Combinatorics

Instructor: Jie Ma, Scribed by Jun Gao, Jialin He and Tianchi Yang

2020 Fall, USTC

1 Bollobás' Theorem

We first recall the following theorem which we learned in week 5 .
Sperner's Theorem: Let $\mathscr{F} \subseteq 2^{[n]}$ be a family such that for any $A \neq B \in \mathscr{F}, A \nsubseteq B$, and $B \nsubseteq A$, then $|\mathscr{F}| \leq\binom{ n}{\left(\frac{n}{2}\right\rfloor}$.
LYM-inequality: For such $\mathscr{F}, \sum_{A \in \mathscr{F}} \frac{1}{\binom{n}{A}} \leq 1$.
Theorem 1.1 (Bollobás' Theorem). Let $A_{1}, A_{2}, \ldots, A_{m}$ and $B_{1}, B_{2}, \ldots, B_{m}$ be the subsets of some ground set Ω. If we have
(1) $A_{i} \cap B_{j} \neq \emptyset$, for any $i \neq j \in[m]$,
(2) $A_{i} \cap B_{i}=\emptyset$, for any $i \in[m]$.

Then $\sum_{i=1}^{m} \frac{1}{\binom{a_{i}+b_{i}}{a_{i}}} \leq 1$, where $a_{i}=\left|A_{i}\right|$, and $b_{j}=\left|B_{j}\right|$.
Remark 1.2. The condition (1): $A_{i} \cap B_{j} \neq \emptyset$, for any $i \neq j$ cannot be weakened to $i<j$; otherwise we have the following counterexamples:

- $m=2, A_{1}=B_{2}=\{1\}$ and $A_{2}=B_{1}=\emptyset$.

We can see that $\sum_{i=1}^{m} \frac{1}{\binom{a_{i}+b_{i}}{a_{i}}}=2>1$.

- $m=3, A_{1}=B_{2}=\{1\}, A_{2}=A_{3}=B_{1}=\{3\}$, and $B_{3}=\{1,2\}$.

We can see that $\sum_{i=1}^{m} \frac{1}{\binom{a_{i}+b_{i} i}{a_{i}}}=\frac{4}{3}>1$.
Proposition 1.3. Bollobás' Theorem can imply LYM-inequality and LYM-inequality will imply Sperner's Theorem.

Proof. We first show that Bollobás' Theorem can imply the LYM-inequality. Let $\mathscr{F} \subseteq 2^{[n]}$ satisfy that $A \nsubseteq B$, and $B \nsubseteq A$ for any $A \neq B \in \mathscr{F}$. Let $\mathscr{F}=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ and $\mathscr{F}^{\prime}=\left\{B_{1}, B_{2}, \ldots, B_{m}\right\}$, where $B_{i}=[n] \backslash A_{i}$. We now varify that A_{1}, \ldots, A_{m} and B_{1}, \ldots, B_{m} satisfy the conditions (1) and (2).

- $A_{i} \cap B_{j}=A_{i} \backslash A_{j} \neq \emptyset$, for any $i \neq j \in[m]$,
- $A_{i} \cap B_{i}=\emptyset$, for any $i \in[m]$.

So by Bollobás' Theorem:

$$
1 \geq \sum_{i=1}^{m} \frac{1}{\binom{a_{i}+b_{i}}{a_{i}}}=\sum_{A \in \mathscr{F}} \frac{1}{\binom{n}{\left|A_{i}\right|}} .
$$

Note that LYM-inequality can easily imply the Sperner's Theorem and we are done.
Proof of Bollobás' Theorem. Let $X=\bigcup_{i=1}^{m}\left(A_{i} \cup B_{i}\right)$ and let $n=|X|$. We will prove by induction on n. Base case: $n=1\left(A_{1}=\{1\}, B_{1}=\emptyset\right)$ is clear.

Now we assume this statement holds for $|X| \leq n-1$. Let $I_{x}=\left\{i \in[m]: x \notin A_{i}\right\}$ for any $x \in X$. Define $\mathscr{F}_{x}=\left\{A_{i}: i \in I_{x}\right\} \cup\left\{B_{i} \backslash\{x\}: i \in I_{x}\right\}$. Since each set in \mathscr{F}_{x} doesn't contain x, we see that $\left|\cup_{S \in \mathscr{F} x} S\right| \leq|X \backslash\{x\}| \leq n-1$. Moreover, the family \mathscr{F}_{x} satisfy the induction hypothesis. Hence by induction, we get

$$
\sum_{i \in I_{x}} \frac{1}{\left(\begin{array}{c}
\left|A_{i}\right|+\left|B_{i} \backslash\{x\}\right| \\
\left|A_{i}\right|
\end{array}\right.} \leq 1, \text { for any } x \in X
$$

We sum up the above inequalities for all $x \in X$ and get

$$
\sum_{x \in X} \sum_{i \in I_{x}} \frac{1}{\left(\begin{array}{c}
\left|A_{i}\right|+\left|B_{i} \backslash\{x\}\right| \tag{1.1}\\
\left|A_{i}\right|
\end{array}\right.} \leq n .
$$

For each $i \in[m]$, it contributes either 0 , or $\frac{1}{\binom{a_{i}+b_{i}}{a_{i}}}$ or $\frac{1}{\binom{a_{i}+b_{i}-1}{a_{i}}}$ to each x. The term $\frac{1}{\binom{a_{i}+b_{i}}{a_{i}}}$ occurs when $i \in I_{x}$ and $x \notin B_{i}$, i.e., $x \notin A_{i} \cup B_{i}$ which occur exactly ($n-a_{i}-b_{i}$) times. The term $\frac{1}{\binom{a_{i}+b_{i}-1}{a_{i}}}$ occurs when $i \in I_{x}$ and $x \in B_{i}$, i.e., $x \in B_{i}$ which occur exactly b_{i} times. Therefore, we see that (1.1) is equivalent to

$$
\sum_{i=1}^{m}\left(\left(n-a_{i}-b_{i}\right) \frac{1}{\binom{a_{i}+b_{i}}{a_{i}}}+b_{i} \frac{1}{\binom{a_{i}+b_{i}-1}{a_{i}}}\right) \leq n
$$

Since we have $\frac{1}{\binom{a_{i}+b_{i}-1}{a_{i}}}=\frac{1}{\binom{a_{i}+b_{i}}{a_{i}}} \cdot \frac{a_{i}+b_{i}}{b_{i}}$, which implies that

$$
n \sum_{i=1}^{m} \frac{1}{\binom{a_{i}+b_{i}}{a_{i}}} \leq n
$$

as claimed.
Definition 1.4. Let \mathbb{F} be a field. A set $A \subseteq \mathbb{F}^{n}$ is in general position, if any n vectors in A are linearly independent over \mathbb{F}.

Example 1.5. For $a \in \mathbb{F}$, let $\vec{m}(a)=\left(1, a, a^{2}, \ldots, a^{n-1}\right) \in \mathbb{F}^{n}$ be a moment curve. Then $\{\vec{m}(a)$: $a \in \mathbb{F}\}$ is in general position (because of the Vandermonde matrix).

Next, we use the so-called "general position" argument to prove the skew version of Bollobás' Theorem, where the condition (1) is relaxed to $i<j$.

Theorem 1.6. (The skew version of Bollobás' Theorem) Let A_{1}, \ldots, A_{m} be the sets of size r and B_{1}, \ldots, B_{m} be the sets of size s such that

- $A_{i} \cap B_{j} \neq \emptyset$, for any $i<j$,
- $A_{i} \cap B_{i}=\emptyset$, for any $i \in[m]$.

Then $m \leq\binom{ r+s}{s}$.
Proof. Let $\mathrm{X}=\bigcup_{i \in[m]}\left(A_{i} \cup B_{i}\right)$. Take a set V of vectors $\vec{v}=\left(v_{0}, v_{1}, \ldots, v_{r}\right)$ in \mathbb{R}^{r+1} such that V is in general position and $|V|=|X|$. Then we identify the elements of X with vectors of V. From now on, we may view each A_{i} or B_{j} as a subset in $V \subseteq \mathbb{R}^{r+1}$, where $\left|A_{i}\right|=r$ and $\left|B_{j}\right|=s$. For each $j \in[m]$, we define $f_{j}(\vec{x})=\prod_{\vec{v} \in B_{j}} \vec{x} \cdot \vec{v}$ for any $\vec{x} \in \mathbb{R}^{r+1}$. So

$$
f_{j}(\vec{x})=\prod_{\substack{\vec{v}=\left(v_{0}, \ldots, v_{r}\right) \\ \vec{v} \in B_{j}}}\left(v_{0} x_{0}+\cdots+v_{r} x_{r}\right),
$$

where $\vec{x}=\left(x_{0}, \ldots, x_{r}\right) \in \mathbb{R}^{r+1}$. Note that $f_{j}(\vec{x})$ is generated by the following monomials $x_{0}^{i_{0}} x_{1}^{i_{1}} \cdots x_{r}^{i_{r}}$, where $i_{0}+i_{1}+\cdots+i_{r}=s$ and $i_{j} \geq 0$ for $0 \leq j \leq r$. There are exactly $\binom{s+r}{r}$ such monomials, so $f_{1}, f_{2}, \ldots, f_{m}$ are contained in a polynomial linear space of dimension $\binom{s+r}{r}$. It suffices to prove that $f_{1}, f_{2}, . ., f_{m}$ are linearly independent. Note that

$$
\begin{equation*}
f_{j}(\vec{x})=0 \text { if and only if there exists some } \vec{v} \in B_{j} \text { such that } \vec{v} \cdot \vec{x}=0 \text {. } \tag{1.2}
\end{equation*}
$$

Consider the linear subspace $\operatorname{Span}\left(A_{i}\right)$, which is spanned by the r vectors in A_{i}. Since $A_{i} \subseteq V \subseteq$ \mathbb{R}^{r+1} and V is in general position, we see that all r vectors in A_{i} are linearly independent and thus $\operatorname{dim}\left(\operatorname{Span}\left(A_{i}\right)\right)=r$. So $\left(\operatorname{Span}\left(A_{i}\right)\right)^{\perp}$ has dimension 1. We choose $\vec{a}_{i} \in\left(\operatorname{Span}\left(A_{i}\right)\right)^{\perp}$ for each $i \in[m]$. Then for each $\vec{v} \in V$,

$$
\begin{equation*}
\vec{v} \cdot \vec{a}_{i}=0 \text { if and only if } \vec{v} \in \operatorname{Span}\left(A_{i}\right) \text { if and only if } \vec{v} \in A_{i} . \tag{1.3}
\end{equation*}
$$

Because, otherwise the $r+1$ vectors in $\{\vec{v}\} \cup A_{i}$ are linearly dependent, contradicting that V is in general position.

Combining (1.2) and (1.3), $f_{j}\left(\vec{a}_{i}\right)=\prod_{\vec{v} \in B_{j}} \vec{v} \cdot \vec{a}_{i}=0$ if and only if there exists $\vec{v} \in B_{j}$ such that $\vec{v} \cdot \vec{a}_{i}=0$ which is equivalent to say that there exists $\vec{v} \in B_{j} \cap A_{i}$, i.e., $A_{i} \cap B_{j} \neq \emptyset$. Thus we get the following

$$
\left\{\begin{array}{l}
f_{j}\left(\vec{a}_{i}\right)=0, \text { for any } i<j, \\
f_{i}\left(\vec{a}_{i}\right) \neq 0, \text { for any } i .
\end{array}\right.
$$

By the previous lemma, we now see that f_{1}, \ldots, f_{m} are linearly independent.

2 Covering by complete bipartite subgraphs

Problem. Determine the minimum $m=m(n)$ such that the edge set $E\left(K_{n}\right)$ of a clique K_{n} can be partitioned into a disjoint union of edge sets of m complete subgraphs of K_{n}.

Fact 2.1. $m(n) \leq n-1$.
Proof. Because we can express $E\left(K_{n}\right)$ as a disjoint union of $n-1$ stars.
We remark that there are more than one way to partition $E\left(K_{n}\right)$ into $n-1$ complete bipartite subgraphs.

Theorem 2.2 (Graham-Pollak). $m(n)=n-1$.
Proof. Suppose that $E\left(K_{n}\right)=E\left(B_{1}\right) \cup E\left(B_{2}\right) \cup \cdots \cup E\left(B_{m}\right)$, where $B_{1}, B_{2}, \ldots, B_{m}$ are complete bipartite subgraphs on $[n]$. We want to show that $m \geq n-1$. Let X_{i} and Y_{i} be the two parts of B_{i}. For B_{k}, we define an $n \times n$ matrix $A_{k}=\left(a_{i j}^{(k)}\right)_{n \times n}$ by

$$
a_{i j}^{(k)}=\left\{\begin{array}{l}
1, \text { if } i \in X_{k} \text { and } j \in Y_{k} \\
0, \text { otherwise }
\end{array}\right.
$$

It is clear to see that $\operatorname{rank}\left(A_{k}\right)=1$ for any k. Let $A=\sum_{k=1}^{m} A_{k}$, implying $\operatorname{rank}(A) \leq$ $\sum_{k=1}^{m} \operatorname{rank}\left(A_{k}\right)=m$. Then $A+A^{T}=J_{n}-I_{n}$, where $J_{n}=(1)_{n \times n}$, because each $i j \in E\left(K_{n}\right)$ belongs to exactly one of the graphs B_{k}, where we have $a_{i j}^{(k)}=0$ and $a_{j i}^{(k)}=1$ or $a_{i j}^{(k)}=1$ and $a_{j i}^{(k)}=0$. It suffices to show that $\operatorname{rank} A \geq n-1$.

Suppose for a contradiction that $\operatorname{rank} A \leq n-2$. Let A^{\prime} be the $(n+1) \times n$ matrix obtained from A by adding an extra row $(11 \cdots 1)$, so $\operatorname{rank}\left(A^{\prime}\right) \leq n-1$. Then there exists a non-zero vector $\vec{x} \in \mathbb{R}^{n}$ such that $A^{\prime} \vec{x}=\overrightarrow{0} \in \mathbb{R}^{n+1}$, which is equivalent to $A \vec{x}=\overrightarrow{0} \in \mathbb{R}^{n}$ and $\overrightarrow{1} \cdot \vec{x}=0$, where $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$. Consider $\vec{x}^{T}\left(A+A^{T}\right) \vec{x}=\vec{x}^{T}\left(J_{n}-I_{n}\right) \vec{x}$ implying that $0=\vec{x}^{T} J_{n} \vec{x}-\vec{x}^{T} \vec{x}=$ $0-\sum_{i=1}^{n} x_{i}^{2}<0$, a contradiction. This proves that $n-1 \leq \operatorname{rank} A \leq m$.

3 Finite Projective Plane (FPP)

Definition 3.1. Let X be a finite set and $\mathscr{L} \subseteq 2^{X}$ be a family. The pair (X, \mathscr{L}) is called a finite projective plane (FPP for short) if it satisfies the following three properties.
(P0) There exists a 4-set $F \subseteq X$ such that $|F \cap L| \leq 2$ for any $L \in \mathscr{L}$.
(P1) Any two $L_{1}, L_{2} \in \mathscr{L}$ has $\left|L_{1} \cap L_{2}\right|=1$.
(P2) For any two $x_{1}, x_{2} \in X$, there exists exactly one subset $L \in \mathscr{L}$ with $\left\{x_{1}, x_{2}\right\} \subseteq L$.
We call the elements of X as points, and the sets in \mathscr{L} as lines. Let us explain the three properties:

- (P0) is used to exclude some non-interesting cases.
- (P1) says that any two lines intersect at exactly one point.
- (P2) says that any two points determine one line.

Example 3.2 (The Fano plane (the smallest FPP)). Where the set $X=[7]$ has 7 points and the set \mathscr{L} has 7 lines with $\mathscr{L}=\{\{1,2,3\},\{3,4,5\},\{1,5,6\},\{1,4,7\},\{2,5,7\},\{3,6,7\},\{2,4,6\}\}$.
Proposition 3.3. Let (X, \mathscr{L}) be an $F P P$. Then any two lines $L, L^{\prime} \in \mathscr{L}$ satisfy $|L|=\left|L^{\prime}\right|$.
Proof. We claim that there exists a point $x \in X$ with $x \notin L \cup L^{\prime}$. To see this, let $F \subseteq X$ be from (P0). Then $|F \cap L| \leq 2,\left|F \cap L^{\prime}\right| \leq 2$. So we may assume that $F=\{a, b, c, d\}$ and $F \cap L=\{a, b\}$, $F \cap L^{\prime}=\{c, d\}$. Let $\overline{a c}$ denote the line in \mathscr{L} containing a and c; similarly, define $\overline{b d}$. Let $z \in \overline{a c} \cap \overline{b d}$ be the unique point. If $z \notin L \cup L^{\prime}$, then we are done. So we may assume $z \in L$, i.e., $z \in L \cap \overline{a c}$. But $a \in L \cap \overline{a c}$, which implies that $z=a$. But again, we see $a, b \in L \cap \overline{b d}$, a contradiction.

For any point $\ell \in L$, the line $\overline{x \ell}$ intersects with L^{\prime} at the unique point, say $\ell^{\prime} \in L^{\prime}$. We define a mapping $\phi: L \rightarrow L^{\prime}$ by letting $\phi(\ell)=\ell^{\prime}$ for any $\ell \in L$. Next we show that ϕ is a bijection between L and L^{\prime}. (Exercise)

Definition 3.4. Let (X, \mathscr{L}) be a finite projective plane. The order of (X, \mathscr{L}) is the number $|L|-1$, for each $L \in \mathscr{L}$.

Proposition 3.5. Let (X, \mathscr{L}) be a FPP of order n. Then
(1) For each $x \in X$, there are exactly $n+1$ lines passing through x.
(2) $|X|=n^{2}+n+1$.
(3) $|\mathscr{L}|=n^{2}+n+1$.

Proof. (1). Consider $x \in X$. Let F be the 4 -set satisfying (P0). Let $a, b, c \in F \backslash\{x\}$. Then, at least one of the lines $\overline{a b}, \overline{a c}$ which doesn't contains x (otherwise, a, b, c, x are in the same line). Let L be such a line with $x \notin L$. Let $L=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$. Then $\overline{x_{i} x}$ define $n+1$ lines. On the other hand, any line passing through x must intersect at some point say x_{i}. Thus, there are exactly $n+1$ lines containing x.
(2). By (1), there are $n+1$ lines $L_{0}, L_{1}, \ldots, L_{n}$ containing x. It is clear that $\left(L_{i} \backslash\{x\}\right) \cap$ $\left(L_{j} \backslash\{x\}\right)=\emptyset$ for any $i \neq j$. Thus, $\left|L_{0} \cup L_{1} \cup \cdots \cup L_{n}\right|=n(n+1)+1=n^{2}+n+1$. It is easy to see that $X=L_{0} \cup L_{1} \cup \cdots \cup L_{n}$.
(3). Let the incidence graph of a $\operatorname{FPP}(X, \mathscr{L})$ be the bipartite graph with two parts X and L, where $x \in X$ is adjacent to $L \in \mathscr{L}$ if and only if $x \in L$. This defines an $(n+1)$-regular bipartite graph. So $|\mathscr{L}|=|X|=n^{2}+n+1$.

