i ∈ I

− 1, i /∈ I.

Let F = {v⃗I : I ∈ Q} with |F| = |Q| = 1
2

(
4p
2p

)
.

Claim 1. v⃗I ⊥ v⃗J if and only if |I ∩ J | ≡ 0 (mod p).

Proof. v⃗I ⊥ v⃗J if and only if v⃗I ·v⃗J = 0. Since v⃗I ·v⃗J = |I∩J |−|IC∩J |−|I∩JC |+|IC∩JC | (we have
|I∩J | = |IC∩JC | as |I| = |J | = 2p), we have that v⃗I ⊥ v⃗J if and only if |I∆J | = 2p = 4p−2|I∩J |
if and only if |I ∩ J | = p

Since 1 ∈ I ∩ J and |I| = |J | = 2p, we have v⃗I ⊥ v⃗J if and only if |I ∩ J | ≡ 0 (mod p).

Claim 2. For any subset F ′ ⊆ F without orthogonal pairs, |F ′| ≤
∑p−1

k=0

(
4p
k

)
< 2

(
4p
p−1

)
.

Proof. Let Q′ = {I ∈ Q : v⃗I ∈ F ′. By Claim 1, Q′ is a subfamily of
(
[4p]
2p

)
satisfying

• |A| = 2p ≡ 0 (mod p),∀A ∈ Q′,

• |A ∩B| ̸= 0 (mod p), ∀A ̸= B ∈ Q′.

By Theorem 1.8 (with L = {1, 2, ..., p− 1}), we get |F ′| = |Q′| ≤
∑p−1

k=0

(
4p
k

)
.

Now the conclusion of Lemma follows by Claim 2.

Definition 1.13. The tensor product of a vectors v⃗ ∈ Rn is w⃗ = v⃗⊗ v⃗ ∈ Rn2
by wij = vi · vj for

all 1 ≤ i, j ≤ n.

Theorem 1.14 (Kahn-Kalai, 1993). For sufficiently large d, there exists a bounded set S ⊂ Rd(a

finite set) such that any partition of S into 1.1
√
d subsets contains a subset of the same diameter.

Proof. Take the family F from the above lemma. So F ⊂ {−1, 1}n ⊂ Rn (with n = 4p). Let
X = {v⃗ ⊗ v⃗ : v⃗ ∈ F} ⊆ Rn2

. Let d = n2 = (4p)2 = 16p2. For any w⃗ = v⃗ ⊗ v⃗ ∈ X,

||w⃗||2 =
∑

1≤i,j≤n

w2
ij =

∑
1≤i,j≤n

v2i v
2
j = (

n∑
i=1

v2i )(

n∑
j=1

v2j ) = n2,

and thus ||w⃗|| = n.

4



For w⃗ = v⃗ ⊗ v⃗, w⃗′ = v⃗′ ⊗ v⃗′ ∈ X, we have

w⃗ · w⃗′ =
∑

1≤i,j≤n

wijw
′
ij =

∑
1≤i,j≤n

(viv
′
i)(vjv

′
j) = (

∑
viv

′
i)
2 = (v⃗ · v⃗′)2.

This says that w⃗ ⊥ w⃗′ if and only if v⃗ ⊥ v⃗′. Thus,

||w⃗ − w⃗′||2 = ||w⃗||2 + ||w⃗′||2 − 2w⃗ · w⃗′ = 2n2 − 2(v⃗ · v⃗′)2 ≤ 2n2,

this proves that Diam(X) =
√
2n and |X| = |F| = 1

2

(
[4p]
2p

)
.

By Lemma 1.12, any subset of 2
(

4p
p−1

)
vectors in F contains an orthogonal pair of vector v⃗, v⃗′.

Thus, any subset of 2
(

4p
p−1

)
vectors in X must contain a pair w⃗ = v⃗ ⊗ v⃗, w⃗′ = v⃗′ ⊗ v⃗′ with v⃗ ⊥ v⃗′,

which give the maximum distance ||w⃗ − w⃗′|| =
√
2n. Thus to decrease the diameter, we must

partition X into subsets of size less than 2
(

4p
p−1

)
, so the number of subsets needed is at least

|X|
2
(

4p
p−1

) =

1
2

(
4p
2p

)
2
(

4p
p−1

) =
1

4

(3p+ 1) · · · (2p+ 1)

(2p) · · · (p)
≥ 1

4
· (3
2
)p+1 ≥ C · (3

2
)
√

d
4 ≥ 1.1

√
d,

where d = n2 = 16p2 is the dimension of X.
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