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1 The Algebraic Method

Definition 1.1. A 2-distance set is a set of points in R™ whose pairwise distance is either ¢ or
d for some c,d > 0.

In the previous approach, we define a vector 14 for each A € F. Instead of considering vectors,
one also can define certain polynomials, as polynomials of certain degree also form a vector space.

Lemma 1.2. Fori € [n], let f; : Q@ — F be polynomial, where F is a field. If there are elements
v; € Q for i € [n] satisfying

fi(vi) #0, Vi
fi(vj) = 07 V] < i,
then f1, fa, ..., fn are linear independent over the “linear space” spanned by polynomials f : 2 — F.
Theorem 1.3. Any 2-distance set in R™ has at most 3(n+ 1)(n + 4) points.
Proof. Let A = {d,ds,...,dn,} be such a set with distances ¢ > 0, d > 0. For each i € [m], define
fi(@) = (|12 — @l |? — ) (|| — @l|* — d?) for £ € R™ . Then
fil@) =c*d* #0, Vi
fil@y) = (la; =@l = )@ — @l —d*) =0, Vj#i.
By Lemma 1.2, fi, fo,..., fm are linearly independent in the “linear space” that contains
fi, -, fm - We want to bound the dimension of “some vector space” which contains all polynomials

flaf?)"')fm-

Let Z = (21,22, ..., Zn),d; = (a1, ..., @in). Note that
Fi(@) = Q@i —a;i)* = ) _(wi — aje)* — &)
i i
= (Z 5612 — 2Zwiaﬁ- + Za?l — C%(Z%? — 2Za:iaji + Zajzl — d2),
can be expressed as the linear combination of the following polynomials:
B={(Q_ ) a;(d_ i) wiwj, i, 1}.
i i

We see that B contains 1 4+ n + (g) +n+n+1= @ +3n+2= w;"m elements and
each f; is contained in the linear space spanned by B. So |A| = m is at most the dimension of

. . n+1)(n+4
span(B), which is at most %



Remark 1.4. This proof can be extended to k-distance Problem.
Next, we consider a generalization of Fisher’s inequality.

Definition 1.5. Consider a subset L C {0,1,2,...,n}. We say a family F C 2" is L-intersecting,
if forany A#BeF,|ANB| €L .

Theorem 1.6 (Frankl-Wilson, 1981). If F C 2" is an L-intersecting family, then |F| <
L n
o ()
Proof. Let F = {A1, Ag, ..., Ay} where |A1| < |Ag] < --- < |A,|. For each i € [m], define
fi(@) : R™ — R" by
@ = I @ 1a-0.
EEL,£<|A1'|

Consider the indicator vectors 14,,14,,...,14,,. Then we have
o fi(la;) = e e<ia, (14l =) >0,

d fl(TA]) = erL,Z<|Ai\(|Ai N Aj| - 6) =0.

This is because we have ¢ = |A; N A;| € L and ¢ < |A;| for some ¢ (as j < i, |Aj| < |4;]). By
Lemma 1.2, we see that fi, fo, ..., f;, are linear independent.

Next we want to define some new polynomials fz(:i’) from f; such that fi, fa, ..., fm are remain
linearly independent, but these fi(i’)’s lie in a “better” linear space.

Observer that all vector 1,2]. are 0/1-vectors. Let f;(Z) be a new polynomial obtained from
fi(Z) by replacing all terms xf (for k£ > 1) by z;.

For any 0/1-vectors ¥, we have fl(gj) = fi(¢). This shows that f1, fay oy frm are also linearly
independent. And we see each f;(Z) is a linear combination of the monomials [Lic zi for I € [n]
with |[I| < |L| (as degf; < degf; < |L| ). Clearly the number of such monomials is at most

LL:IO (Z) which is also the dimension of the space containing f1, fa, ..., fm. This prove that

71 = fm| Sé@'
|

Theorem 1.7. Let p be a prime and L C F, = {0,1,...,p—1}. Let F C 2 be a family satisfying
that

o |A| ¢ L (mod p) fro any A € F,
e |[ANB| €L (mod p) for all A# B € F.
L n
Then |F| < S0, (2).
Proof. All operations are mod p. Let F = {A1, ..., An}. Define f;(7) : F; — F,, be such that

fi(@) =[]@ 14, - 0).

lel

Then



i fi(TAi) = erL(‘Ai‘ —0) #0,
o fi(1a,) =Tlser(|Ai N Aj| —£) =0 for all i # j.

So f1, f2, -+, fm are linearly independent over Z7. Then repeating the proof of Theorem 1.6, we
get the desired bound.
|

Now we prove an application of these results.
Theorem 1.8 (Frankl-Wilson). For any prime p, there is a graph G on n = (pé”il) vertices such

p—1
that both of the maximum clique and the maximum independent set are at most .(p;)
i=0
Proof. Let G = (V, E) be the following graph, where V = (p[fi}l), and for A, BeV, A~qg B if
and only if |ANB|#p—1 (mod p). r
Consider the maximum clique with vertices set Ay, Ao, ..., Ay, € (p[gpi]l). Thus we have

o [A;NAj| #p—1 (mod p), for i # j,

o |[A;|=p>—1=p—1 (mod p).

By Theorem 1.7 with L = {0,1,2,...,p — 2} C F,, we can derive that m < Z ( )

1=0

Consider the maximum independent set By, By, ..., B;. Then we have |B;NB;| = p—1 (mod p)

for all ¢ # j, implying that |B; N Bj| € {p —1,2p—1,...,p(p — 1) — 1} = L* with |[L*| = p — 1.
Thus By, Bo, ..., B; is L*-intersecting family in ( p°] |)- By Theorem 1.6, we have ¢ < Zf:_ol (p;). 1

Corollary 1.9.
Rk + 1,k + 1) > k?Uos(k)/log(log(k))

Proof. Use the construction from Theorem 1.8. Let k = Zf:_ol (p:). So R(k+1,k+1)>n. We

have that
gy P 9 5 PP e
=3 () = (1) = 0Py 2w By =,
i—o \ ! p p
which implies that

log(k) ~ plog(p), log(log(k)) =~ log(p),
~ log(k)
~ log(log(k))”
Then we have 5
- <p r 1) (p2P)P/2 ~ i — S0(h)/ Toglog (k).

Definition 1.10. Given a set S C R™, the diameter of S is defined as Diam(S) = sup{d(zx,y) :
x,y € S} where d(x,y) denotes the Euclidean distance between x and y in R™.



If Diam(S) < 400, then we say S is bounded.
Borswk’s Conjecture: Every bounded S € R? can be partitioned into d + 1 sets of strictly
smaller diameter.

Remark 1.11. This was verified for all S C R with d < 3 and for the S is a sphere and any
d>2.

Lemma 1.12. For any prime p, there is a set F of %(;Lg) vectors in {—1,1}* such that every

subset of size 2(1’4}’1) vectors contains an orthogonal pair of vectors.

Proof. Let Q={I € ([3?) : 1 €I}, then |Q| = %( ) For any I € Q, define ¢! € {—1,1}*" by

_ 1, iel
v; =
’ —1,i¢ 1.

Let F = {#' : I € Q} with |F| = Q| = §(3}).
Claim 1. ¢ 1 ¢/ if and only if [INJ| =0 (mod p).

Proof. ¢' 1 ¢/ if and only if #7-¢/ = 0. Since #!-¢7/ = |[INJ|—|I°NJ|—|INJC|+|I®NJC]| (we have
INJ| = [I¢NJC| as |I| = |J| = 2p), we have that ¢/ L #/ if and only if |[TAJ| = 2p = 4p—2|IN.J|
if and only if [INJ|=p

Since 1 € I'NJ and |I| = |J| = 2p, we have ¥ 1 4/ if and only if [T N J| =0 (mod p). ]

Claim 2. For any subset F/ C F without orthogonal pairs, |F'| < Zz;é (415' ) < 2(p4fl).

Proof. Let Q' = {I € Q : ¥/ € 7. By Claim 1, Q' is a subfamily of ([ p]) satisfying
e [A|=2p=0 (mod p),VA € @',
e [ANB|#0 (mod p),VA # B € Q.

By Theorem 1.8 (with L = {1,2,...,p — 1}), we get |F'| = |Q'| < Zi;é (45). ]
Now the conclusion of Lemma follows by Claim 2. |

Definition 1.13. The tensor product of a vectors ¥ € R" is W = 7 Q U € R by wi; = v; -v; for
all1 <i4,5 <n.

Theorem 1.14 (Kahn-Kalai, 1993). For sufficiently large d, there exists a bounded set S C R%(a
finite set) such that any partition of S into 1.1V4 subsets contains a subset of the same diameter.

Proof. Take the family F from the above lemma. So F C {—1,1}" C R" (with n = 4p). Let
X={7@7:7e€F} CR™. Let d = n? = (4p)? = 16p>. For any & = 7@ 7 € X,

@ = 3 wi= Y vff—Zv Zv

1<4,5<n 1<4,5<n

and thus ||d|| = n.



For t =09@ 0,4 =9 ¢ € X, we have
b )

Gt = Y wgwl= Y @)oo = (3 val)? = (792

1<i,j<n 1<i,j<n
This says that « 1L «' if and only if ¢ L ¢. Thus,
@ — || = ||| |* + ||| |* — 20 - & = 2n® —2(7 - &)? < 202,

this proves that Diam(X) = v/2n and | X| = |F| = %(%ﬁ).
By Lemma 1.12, any subset of 2(}74_1’1) vectors in F contains an orthogonal pair of vector o, 7.
Thus, any subset of 2(1;4}’1) vectors in X must contain a pair W = 0@ v,W = ¢ @ ¥ with v L ¢,

which give the maximum distance ||[& — @'|| = v2n. Thus to decrease the diameter, we must
partition X into subsets of size less than 2(p4f1), so the number of subsets needed is at least

14p
X _aly) _1@prDe@rl) 1 Spny o 30
2(1)71) 2(1)71) 4 (2p) o (p) 4 2 2
where d = n? = 16p2 is the dimension of X. M



