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1 Bollobas’ Theorem

We first recall the following theorem which we learned in week 5.

Sperner’s Theorem: Let & C 2[" be a family such that for any A # B € %, A ¢ B, and
B ¢ A, then |F| < (LZJ)'
2

LYM-inequality: For such &, 3 i< < 1.
Acs ()

Theorem 1.1 (Bollobds’ Theorem). Let Ay, As, ..., Ay and By, Ba, ..., By, be the subsets of some
ground set Q. If we have

(1) A; ﬁBj 7é ®7 fOT’ any i 7&] S [m]v

(2) A;N B; =0, for any i € [m).

m
Then > (‘lz‘lbz‘) <1, where a; = |A;|, and b; = |Bj|.

=1 a;
Remark 1.2. The condition (1): A; N Bj # 0, for any i # j cannot be weakened to i < j;
otherwise we have the following counterexamples:

om:2,A1:Bgz{l} andAnglzq).

m
We can see that Y ——p~ =2 > 1.

i:l( a; )
L] m:3, A1:BQZ{1}, A2:A3:Blz{3}, anngz{1,2}.

m
We can see that ai}’bi = % > 1.
i=1

(")

Proposition 1.3. Bollobds’ Theorem can imply LY M-inequality and LY M-inequality will imply
Sperner’s Theorem.

Proof. We first show that Bollobds’ Theorem can imply the LY M-inequality. Let & C 2" satisfy
that AZ B,and BZ Aforany A # B € F.Let F = {A1, Ay, ..., Ay} and F' = { By, B, ..., Bi, },
where B; = [n]\A;. We now varify that Ay, ..., Ay, and By, ..., By, satisfy the conditions (1) and

(2).
o A;NB;=A\A; #0, for any i # j € [m],

e A;NB; =0, for any i € [m].



So by Bollobads’ Theorem:
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i=1 AcF \|Ai
Note that LYM-inequality can easily imply the Sperner’s Theorem and we are done. |

Proof of Bollobas’ Theorem. Let X = U (A; U B;) and let n = | X|. We will prove by induction

=
on n. Base case: n =1 (4; = {1}, B = @) is clear.
Now we assume this statement holds for |X| < n —1. Let I, = {i € [m] : x ¢ A;} for any
x € X. Define F, = {4; :i € L} U{B;\{z}: 1 € I,}. Since each set in %, doesn’t contain x, we
see that |Ugeg, S| < |X \ {z}| < n—1. Moreover, the family %, satisfy the induction hypothesis.
Hence by induction, we get

1
ZWMSL for any z € X.
i€l

il

We sum up the above inequalities for all x € X and get

> |A |+\B (]| (1.1)
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For each i € [m)], it contributes either 0, or -3~ or =—+— to each z. The term ——,~ occurs
(ﬁz) (z+z ) (z+z)

ag ag ajg

when ¢ € I, and = ¢ B;, i.e., x ¢ A; U B; which occur exactly (n — a; — b;) times. The term
W occurs when ¢ € I, and x € B;, i.e., x € B; which occur exactly b; times. Therefore, we

see that (1.1) is equivalent to

= 1 1
(n—a; —b)—~ +bi—g— | <N
; ( (") ()
Since we have (ai"'%i_l) = & }rb 3 “"H” , which implies that
OO |
n Z ai+bz S n’
i=1 ( a; )
as claimed. |

Definition 1.4. Let F be a field. A set A C F" is in general position, if any n vectors in A are
linearly independent over IF.

Example 1.5. For a € F, let m(a) = (1,a,a?,...,a" ') € F* be a moment curve. Then {m(a) :
a € F} is in general position (because of the Vandermonde matriz).

Next, we use the so-called “general position” argument to prove the skew version of Bollobds’
Theorem, where the condition (1) is relaxed to i < j.

Theorem 1.6. (The skew version of Bollobas’ Theorem) Let Ay, ..., Ay, be the sets of size r and
By, ..., By, be the sets of size s such that



o A;NB; #0, for any i < j,
o A;,NB; =10, for any i € [m)].
Then m < ("t*).

Proof. Let X:Uie[m}(Ai U B;). Take a set V of vectors @ = (vg, v1, ..., v) in R"*! such that V is

in general position and |V| = |X|. Then we identify the elements of X with vectors of V. From
now on, we may view each 4; or B; as a subset in V C R™ !, where |A;| = r and |B;| = s. For
each j € [m], we define f;(Z) = vep, T U for any I' € R™1. So

L@ = I (wozo+--+uva),
U=(v0,--.,Vr)
ﬁEBj
where Z = (g, ..., 7,) € R"1. Note that f;(&) is generated by the following monomials zz}! - - - xr,
where ig + i1 + -+ 4, = s and i; > 0 for 0 < j < r. There are exactly (Str) such monomials,
so fi1, fa, .., fm are contained in a polynomial linear space of dimension (S”:T). It suffices to prove

that f1, fo, .., frn are linearly independent. Note that
fj(Z) = 0 if and only if there exists some ¢ € B; such that ¥z = 0. (1.2)

Consider the linear subspace Span(4;), which is spanned by the r vectors in A;. Since A; CV C
R"™*! and V is in general position, we see that all 7 vectors in A; are linearly independent and
thus dim(Span(4;)) = r. So (Span(A;))* has dimension 1. We choose @; € (Span(4;))* for
each i € [m]. Then for each v € V,

v-d; =0 if and only if ¢ € Span(4;) if and only if ¥ € A4,. (1.3)

Because, otherwise the r + 1 vectors in {7} U A; are linearly dependent, contradicting that V is
in general position.

Combining (1.2) and (1.3), fj(d;) = gep, U+ @ = 0if and only if there exists 7 € B; such
that ¥+ @; = 0 which is equivalent to say that there exists 7 € B; N 4;, i.e., A;N B; # (). Thus we
get the following

fj(@;) =0, for any i < j,
fl(d’z) 7& 0, for any 1.

By the previous lemma, we now see that fi, ..., f;,, are linearly independent. |

2 Covering by complete bipartite subgraphs

Problem. Determine the minimum m = m(n) such that the edge set E(K,) of a clique K, can
be partitioned into a disjoint union of edge sets of m complete subgraphs of K.

Fact 2.1. m(n) <n-—1.
Proof. Because we can express E(K,,) as a disjoint union of n — 1 stars. |

We remark that there are more than one way to partition E(K,,) into n —1 complete bipartite
subgraphs.



Theorem 2.2 (Graham-Pollak). m(n) =n — 1.

Proof. Suppose that E(K,) = E(B1)UE(By)U---U E(By,), where By, Ba, ..., B, are complete
bipartite subgraphs on [n]. We want to show that m > n — 1. Let X; and Y; be the two parts of
B;. For By, we define an n X n matrix A, = (az(?))nxn by

(k) 1, if 1 € X; and j € Yy,
a;;’ =

0, otherwise.

It is clear to see that rank(A;) = 1 for any k. Let A = Y ", A, implying rank(A) <
St rank(Ag) = m. Then A + AT = J,, — I,, where J, = (1),xn, because each ij € E(K,)
belongs to exactly one of the graphs By, where we have agf) = 0 and ay;) =1lor az(?) =1 and
agf) = 0. It suffices to show that rankA > n — 1.

Suppose for a contradiction that rankA < n — 2. Let A’ be the (n + 1) x n matrix obtained
from A by adding an extra row (11---1), so rank(A’) < n — 1. Then there exists a non-zero
vector ¥ € R™ such that A’ = 0 € R, which is equivalent to A7 =0 € R” and 1 -7 = 0,
where ¥ = (21, ..., 7). Consider T (A + AT)# = 7T (J,, — I,,)¥ implying that 0 = 1 J, 7 — 777 =
0— E?zl xf < 0, a contradiction. This proves that n — 1 < rankA < m. |

3 Finite Projective Plane (FPP)

Definition 3.1. Let X be a finite set and & C 2% be a family. The pair (X, %) is called a finite
projective plane (FPP for short) if it satisfies the following three properties.

(P0) There exists a 4-set F C X such that |F N L| <2 for any L € £.

(P1) Any two Ly,Las € & has |L1 N La| = 1.

(P2) For any two x1,x9 € X, there exists exactly one subset L € & with {x1,22} C L.

We call the elements of X as points, and the sets in & as lines. Let us explain the three properties:
e (P0) is used to exclude some non-interesting cases.
e (P1) says that any two lines intersect at exactly one point.

e (P2) says that any two points determine one line.

Example 3.2 (The Fano plane (the smallest FPP)). Where the set X = [7| has 7 points and the
set £ has 7 lines with & = {{1,2,3},{3,4,5}, {1,5,6}, {1,4,7},{2.5,7}, {3,6,7}, {2,4,61} .

Proposition 3.3. Let (X, %) be an FPP. Then any two lines L, L' € & satisfy |L| = |L'|.

Proof. We claim that there exists a point x € X with ¢ LU L’. To see this, let F C X be from
(PO). Then |[FNL| <2, |FNL'| <2.So we may assume that F' = {a,b,c,d} and FN L = {a, b},
FNL = {c,d}. Let ac denote the line in & containing a and ¢; similarly, define bd. Let z € acnbd
be the unique point. If 2 ¢ L U L', then we are done. So we may assume z € L, i.e., 2 € LN ac.
But @ € L Nag, which implies that z = a. But again, we see a,b € L N bd, a contradiction.

For any point # € L, the line 27 intersects with L’ at the unique point, say £’ € L'. We define
a mapping ¢ : L — L' by letting ¢(£) = ¢’ for any £ € L. Next we show that ¢ is a bijection
between L and L’. (Exercise) 1



Definition 3.4. Let (X,&) be a finite projective plane. The order of (X,&Z) is the number
|L| — 1, for each L € &.

Proposition 3.5. Let (X, &) be a FPP of order n. Then
(1) For each x € X, there are exactly n + 1 lines passing through x.
(2) 1 X|=n*+n+1.
(3) |Z|=n?+n+1.

Proof. (1). Consider x € X. Let F' be the 4-set satisfying (P0). Let a,b,c € F\{x}. Then, at least
one of the lines ab, @c which doesn’t contains = (otherwise, a,b, c, z are in the same line). Let L
be such a line with = ¢ L. Let L = {xg,x1,...,x,}. Then T;z define n + 1 lines. On the other
hand, any line passing through = must intersect at some point say x;. Thus, there are exactly
n + 1 lines containing .

(2). By (1), there are n + 1 lines Lo, L1,..., L, containing z. It is clear that (L;\{z}) N
(Li\{z}) = 0 for any i # j. Thus, [LoUL U ULy =nn+1)+1=n?+n+1 Itis
easy to see that X = LoU L U---U L,.

(3). Let the incidence graph of a FPP (X, Z) be the bipartite graph with two parts X and L,
where x € X is adjacent to L € &£ if and only if z € L. This defines an (n + 1)-regular bipartite
graph. So |Z| = |X|=n?+n+ 1. 1



