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1 Bollobás’ Theorem

We first recall the following theorem which we learned in week 5.

Sperner’s Theorem: Let F ⊆ 2[n] be a family such that for any A ̸= B ∈ F, A ̸⊆ B, and
B ̸⊆ A, then |F| ≤

(
n

⌊n
2
⌋
)
.

LYM-inequality: For such F,
∑

A∈F

1

( n
|A|)

≤ 1.

Theorem 1.1 (Bollobás’ Theorem). Let A1, A2, ..., Am and B1, B2, ..., Bm be the subsets of some
ground set Ω. If we have

(1) Ai ∩Bj ̸= ∅, for any i ̸= j ∈ [m],

(2) Ai ∩Bi = ∅, for any i ∈ [m].

Then
m∑
i=1

1

(ai+bi
ai

)
≤ 1, where ai = |Ai|, and bj = |Bj |.

Remark 1.2. The condition (1): Ai ∩ Bj ̸= ∅, for any i ̸= j cannot be weakened to i < j;
otherwise we have the following counterexamples:

• m = 2, A1 = B2 = {1} and A2 = B1 = ∅.

We can see that
m∑
i=1

1

(ai+bi
ai

)
= 2 > 1.

• m = 3, A1 = B2 = {1}, A2 = A3 = B1 = {3}, and B3 = {1, 2}.

We can see that
m∑
i=1

1

(ai+bi
ai

)
= 4

3 > 1.

Proposition 1.3. Bollobás’ Theorem can imply LYM-inequality and LYM-inequality will imply
Sperner’s Theorem.

Proof. We first show that Bollobás’ Theorem can imply the LYM-inequality. Let F ⊆ 2[n] satisfy
that A ̸⊆ B, andB ̸⊆ A for any A ̸= B ∈ F. LetF = {A1, A2, ..., Am} andF′ = {B1, B2, ..., Bm},
where Bi = [n]\Ai. We now varify that A1, ..., Am and B1, ..., Bm satisfy the conditions (1) and
(2).

• Ai ∩Bj = Ai\Aj ̸= ∅, for any i ̸= j ∈ [m],

• Ai ∩Bi = ∅, for any i ∈ [m].
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So by Bollobás’ Theorem:

1 ≥
m∑
i=1

1(
ai+bi
ai

) =
∑
A∈F

1(
n

|Ai|
) .

Note that LYM-inequality can easily imply the Sperner’s Theorem and we are done.

Proof of Bollobás’ Theorem. Let X =
m∪
i=1

(Ai ∪ Bi) and let n = |X|. We will prove by induction

on n. Base case: n = 1 (A1 = {1}, B1 = ∅) is clear.
Now we assume this statement holds for |X| ≤ n − 1. Let Ix = {i ∈ [m] : x /∈ Ai} for any

x ∈ X. Define Fx = {Ai : i ∈ Ix} ∪ {Bi\{x} : i ∈ Ix}. Since each set in Fx doesn’t contain x, we
see that |∪S∈FxS| ≤ |X \ {x}| ≤ n− 1. Moreover, the family Fx satisfy the induction hypothesis.
Hence by induction, we get ∑

i∈Ix

1(|Ai|+|Bi\{x}|
|Ai|

) ≤ 1, for any x ∈ X.

We sum up the above inequalities for all x ∈ X and get∑
x∈X

∑
i∈Ix

1(|Ai|+|Bi\{x}|
|Ai|

) ≤ n. (1.1)

For each i ∈ [m], it contributes either 0, or 1

(ai+bi
ai

)
or 1

(ai+bi−1
ai

)
to each x. The term 1

(ai+bi
ai

)
occurs

when i ∈ Ix and x /∈ Bi, i.e., x /∈ Ai ∪ Bi which occur exactly (n − ai − bi) times. The term
1

(ai+bi−1
ai

)
occurs when i ∈ Ix and x ∈ Bi, i.e., x ∈ Bi which occur exactly bi times. Therefore, we

see that (1.1) is equivalent to

m∑
i=1

(
(n− ai − bi)

1(
ai+bi
ai

) + bi
1(

ai+bi−1
ai

)) ≤ n.

Since we have 1

(ai+bi−1
ai

)
= 1

(ai+bi
ai

)
· ai+bi

bi
, which implies that

n

m∑
i=1

1(
ai+bi
ai

) ≤ n,

as claimed.

Definition 1.4. Let F be a field. A set A ⊆ Fn is in general position, if any n vectors in A are
linearly independent over F.

Example 1.5. For a ∈ F, let m⃗(a) = (1, a, a2, ..., an−1) ∈ Fn be a moment curve. Then {m⃗(a) :
a ∈ F} is in general position (because of the Vandermonde matrix).

Next, we use the so-called “general position” argument to prove the skew version of Bollobás’
Theorem, where the condition (1) is relaxed to i < j.

Theorem 1.6. (The skew version of Bollobás’ Theorem) Let A1, ..., Am be the sets of size r and
B1, ..., Bm be the sets of size s such that
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• Ai ∩Bj ̸= ∅, for any i < j,

• Ai ∩Bi = ∅, for any i ∈ [m].

Then m ≤
(
r+s
s

)
.

Proof. Let X=
∪

i∈[m](Ai ∪Bi). Take a set V of vectors v⃗ = (v0, v1, ..., vr) in Rr+1 such that V is
in general position and |V | = |X|. Then we identify the elements of X with vectors of V . From
now on, we may view each Ai or Bj as a subset in V ⊆ Rr+1, where |Ai| = r and |Bj | = s. For
each j ∈ [m], we define fj(x⃗) =

∏
v⃗∈Bj

x⃗ · v⃗ for any x⃗ ∈ Rr+1. So

fj(x⃗) =
∏

v⃗=(v0,...,vr)
v⃗∈Bj

(v0x0 + · · ·+ vrxr),

where x⃗ = (x0, ..., xr) ∈ Rr+1.Note that fj(x⃗) is generated by the following monomials xi00 x
i1
1 · · ·xirr ,

where i0 + i1 + · · · + ir = s and ij ≥ 0 for 0 ≤ j ≤ r. There are exactly
(
s+r
r

)
such monomials,

so f1, f2, .., fm are contained in a polynomial linear space of dimension
(
s+r
r

)
. It suffices to prove

that f1, f2, .., fm are linearly independent. Note that

fj(x⃗) = 0 if and only if there exists some v⃗ ∈ Bj such that v⃗ · x⃗ = 0. (1.2)

Consider the linear subspace Span(Ai), which is spanned by the r vectors in Ai. Since Ai ⊆ V ⊆
Rr+1 and V is in general position, we see that all r vectors in Ai are linearly independent and
thus dim

(
Span(Ai)

)
= r. So (Span(Ai))

⊥ has dimension 1. We choose a⃗i ∈ (Span(Ai))
⊥ for

each i ∈ [m]. Then for each v⃗ ∈ V ,

v⃗ · a⃗i = 0 if and only if v⃗ ∈ Span(Ai) if and only if v⃗ ∈ Ai. (1.3)

Because, otherwise the r + 1 vectors in {v⃗} ∪ Ai are linearly dependent, contradicting that V is
in general position.

Combining (1.2) and (1.3), fj (⃗ai) =
∏

v⃗∈Bj
v⃗ · a⃗i = 0 if and only if there exists v⃗ ∈ Bj such

that v⃗ · a⃗i = 0 which is equivalent to say that there exists v⃗ ∈ Bj ∩Ai, i.e., Ai ∩Bj ̸= ∅. Thus we
get the following {

fj (⃗ai) = 0, for any i < j,

fi(⃗ai) ̸= 0, for any i.

By the previous lemma, we now see that f1, ..., fm are linearly independent.

2 Covering by complete bipartite subgraphs

Problem. Determine the minimum m = m(n) such that the edge set E(Kn) of a clique Kn can
be partitioned into a disjoint union of edge sets of m complete subgraphs of Kn.

Fact 2.1. m(n) ≤ n− 1.

Proof. Because we can express E(Kn) as a disjoint union of n− 1 stars.

We remark that there are more than one way to partition E(Kn) into n−1 complete bipartite
subgraphs.
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Theorem 2.2 (Graham-Pollak). m(n) = n− 1.

Proof. Suppose that E(Kn) = E(B1) ∪ E(B2) ∪ · · · ∪ E(Bm), where B1, B2, ..., Bm are complete
bipartite subgraphs on [n]. We want to show that m ≥ n− 1. Let Xi and Yi be the two parts of

Bi. For Bk, we define an n× n matrix Ak = (a
(k)
ij )n×n by

a
(k)
ij =

{
1, if i ∈ Xk and j ∈ Yk,

0, otherwise.

It is clear to see that rank(Ak) = 1 for any k. Let A =
∑m

k=1Ak, implying rank(A) ≤∑m
k=1 rank(Ak) = m. Then A + AT = Jn − In, where Jn = (1)n×n, because each ij ∈ E(Kn)

belongs to exactly one of the graphs Bk, where we have a
(k)
ij = 0 and a

(k)
ji = 1 or a

(k)
ij = 1 and

a
(k)
ji = 0. It suffices to show that rankA ≥ n− 1.

Suppose for a contradiction that rankA ≤ n − 2. Let A′ be the (n + 1) × n matrix obtained
from A by adding an extra row (11 · · · 1), so rank(A′) ≤ n − 1. Then there exists a non-zero
vector x⃗ ∈ Rn such that A′x⃗ = 0⃗ ∈ Rn+1, which is equivalent to Ax⃗ = 0⃗ ∈ Rn and 1⃗ · x⃗ = 0,
where x⃗ = (x1, ..., xn). Consider x⃗

T (A+AT )x⃗ = x⃗T (Jn − In)x⃗ implying that 0 = x⃗TJnx⃗− x⃗T x⃗ =
0−

∑n
i=1 x

2
i < 0, a contradiction. This proves that n− 1 ≤ rankA ≤ m.

3 Finite Projective Plane (FPP)

Definition 3.1. Let X be a finite set and L ⊆ 2X be a family. The pair (X,L) is called a finite
projective plane (FPP for short) if it satisfies the following three properties.

(P0) There exists a 4-set F ⊆ X such that |F ∩ L| ≤ 2 for any L ∈ L.

(P1) Any two L1, L2 ∈ L has |L1 ∩ L2| = 1.

(P2) For any two x1, x2 ∈ X, there exists exactly one subset L ∈ L with {x1, x2} ⊆ L.

We call the elements of X as points, and the sets inL as lines. Let us explain the three properties:

• (P0) is used to exclude some non-interesting cases.

• (P1) says that any two lines intersect at exactly one point.

• (P2) says that any two points determine one line.

Example 3.2 (The Fano plane (the smallest FPP)). Where the set X = [7] has 7 points and the
set L has 7 lines with L = {{1, 2, 3}, {3, 4, 5}, {1, 5, 6}, {1, 4, 7}, {2, 5, 7}, {3, 6, 7}, {2, 4, 6}} .

Proposition 3.3. Let (X,L) be an FPP. Then any two lines L,L′ ∈ L satisfy |L| = |L′|.

Proof. We claim that there exists a point x ∈ X with x /∈ L∪L′. To see this, let F ⊆ X be from
(P0). Then |F ∩L| ≤ 2, |F ∩L′| ≤ 2. So we may assume that F = {a, b, c, d} and F ∩L = {a, b},
F ∩L′ = {c, d}. Let ac denote the line in L containing a and c; similarly, define bd. Let z ∈ ac∩bd
be the unique point. If z /∈ L ∪ L′, then we are done. So we may assume z ∈ L, i.e., z ∈ L ∩ ac.
But a ∈ L ∩ ac, which implies that z = a. But again, we see a, b ∈ L ∩ bd, a contradiction.

For any point l ∈ L, the line xl intersects with L′ at the unique point, say l′ ∈ L′. We define
a mapping ϕ : L → L′ by letting ϕ(l) = l′ for any l ∈ L. Next we show that ϕ is a bijection
between L and L′. (Exercise)
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Definition 3.4. Let (X,L) be a finite projective plane. The order of (X,L) is the number
|L| − 1, for each L ∈ L.

Proposition 3.5. Let (X,L) be a FPP of order n. Then

(1) For each x ∈ X, there are exactly n+ 1 lines passing through x.

(2) |X| = n2 + n+ 1.

(3) |L| = n2 + n+ 1.

Proof. (1). Consider x ∈ X. Let F be the 4-set satisfying (P0). Let a, b, c ∈ F\{x}. Then, at least
one of the lines ab, ac which doesn’t contains x (otherwise, a, b, c, x are in the same line). Let L
be such a line with x /∈ L. Let L = {x0, x1, ..., xn}. Then xix define n + 1 lines. On the other
hand, any line passing through x must intersect at some point say xi. Thus, there are exactly
n+ 1 lines containing x.

(2). By (1), there are n + 1 lines L0, L1, ..., Ln containing x. It is clear that (Li\{x}) ∩
(Lj\{x}) = ∅ for any i ̸= j. Thus, |L0 ∪ L1 ∪ · · · ∪ Ln| = n(n + 1) + 1 = n2 + n + 1. It is
easy to see that X = L0 ∪ L1 ∪ · · · ∪ Ln.

(3). Let the incidence graph of a FPP (X,L) be the bipartite graph with two parts X and L,
where x ∈ X is adjacent to L ∈ L if and only if x ∈ L. This defines an (n+ 1)-regular bipartite
graph. So |L| = |X| = n2 + n+ 1.
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